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Summary. Random walks $S_{N}=(S_{n})_{n\geqq 0}$ with stochastically bounded increments
$X_{0},$ $X_{1},$ $\cdots$ have been introduced in [2], [3] as natural generalizations of those
with $i$ .i.d. increments. In this article we present Blackwell-type renewal
theorems proved by means of Fourier analysis. In the special case of in-
dependent $X_{0},$ $X_{1}$ , $\cdot$ these results lead to generalizations of earlier ones in
the literature, notably in [3] where proofs were based on coupling technique
which is a purely probabilistic device. As a further aPplication we prove
Blackwell’s renewal theorem for certain random walks with stationary 1-
dependent increments that appear in Markov renewal theory as subsequences
of Markov random walks.

1. Introduction

Random walks with stochastically lower $and/or$ upper bounded increments,
see Definition 1.1 below, are a natural generalization of those with i.i. $d$ . in-
crements and have been introduced in [2], [3]. Certain drift bounds describing
the mean growth of these random walks over finite remote time intervals as
well as related characterization results are given in [2], whereas [3] is devoted
to the proof of Blackwell-type renewal theorems under appropriate additional
assumptions. Of principal importance there is the use of the coupling method,
a probabilistic device which has regained great importance since the seventies.
$\ln$ this article we will derive Blackwell-type renewal theorems via the more
classical approach based upon Fourier analysis.

We keep the basic notation of [2] and [3] which is briefly summarized
below. Let $X_{N}=(X_{n})_{n\geqq 0}$ be a sequence of real-valued, integrable random varia-
bles on a probability space $(\Omega, \mathcal{F}, P)$ with associated random walk $S_{N}$ , defined
through $S_{n}=X_{0}+\cdots+X_{n}$ for all $n\in N$ Let $\mathcal{F}_{N}$ be an arbitrary filtration to
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which $X_{N}$ is adapted and $\mathcal{G}_{N}$ the canonical filtration of $X_{N}$ , i.e. $\mathcal{G}_{n}=\sigma(X_{0}, X_{n})$ .
For each measure $F$, we use the same letter for its “distribution function” and
thus write $F(t)$ for $F((-\infty, t$]). If $F$ is a probability measure, let $\overline{F}(t)=1-F(t)$

and $\mu(F)$ its mean value provided it exists. For $n,$ $k\in N$ and $0\leqq j\leqq n$ , we
further define

$S_{n.k}=S_{n+k}-S_{n}$ , $m_{n+1}=E(X_{n+1}|\mathcal{F}_{n})$ ,

$L_{0}=X_{0}$ , $L_{n+1}=m_{1}+\cdots+m_{n+1}$ , $L_{n,k}=L_{n+k}-L_{n}$ ,

$L_{n.k}^{f}=E(S_{n.l}|\mathcal{F}_{j})=E(L_{n.i}|\mathcal{F}_{j})$ ,

$Q_{n}(dx)=P(S_{n}\in dx)$ , $Q_{n.k}(\omega, dx)=P(S_{n.k}\in dx|\mathcal{F}_{n})(\omega)$ ,

where $Q_{n.k}$ is chosen to be a regular conditional distribution. Finally, $B$ always
denotes the $Borel-\sigma- field$ over $R$ and $\Vert\cdot\Vert_{\infty}^{\backslash }$ the supremum norm on the vector
space $L_{\infty}(\Omega, \mathcal{F}, P)$ .

Definition 1.1. A sequence $X_{N}$ , adapted to a filtration $\mathcal{F}_{n}$ , is called
-stochastically bounded $(s.b.)w$ . $r$ . $t$ . $\mathcal{F}_{N}$ , if for distributions $F,$ $G$ with finite
means

(A.1) $G(t)\leqq Q_{n.1}(\cdot, t)\leqq F(t)$ a.s. for all $t\in R$ and $n\in N$ .
-stochastically stable w.r.t. $\mathcal{F}_{N}$ , if it is s.b. w.r. $t$ . $\mathcal{F}_{N}$ and if additionally

(A.2) $\lim_{k\rightarrow\infty}snp||k^{-1}L_{n.k}^{n}-\theta\Vert_{\infty}=0n\geqq 0$

holds for some $\theta\in R$ which is then called the mean of $X_{N}$ .
-ultimately stochastically bounded $w.r.t$ . $\mathcal{F}_{N}$ , if $X_{\tau+N}$ is s.b. $w$ .r.t. $\mathcal{F}_{\tau+N}$ for
some $\mathcal{F}_{N}$-time $\tau$ , such that $ E\tau<\infty$ and $ E|S_{\tau}|<\infty$ . $\tau$ is then called an entrance
time of $X_{N}$ .
–ultimately stochastically stable $w.r.t$ . $\mathcal{F}_{N}$ , if it is ultimately s.b. with a sequence
$\tau_{N}$ of entrance times such that

(A.3) $\lim_{j\rightarrow\infty}\lim_{k\rightarrow\infty}\sup\sup_{n\geq 0}\Vert k^{-1}L_{r^{f}}^{\tau_{J}}\ddagger^{n}n.k-\theta\Vert_{\infty}=0$

for some $\theta\in R$ which again is called the mean of $X_{N}$ .
The distributions $F$ and $G$ in (A.1) are called a minorant and a majorant

of $X_{N}$ and of $Q_{N.1}$ , resp.

Note that the definition of an entrance time $\tau$ differs in [2] and [3]. We
have chosen the more restrictive one of [31 because its additional requirements
$ E\tau<\infty$ and $ E|S_{\tau}|<\infty$ are indispensable for renewal theory. We denote by
$\mathcal{E}(X_{N}, \mathcal{F}_{N})$ the class of entrance times of $X_{N}w$ .r.t. $\mathcal{F}_{N}$ , and we simply write
$\mathcal{E}$ where this is not ambiguous.

It is not difficult to see that stochastic boundedness $w$ .r.t. $\mathcal{F}_{N}$ is slightly
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stronger than uniform integrability of

$\{P(|X_{n+1}|\in\cdot|\mathcal{F}_{n})(\omega);n\geqq 1, \omega\in\Omega-N\}$

for some P-null set $N$ and slightly weaker than uniform $L_{1+\delta}$-boundedness of
this family for some $\delta>0$, i.e.

$\sup_{n\geqq 0}\Vert E(|X_{n+1}|^{1+\delta}|\mathcal{F}_{n})\Vert_{\infty}<\infty$ .
It holds particularly true if, for each $n\geqq 0$, the conditional distribution of $X_{n+1}$

given $S_{0},$ $\cdots$ $S_{n}$ is chosen from a finite set, a situation which occurs, for in-
stance, in certain stochastic control problems ($e.g$ . treatment allocation). We refer
the reader to an article by Lalley and Lorden [10] for a typical application of
this type. Further examples of random walks with s.b. increments may e.g. be
found in [1], Section 4, and further in Section 4 of this paper. While stochastic
boundedness guarantees a uniform tail decrease of the conditional increment
distributions, it does not make at all for a uniform mean growth of the as-
sociated random walk over finite remote time intervals, formally measured
through $k^{-1}L_{n.k}^{n}$ for large $n$ and $ k\rightarrow\infty$ . Blackwell’s renewal theorem, however,
just demands for such a uniform growth behavior, and it is for that reason
that condition (A.2) (stochastic stability) is introduced. lt already occurs in
earlier works by Smith [13], Williamson [14] and Maejima [11].

The “optimal” choices for $F$ and $G$ in (A. $1$) $-(A.3)$ are obviously

(1.1)
$F(t)=\sup_{n\geqq 0}\Vert Q_{n.1}(\cdot, t)\Vert_{\infty}$ and $G(t)=1-\sup_{n\geqq 0}\Vert\overline{Q}_{n.1}(\cdot, t)\Vert_{\infty}$

and called maximal minorant and minimal majorant, resp., of $X_{N}$ and of $Q_{N.1}$

($w$ .r.t. $\mathcal{F}_{N}$ , if this is to be emphasized). [$f(t)=g(t)$ means that $f(t)$ is the right
continuous modification of $g(t)$ ]. For an arbitrary entrance time $\tau$ let $F_{k}^{\tau}$ and
$G_{k}^{\tau}$ be the maximal minorant and the minimal majorant of $Q_{\tau+N.k}w$.r.t. $\mathcal{F}_{\tau+N}$ ,
respectively. With the help of these distributions, we can define

$\theta_{*}(S_{\tau+N}, \mathcal{F}_{\tau+N})=\sup k^{-1}\mu(F_{k}^{\tau})k\geq 1$ and $\theta^{*}(S_{\tau+N}, \mathcal{F}_{\tau+N})=\inf_{k\geqq 1}k^{-1}\mu(G_{k}^{\tau})$

which are called the lower and upper asymptotic drift of $S_{\tau+N}w$ .r.t. $\mathcal{F}_{\tau+N}$ . It
is shown in [2], see Lemma 4.1 there, that supremum and infimum in (1.2)
yield as limits, i.e.

(1.2) $\theta_{*}(S_{\tau+N}, \mathcal{F}_{\tau+N})=\lim_{k\rightarrow\infty}k^{-1}\mu(F_{k}^{\tau})$ and $\theta^{*}(S_{\tau+N}, \mathcal{F}_{\tau+N})=\lim_{k\rightarrow\infty}k^{-1}\mu(G_{k}^{\tau})$

Let us write 9*, $\theta*$ for $\theta_{*}(S_{N}, \mathcal{F}_{N}),$ $\theta^{*}(S_{N}, \mathcal{F}_{N})$ . Next, for ultimately s.b. $X_{N}$ ,

$\eta*=\eta*(S_{N}, \mathcal{F}_{N})=\sup_{\tau\in C}\theta_{*}(S_{\tau+N}, \mathcal{F}_{\tau+N})$ ,
(1.3)

$\eta^{*}=\eta^{*}(S_{N}, \mathcal{F}_{N})=\inf_{\tau\in C}\theta_{*}(S_{c+N}, \mathcal{F}_{\tau+N})$ ,
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are, resp., the maximal lower and the minimal uPper asymptotic drift of $S_{N}$

($w$.r.t. $\mathcal{F}_{N}$). Evidently,
$\theta_{*}\leqq\eta*\leqq\eta^{*}\leqq\theta^{*}$ ,

and they are all equal to some $\theta$ iff $X_{N}$ is s.s. w.r. $t$ . $\mathcal{F}_{N}$ with mean $\theta$ , see
Theorem 5.1 in [2]. The latter means that a random walk with s.s. increments
with positive mean $\theta$ has almost constant average drift $\theta$ over finite remote
time sets $\{n, \cdots , n+k\}$ if $k$ is large. Indeed, it also satisfies a uniform weak
law of large numbers as Theorem 5.1 in [2] further states. We already men-
tioned earlier, that these facts give rise to the conjecture that such a random
walk forms a natural candidate for satisfying Blackwell’s renewal theorem.

For any given random walk $S_{N}$ we denote by $U=\Sigma_{n\geqq 0}P(S_{n}\in\cdot)$ its asso-
ciated renewal measure which is locally finite (finite on bounded subsets of $R$)

whenever $X_{N}$ is ultimately s.b. with $\eta*>0$, see Lemma 6.4 in [3]. Finally,
the span $d(S_{N})$ of $S_{N}$ is defined through

$ d(S_{N})=\sup$ { $d>0;P(S_{n}\in dZ)=1$ for all $n\geqq 0$}.

The paper is organized as follows. In Section 2 we state and prove a basic
Blackwell-type renewal theorem for random walks with ultimately s.b. incre-
ments and positive drift. Its intrinsic assumption, a technical integrability con-
dition on the Fourier transform of the appearing renewal measure, see (2.2),

is further discussed in Section 3 leading to the definition of two suitable sub-
classes of random walks (in fact, their increments) for which it can be verified.
The resulting renewal theorem (Theorem 3.2) is proved in Section 5. Section
4 contains a number of applications, notably to random walks with independent
increments satisfying a local limit theorem and to Markov-modulated random
walks which arise in Markov renewal theory.

2. The basic Blackwell-type renewal theorem

The Fourier-analytic nature of Theorem 2.1 below first requires further
notation. For $n\geqq 0,$ $k\geqq 1,$ $t\in R$ and $\omega\in\Omega$ , let

$\phi_{n}(t)=E(e^{\ell tS_{n}})$ ,

$\phi_{n.\iota}(\omega, t)=E(e^{\ell tS_{n.k}}|\mathcal{G}_{n})(\omega)=\int_{\Omega}e^{\ell tx}Q_{n.l}(\omega, dx)$ ,

$\phi_{n+1}(t)=E(e^{\ell tX_{n+1}})=E\phi_{n.1}(\cdot, t)$

be the Fourier transforms (F.t.) of $S_{n}$ , of $S_{n.k}$ given $\rho_{n}$ , and of $X_{n+1}$ , resp.
Note that $\phi_{n.k}(\omega, t)$ can be factorized as

$\phi_{n,k}(\omega, t)=\phi_{n.k}(X_{n}(\omega), t)$ , $X_{n}=(X_{0}, X_{n})$ .
The so-called discounted renewal measures $U(s, ),$ $0<s<1$ associated with $S_{N}$
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are defined through

$U(s, )=\sum_{n\geqq 0}s^{n}P(S_{n}\in\cdot)=\sum_{n\geqq 0}s^{n}Q_{n}$ .
$U(s, )$ has finite total mass $1/(1-s)$ and F.t.

$o_{(s},$ $t$) $=\sum_{n\geqq 0}s^{n}\phi_{n}(t)$ .
Abel’s theorem implies

(2.1) $\lim_{t\dagger 1}O(s, t)=O^{def}(t)=\sum_{n\geqq 0}\phi_{n}(t)$

for all $t\in D(O)^{d}=^{ef}\{y\in R:|\Sigma_{n\geqq 0}\phi_{n}(y)|<\infty\}$ . Since $\phi_{n}(0)=1$ for all $n\geqq 0$, we
have $D(O)\subset R-\{0\}$ . If $S_{N}$ has span $d>0$ then all $\phi_{n}$ are $(2\pi/d)$-periodic so
that even $D(O)\subset R-(2\pi/d)Z$ holds.

With $l_{0}$ and $l_{a},$ $d>0$ denoting Lebesgue measure and $d$ times counting
measure on $dZ$, resp., our basic renewal theorem now takes the following form.

Theorem 2.1. Let $S_{N}$ be a random walk with span $d$ and ultimately $s.b$ .
increments $X_{0},$ $X_{1},$ $\cdots$ with $\eta_{*}>0$ . SuPpose that

(2.2) $\int_{(-a.a)}t^{2}\sum_{n\geqq 0}|Re(\phi_{n})(t)|dt<\infty$ for all $0<a<\frac{2\pi}{d}$ .

Then for all bounded intervals $I$

(2.3) $\eta^{*1}-l_{d}(I)\leqq\lim_{t\rightarrow\infty}\inf U(t+I)\leqq\lim_{t\rightarrow}\sup_{\infty}U(t+I)\leqq\eta_{*}^{-1}l_{d}(I)$ .

If $X_{N}$ is even ultimately $s.s$ . with positive mean $\theta$ , then

(2.4) $\lim_{t\rightarrow\infty}U(t+I)=\theta^{-1}l_{d}(I)$ .
In all cases $t$ runs through $dZ$ only if $d>0$ .

Remarks. (a) Condition (2.2) as it stands is obviously difficult to verify
in applications and therefore further discussed in the following section. Note
that the integrand in (2.2) always has a singularity at $t=0$, but in contrast to
the i.i. $d$ . case it may have further ones in $(-2\pi/d, 2\pi/d)$ , necessarily of in-
tegrable order.

(b) It follows from Proposition 5.1 (a) in [3] that under the assumptions of
Theorem 2.1 above

(2.5) $\sup_{t\in R}U(t+B)<\infty$ and $\lim_{t\rightarrow-\infty}U(t+B)=0$

for all bounded $ B\in$ S. As a $nsequence$ it is enough to prove the assertions
of Theorem 2.1 with $U$ replaced by its symmetrization

$V^{d}=^{ef}U+U(-\cdot)$ .
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Proof of Theorem 2.1. We restrict ourselves to the nonarithmetic case
$(d=0)$ but note that for $d>0$ the following arguments apply after minor modi-
fications due to the $(2\pi/d)$-periodicity of all involved F.t.

So let $X_{N}$ be nonarithmetic and ultimately s.b. with $\eta_{*}>0$ . By Proposition
5.1 in [3], for each $\mu\in(0, \eta_{*})$ and $\nu\in(\eta^{*}, \infty)$ there is a nonarithmetic distribu-
tion $F_{0}$ such that for all bounded $B\in B$

(2.6) $\nu^{-1}l_{0}(B)\leqq\lim_{t\rightarrow}\inf_{\infty}F_{0}*U(t+B)\leqq\lim_{t\rightarrow}\sup_{\infty}F_{0}*U(t+B)\leqq\mu^{-1}l_{0}(B)$ .
As in [3], this is the key result which considerably simplifies the subsequent
arguments because it allows us to prove the theorem’s assertions by examining
$U-F_{0}*U$ instead of $U$ itself. As one can easily verify, (2.6) remains true when
replacing $F_{0},$ $U$ by their symmetrizations

$F_{0}^{\iota^{d}}=^{ef}F_{0}*F_{0}(-\cdot)$

and $V$ , resp. It is now enough to show for (2.3) that

$W(t+\cdot)=V(t+\cdot)-F_{0}^{l}*V(t+\cdot)def$

tends vaguely to $0$, i.e.

(2.7) $\lim_{t\rightarrow\infty}\int_{R}h(x)W(t+dx)=0$

for all continuous functions $h:R\rightarrow C\in C_{0}$ , the vector space of continuous func-
tions with compact support. To this end we let, for $0<s<1$ and $a\in R$ ,

$V(s, a, )=U(s, a+\cdot)+U(s, -a-\cdot)$ and $W(s, )=V(s, a, )-F_{0}^{*}*V(s, a, )$

be the discounted versions of $V(a+\cdot)$ and $W(a+\cdot)$ , resp. Their F.t. are easily
computed as, resp.,

$\hat{V}(s, a, t)=2e^{-iat}Re(O(sdeft))$ and $\hat{W}(s, a, t)=2e^{-iat}(1-F_{0}^{s}(t))Re(O(sdeft))$ ,

where $P_{0}^{l}$ denotes the F.t. of $F_{0}^{l}$ . Note also that $W(s, a, )$ is a finite signed
measure with total mass $0$ , and that (2.5) implies for the total variation $|W|$

of $W$

(2.8) $ C_{B}^{d}=^{ef}\sup_{a\in R}|W|(a+B)<\infty$

for all bounded $B\in B$ . Now let $C_{0}^{\infty}$ be the space of all infinitely differentiable
functions with compact support and $9=\{f : \hat{f}\in C_{0}^{\infty}\}$ which is a subspace of all
infinitely differentiable and $l_{0}$-integrable functions. We first prove (2.7) for
$h\in 9$ and under the assumption that $F_{0}^{l}$ has finite second moment $\mu_{2}(F_{0}^{*})$ , in
which case its (nonnegative) F.t. is twice continuously differentiable with Taylor
expansion

$fl_{0}^{s}(t)=1+r(t)t^{2}$ ,
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where $r(t)$ is continuous and equals $\mu_{2}(F_{0}^{s})/2$ at $0$ . We will show later how to
remove the second moment assumption. Parseval’s relation (see e.g. [9], p. 619)
gives us the key relation

(2.9) $\int_{R}h(x)W(s, a, dx)=\int_{K(\hslash)}\hat{h}(t)\hat{W}(s, a, t)dt$

for $a,$ $y\in R,$ $0<s<1$ , where $K$ denotes the compact support of $\hat{h}$ . The left-
hand side of (2.9) converges to

$\int_{R}h(x)W(a+dx)$ , as $s\uparrow 1$ ,

because $h$ is $l_{0}$-integrable and continuous (thus directly Riemann integrable) and
by (2.8). The right-hand side of (2.9) equals

$\int_{K(\hslash)}2\hat{h}(t)e^{-iat}r(t)t^{2}Re(0(s, t))dt$ ,

is bounded in absolute value by

$\Vert\hat{h}\Vert_{\infty}r(t)t^{2}\sum_{n\geqq 0}|Re(\phi_{n})(t)|$ for all $0<s<1$

and hence converges to

$\int_{K(\hslash)}2\hat{h}(t)e^{-iat}r(t)t^{2}Re(0(t))dt$ , as $s\uparrow 1$

by (2.1), (2.2) and dominated convergence. We have thus obtained

(2.10) $\int_{R}h(x)W(a+dx)=\int_{K(\hslash)}\hat{h}(t)e^{-ia}{}^{t}r(t)t^{2}Re(O(t))dt$ .

A further appeal to (2.2) together with the Riemann-Lebesgue lemma shows
that the right-hand side of (2.10) converges to $0$, as $ a\rightarrow\infty$ , yielding the desired
result (2.7).

For arbitrary $h\in C_{0}$ with compact support $K(h)$ and $e>0$, we can choose a
function $h_{e}\in 9$ such that $\Vert h-h_{\epsilon}\Vert_{\infty}<\epsilon/C_{K(h)}$ (see e.g. [15], p. $114f$) and, by (2.8),

$sua\in s\int_{R-K(h)}|h_{\epsilon}(x)||W|(a+dx)<\epsilon$ .

Consequently, (2.7) follows from

$|\int_{R}h(x)W(a+dx)|\leqq|\int_{R}h_{\text{\’{e}}}(x)W(a+dx)|+C_{K(h)}\Vert h-h_{*}\Vert_{\infty}$

$+\int_{R-K(h)}|h_{\epsilon}(x)||W|(a+dx)$

$\leqq o(1)+2\epsilon$ , as $ a\rightarrow\infty$ .
In case where $F_{0}^{*}$ has infinite second mean the following argument will

show that it can be replaced by a suitable truncated version $H$ without loosing
much in (2.6) if $B$ is replaced by some arbitrary bounded interval there and $F_{0}$
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by $H$. Let $\epsilon,$ $b>0$ be arbitrary and $M=\sup_{\ell\in R}U[t, t+b]$ , which is finite by
(2.5). Choose $z>0$ so large that $F_{0}^{\iota}(-z)<\epsilon/(2M)$ and define

$H=F_{0}^{\iota}((-z, z)\cap\cdot)+F_{0}^{1}(-z)(\delta_{-\iota}+\delta_{z})$ ,

$\delta_{l}$ being the Dirac measure at $z$ . $H$ is then again symmetric and it clearly has
finite second mean. Moreover,

$\lim_{t\rightarrow}\sup_{\infty}H*U([t, t+b])$

(2.11) $\leqq 2MF_{0}^{1}(-z)+\lim_{t\rightarrow\infty}\sup\int_{(-t.i)}U([t-x, t+b-x])F_{0}^{1}(dx)$

$\leqq\lim_{t\rightarrow}\sup_{\infty}F_{0}^{*}*U([t, t+b])+\epsilon\leqq\frac{b}{\mu}+\epsilon$ , $[d=0]$

and similarly

(2.12) $l_{i}m\inf_{t\rightarrow\infty}H*U([t, t+b])\geqq\frac{b}{\nu}-\epsilon$ .

If we now define $W=V-H*V$ we infer from the previous part of the proof
that $W(t+\cdot)$ still converges vaguely to $0$, as $ t\rightarrow\infty$ , and together with (2.11),
(2.12) this implies

$\frac{b}{\nu}-\epsilon\leqq\lim_{\vec{\ell}\infty}\inf H*U([t, t+b])\leqq\lim_{t\rightarrow\infty}\sup U([t, t+b])\leqq\frac{b}{\mu}+\epsilon$

proving (2.3) because $\epsilon,$ $b>0$ and $\mu\in(0, \eta*),$ $\nu\in(\eta^{*}, \infty)$ were arbitrarily chosen.
(2.4) is now a trivial consequence of (2.3) because $\eta_{*}=\eta^{*}=\theta$ under the holding
assumption there.

3. Discussion of condition (2.2)

This section is devoted to a discussion of the intricate analytic condition
(2.2) of Theorem 2.1. The problem with it is obviously that the occuring infinite
series $\Sigma_{n\geqq 0}|Re(\phi_{n})(t)|$ cannot easily be estimated about its singularity $0$ . As a
consequence we must be after more transparent, probabilistic alternatives. Defini-
tion 3.1 below introduces two appropriate subclasses of increment sequences $X_{N}$

which contain in particular most non-trivial independent sequences. Special
cases are considered in Section 4. The essential property of these increment
sequences is that infinitely many of its variables contain a distributional com-
ponent which is independent of the “rest of the world”. Such an assumption
is by now standard, for instance in the definition of Harris-recurrent Markov
chains.

We begin with some further notation which is needed to present the results
of this section. $B(1, \alpha),$ $\alpha\in(0,1)$ , denotes the Bernoulli distribution on $\{0,1\}$

with $\alpha$ being the probability of {1}. For each random variable $Y$ let $Y^{*}$ be a
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symmetrization, i.e. $Y^{\epsilon}=Y-Y^{\prime}$ with $Y^{\prime}$ being an independent copy of Y. We
call $Y$ completely d-arithmetic if $Y+z$ is d-arithmetic for all $z\in R$ . As one
can easily verify, this holds true iff $Y$ and $Y^{s}$ are both d-arithmetic.

A sequence $Y_{N}$ of random variables is called
-tight if $sup{}_{n\in N}P(|Y_{n}|>t)\rightarrow 0$, as $ t\rightarrow\infty$ ;
–non-reducible if all weakly convergent subsequences have non-degenerate limits

(in particular, all $Y_{n}$ are non-degenerate);
–completely d-arithmetic, $d\geqq 0$, if all weakly convergent subsequences have

completely d-arithmetic limits (in particular, all $Y_{n}$ are completely d-arithmetic).
As one can easily verify, each of the three previously defined properties holds
for $Y_{N}$ iff it does so for $Y_{N}^{l}$ . Moreover, a completely d-arithmetic sequence
is necessarily non-reducible.

Let us finally stipulate that all hereafter occuring, not explicitly specified
random variables with index $0$ are supposed to be $0$ .

Definition 3.1. A sequence $X_{N}$ is called to be of
–type $AC$ (Additive Component), if for an increasing (possibly random) sequence
$ 0\leqq\xi_{0}<\xi_{1}<\cdots$

(A.6) $X_{n}=\left\{\begin{array}{ll}Z_{k}Y_{k}+(1-Z_{k})X_{n} & if \xi_{k}=n\\\hat{X}_{n} & otherwise\end{array}\right.$ a.s. for all $n\geqq 0$ ,

where $Y_{N}$ is a non-reducible sequence of independent random variables, $Z_{1}$ ,
$Z_{2},$ $\cdots$ are $i$ .i.d. with common distribution $B(1, \alpha)$ for some $\alpha\in(0,1$] and $Y_{N}$ ,
$Z_{N}$ and $(\hat{X}_{N}, \xi_{N})$ are mutually independent.
$-tyPeCC$ (Convolution Component), if for an increasing (possibly random) se-
quence $ 0\leqq\xi_{0}<\xi_{1}<\cdots$

(A.7) $X_{n}=\left\{\begin{array}{ll}Y_{i}+X_{n} & if \xi_{k}=n\\\hat{X}_{n} & otherwise\end{array}\right.$ a.s. for all $n\geqq 0$ ,

where again $Y_{N}$ is a non-reducible sequence of independent random variables
which is further independent of $(\hat{X}_{N}, \xi_{N})$ .

In both cases $\xi_{N}$ is called a decomPosition sequence for $X_{N}$ .

Remarks. (a) As we are always dealing with distributional properties of
$X_{N}$ in the following, results where $X_{N}$ is assumed to be of type AC or type
CC remain of course unchanged if only a copy of $X_{N}$ (constructed on a suitable
probability space) is of this type.

(b) In [3] sequences of type IAC [ICC] (identical additive [convolution]
component) were introduced which are further specialized versions of the ones
defined above. Namely, in [3] $(Y_{1}, Z_{1}),$ $(Y_{2}, Z_{2}),$ $d[Y_{1}, Y_{2}, ]$ must even be
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$i$ .i.d. and $\xi_{0},$ $\xi_{1},$ $\cdots$ stopping times. These are natural requirements for a
coupling approach towards Blackwell-type renewal theorems but can be relaxed
if Fourier analysis is used. On the other hand we will here need assumptions
on the occurrence rate of $\xi_{N}$ , see (3.1) and (3.2) below, which can be dispensed
with in the former approach. A further discussion can be found at the end of
Section 4.

(c) Clearly, each non-reducible sequence $X_{N}$ of independent random varia-
bles is of type AC as well as of type CC. More generally, if $X_{n}=X_{n}^{\prime}+X_{n}^{\prime\prime}$ for
each $n\geqq 0$, where $X_{N}^{\prime}$ and $X_{N}^{\prime\prime}$ are independent and $X_{N}^{\prime}$ is a non-reducible se-
quence of independent random variables, then $X_{N}$ is of type CC.

As for validity of condition (2.2), we will separately give sufficient condi-
tions for

(C.1) $\Psi_{abs}(t)^{dei}=\Sigma_{n\geqq 0}|\phi_{n}(t)|$ to be continuous on $R_{0}=R-\{0\}(d=0)$ , resp.
$R_{d}^{def}=R-(2\pi/d)Z$

$(d>0)$ , where $d$ denotes the span of $X_{N}$ ;

(C.2) $t^{2}\Psi_{ab*}(t)$ to be integrable in some neighborhood of $0$ .
Validity of both, (C.1) and (C.2), then clearly implies that of (2.2). Our result
is stated in the following proposition the proof of which we defer to Section 5.

Theorem 3.2. Let $X_{N}$ be of type $AC$ or $CC$ with span $d$ .
(a) If there exists a decomposjtjOn sequence $\xi_{N}$ with associated sequence $Y_{N}$

such that

(3.1) $\Sigma_{n\geqq 1}s^{n}E(\xi_{n}-\xi_{n-1})<\infty$ for all $s\in(O, 1)$ ,

and $Y_{N}$ is $ei$ther completely d-arithmetic and tight, or weakly convergent to a
$comPletely$ d-arithmetic limit, then $\Psi$ and $\Psi_{ab\epsilon}$ are both continuous on $R_{d},$ $i$ . $e$ .
(C.1) holds true.

(b) If there exists a decompOsjtjOn sequence $\xi_{N}$ with associated sequence $Y_{N}$

such that

(3.2) $\Sigma_{n\geqq 1}n^{-3/2}E(\xi_{n}-\xi_{n-1})<\infty$

and $Y_{N}$ is tight, then $t^{2}\Psi_{ab*}$ is integrable at $0,$ $i$ . $e$ . (C.2) holds true.

We can now easily combine Theorem 2.1 with Theorem 3.2 to get the
following renewal theorem for random walks with AC- or CC-type increments.

Corollary 3.3. Let $X_{N}$ be d-arithmetic and of type $AC$ or $CC$ with decom-
position sequence $\xi_{N}$ satisfying (3.2) and associated tight sequence $Y_{N}$ . $s_{u}pp_{ose}$

further that there is a subsequence $\xi_{N}^{\prime}$ of $\xi_{N}$ satisfying (3.1) and such that its
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associated subsequence $Y_{N}^{\prime}$ of $Y_{N}$ is additionally either completely d-arithmetic or
weakly convergent to a completely d-arithmetic limit. Then, if $X_{N}$ is further
-ultimately $s$ . $b$ . with $\eta_{*}>0,$ $(2.3)$ of Theorem 2.1 holds true.
-ultimately $s.s$ . with p0sitive mean $\theta,$ $(2.4)$ of Theorem 2.1 holds true, $i$ . $e$ .

$\lim_{t\rightarrow\infty}U(t+I)=\theta^{-1}l_{a}(I)$ .

In either case $t$ runs through $dZ$ only if $d>0$ .

4. Examples and discussion

In this section we want to look at a number of special cases to which
Theorem 2.1 or Corollary 3.3 are applicable. Four examples are picked from
the class of random walks with AC- or CC-type increments, a further one deals
with a certain subclass of Markov-modulated random walks which arise in Markov
renewal theory.

Random walks with increments of $tyPeAC$ or $CC$

It is evident that AC- and CC-type sequences may be found in abundance
in the class of sequences of independent random variables. As a consequence,
three of the following four examples have been chosen from this class. Note
also that in all these examples Blackwell’s renewal theorem cannot be concluded
from the results in [3], at least not to the same extent. A further discussion
is given at the end of the section.

Example 4.1. [Random walks satisfying a local limit theorem]

It has been shown by Maejima [11], and under more restrictive conditions
already by Cox and Smith [8], how Blackwell’s renewal theorem can be deduced
from a uniform local limit theorem. The result in [11] looks as follows: Let
$S_{N}$ be a random walk with $s.s$ . increments with positive mean $\theta$ and variances
satisfying

(4.1) $\lim=\sigma^{2}\in(0\underline{VarS_{n}}\infty)$ .
$ n\rightarrow\infty$ $n$

Fix $h>0$ and suppose further that with $a_{n}=ES_{n},$ $b_{n}^{2}=VarS_{n}$ and with $f$ denot-
ing the standard normal density

(4.2) $\lim_{n\rightarrow\infty}\sup_{x\in R}x^{m}|\frac{b_{n}}{h}P(-\frac{h}{2}+a_{n}+xb_{n}<S_{n}\leqq\frac{h}{2}+a_{n}+xb_{n})-f(x)|=0$

for $m\in\{0,2\}$ . Then
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(4.3) $\lim_{x\rightarrow\infty}U([x-\frac{h}{2},$ $x+\frac{h}{2}])=\frac{h}{\theta}$ .

At first sight it is hard to compare this result with ours due to the intrinsic
assumption (4.2). However, Maejima further shows that it holds true if $X_{0}$ ,
$X_{1},$ $\cdots$ satisfy (4.1) and the classical Lindeberg condition, have finite third mo-
ments, and if their F.t. $\phi_{0},$ $\phi_{1},$ $\cdots$ satisfy for some $\epsilon>0$

(4.4) $\phi_{\max}(t)=\sup_{n\geqq 0}|\phi_{n}(t)def|<1$ for all $|t|\geqq\epsilon$ and $n\geqq 1$ .

As for this set of conditions, we can now easily argue that it is much
more restrictive than actually needed for (4.3) to be valid. Indeed, (4.4) alone
is already equivalent with $X_{N}$ to be completely nonarithmetic. Moreover, since
$X_{N}$ is s.s. it is of type AC and CC with trivial decomposition sequence $\xi_{n}\equiv n$ ,
$n\geqq 0$ and associated sequence $Y_{N}=X_{N}$ which is thus clearly tight. Consequently,
Corollary 3.3 applies, i.e. (4.3) holds true without needing any of (4.1), the
Lindeberg condition and finite third moments.

Example 4.2. [Asymptotically $i.i$ . $d$ . increments]
SuPpose that $X_{0},$ $X_{1},$ $\cdots$ are independent, d-arithmetic, ultimately s.s. with

positive mean $\theta$ and weakly convergent to a completely d-arithmetic limit. Such
a sequence may be roughly characterized as “asymptotically i.i. $d$ . . It is an
immediate consequence of the previous corollary that under the given assump-
tions Blackwell’s renewal theorem (2.4) holds true for the associated random
walk. If $X_{0},$ $X_{1},$ $\cdots$ are e.g. response variables in a sequential medical trial
with treatment allocation, where each treatment corresponds to a certain res-
ponse distribution, then this sequence will be asymptotically i.i. $d$ . under each
allocation sequence which in the long-run chooses always the same treatment
(preferably the superior one).

Example 4.3. [Increments with Pairwise singular distributions]
Two distributions $Q_{1},$ $Q_{2}$ on $R$ are called singular if there is a Borel set

$B$ such that $Q_{1}(B)=0$ and $Q_{2}(B^{c})=0$ . In other words, $Q_{1}$ and $Q_{2}$ must “live”
on disjoint subsets of $R$ . We call two random variables singular if there dis-
tributions are so. In classical renewal theory, random walks with nonarithmetic
increment distributions which are singular with respect to Lebesgue measure
(e.g. the Cantor distribution) turn out to be bad as to convergence rates in
Blackwell’s and other renewal theorems even if all moments are finite, see [7].
A typical example is the Laplace distribution on $\{\alpha, 1\}$ with $\alpha>0$ an irrational
number. Now consider a sequence $X_{N}$ of independent, pairwise singular random
variables which is further completely nonarithmetic and ultimately s.s. with
positive mean $\theta$ . With view to the previous remark we might conjecture that
Blackwell’s renewal theorem (2.4) fails under these assumptions, but Corollary
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3.3 immediately sets us right. This is also interesting because it cannot be
concluded from the results of [3] where $X_{0},$ $X_{1},$ $\cdots$ or a subsequence of it must
share a distributional component which is clearly excluded by pairwise singu-
larity. For illustration we finally note a simple, more $ncrete$ example: Let
$\alpha_{N}$ be a sequence of pairwise different $irrationals\in(O, 1)$ with no rational limit
point. Let $X_{0},$ $X_{1},$ $\cdots$ be independent and each $X_{n}-1$ Laplacian on $\{\pm\alpha_{n}$ ,
$\pm(\alpha_{n}+1)\}$ so that $EX_{n}=1$ for all $n\in N$ It is then easily verified that $X_{N}$ is
completely nonarithmetic, s.s. with mean 1 and with pairwise singular distribu-
tions. Thus Corollary 3.3 applies.

Example 4.4. [Linear growth processes with $i.i.d$ . perturbances]

Our fourth example shall give an application of Corollary 3.3 to random
walks $S_{N}$ with dependent increment sequences $X_{N}$ . Let $\theta>0$ and $M_{N}$ be an
ultimately s.b. (thus ultimately s.s.) d-arithmetic martingale. Let $\xi_{N}$ be a se-
quence of random, but not necessarily stopping times for $M_{N}$ which satisfies
(3.2). At these ”shock” or “perturbance” epochs our random walk is perturbed
by i.i. $d$ . zero-mean and completely d-arithmetic random variables $Y_{1},$ $Y_{2},$ $\cdots$

which are further independent of $(M_{N}, \xi_{N})$ . $S_{n}$ is now defined through

$S_{n}=n\theta+M_{n}+\sum_{f\geqq 1}Y_{j}1(\xi_{j}\leqq n)$

for each $n\geqq 0$ . Then again it is easily verified that Corollary 3.3 applies yield-
ing (2.4).

Markov-modulated random walks

In Markov renewal theory we are given a bivariate Markov chain $(M_{N}$ ,
$X_{N})$ with state space $(S\times R, S\otimes B)$ and transition kernel $P:S\times(S\otimes B)\rightarrow[0,1]$ ,
i.e. $(M_{n+1}, X_{n+1})$ depends on the past only through $M_{n}$ . Suppose that $S$ is
Polish with Borel $\sigma- fieldS$ and that $M_{N}$ forms a Harris chain with transition

kernel $P^{*}(x, dy)=P(xdefdy\times R)$ and regeneration set $\Re$ . This implies that for
some $r\geqq 1$ and $\alpha>0$ and some probability measure $\nu$ on $S$ with $\nu(R)=1$ the r-
step transition kernel $P_{r}^{*}$ satisfies the minorization condition

(4.5) $ P_{r}^{*}(x, )\geqq\alpha\nu$ for all $ x\in\Re$ .
For any distribution $\lambda$ on $S\times R$ let $P_{\lambda}$ be such that $ P_{\lambda}((M_{0}, X_{0})\in\cdot)=\lambda$ . If $\lambda$

denotes a distribution on $S$ only then $P_{\lambda}^{d}=^{ef}P_{\lambda\oplus\delta_{0}}$ . Finally, $P_{x.y}=P_{\delta_{x\cdot y}}dcf$ and
$P_{x}^{d}=^{ef}P_{\delta_{x\cdot 0}}$ for $(x, y)\in S\times R$ .

By using the regeneration technique of Athreya and Ney [5] one can define
(on a possibly enlarged probability space) a version of $(M_{N}, X_{N})$ together with
a sequence $T_{N}$ of randomized stopping times for $M_{N},$ $T_{0}=0$, such that for each
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initial distribution $\lambda$ and all $n\geqq 1$

(4.6) $P_{\lambda}(M_{T_{n}+N}\in\cdot)=P_{\nu}(M_{N}\in\cdot)$ ,

and $(M_{f}, X_{j})_{0\leqq f\leq T_{n-1}}$ and $(M_{\tau_{n}+N}, X_{\tau_{n}+N})$ are independent. Thus $T_{N}$ forms a
sequence of regeneration epochs for $M_{N}$ , and its unique (up to a multiplicative
constant) stationary measure is given by

(4.7) $\xi(A)d=efE_{\nu}(\sum_{f=0}^{T_{1}-1}1(M_{j}\in A))$ , $A\in s$ .
Induced by $T_{N}$ and under P., we are now given an $i$ .i.d. sequence $\hat{M}_{N},\hat{M}_{n}=$

$M_{\tau_{n}}$ , together with a random walk $\hat{S}_{n}=S_{\tau_{n}},$ $n\geqq 0$ whose increments $X_{n}=S_{\tau_{n}}$ –

$S_{\tau_{n-1}},$ $n\geqq 1$ form a stationary, l-dependent sequence with mean

(4.8) $\mu=\int_{s}E(X_{1}|M_{0}=x)\xi(dx)$ ,

as one can easily verify. Under arbitrary $P_{\lambda}$ , the same holds true for $(M_{N+1}$ ,
$\hat{S}_{N+1}-\hat{S}_{1})$ . Consequently, if $\hat{X}_{N}$ is s.b. under any $P_{\lambda}$ , then it is also s.s. with
mean $\mu$ due to the stationarity and l-dependence. In the following, we want
to show that $\hat{S}_{N}$ then satisfies Blackwell’s renewal theorem provided $\mu>0$ and
an additional nonlatticeness assumption on $X_{N}$ holds true, see (4.9) below. The
result can be used for the derivation of a general Markov renewal theorem,
see [4].

So suppose $\mu\in(0, \infty)$ and furthermore for all $t\neq 0$

(4.9) $\inf_{n\geqq 1}|E(e^{itS_{n}}|M_{0}, M_{n})|<1$ $P_{\xi^{-}}a.s$ .

It can be shown that this condition implies $P(x, )$ be nonlattice as defined
in [12], see also Lemma 3.3 and the subsequent Remark in [4]. Denote by $U_{\lambda}$

the renewal measure of $\hat{S}_{N}$ under $P_{\lambda}$ , i.e.

$U_{\lambda}(B)=\sum_{n\geqq 0}P_{\lambda}(\hat{S}_{n}\in B)=\sum_{n\geqq 0}P_{\lambda}(S_{\tau_{n}}\in B)$ .
We will prove now

Theorem 4.5. Let $\lambda$ be an arbitrary distribution on $S\times R$ . If $\hat{X}_{N}$ is $s.s$ .
under $P_{\lambda}$ with mean $\mu\in(0, \infty)$ and if (4.9) holds true, then for all bounded
intervals $I$

(4.10) $\lim_{t\rightarrow\infty}U_{\lambda}(t+I)=\mu^{-1}l_{0}(I)$ .

Proof. Let $\nu$ be as given in (4.5). We define

$\varphi(x, y, t)=E(e^{itX_{1}}|M_{0}=x, M_{1}=y)$ , $\phi_{n}(x, y, t)=E(e^{\ell tS_{n}}|M_{0}=x, M_{n}=y)$ ,

and similarly $\hat{\varphi},$ $\phi_{n}$ for $(\hat{M}_{N},\hat{X}_{N})$ . It is now verified that condition (2.2) holds
for $\hat{S}_{N}$ , more precisely
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$\int_{(-a.a)}t^{2}\sum_{n\geq 0}|E_{\nu}e^{\iota\iota S_{n}}|dt<\infty$ for all $a>0$ .

If $\gamma_{n}(M_{0}, M_{n})=\inf\{t>0:|\phi_{n}(M_{0}, M_{n}, t)|=1\}$ , where $inf\phi^{d}=^{ef}\infty$ , then (4.9) implies
$P_{\xi}(\gamma_{p}(M_{0}, M_{p})>0)>0$ for some $p\geqq 1$ . Hence there are some $b>0$ and $A\in S^{2}$

such that $P_{\xi}((M_{0}, M_{p})\in A)>0$ and

$\varphi_{\max}(t)=def\sup_{(x,y)\in A}|\phi_{p}(x, y, t)|<1$ for all $0<|t|<b$ .

The latter particularly implies that $\{P(S_{p}\in\cdot|M_{0}=x, M_{p}=y):(x, y)\in A\}$ is
nonreducable, and since $S_{p}$ has a.s. finite conditional mean given $M_{0},$ $M_{p}$ , we
can choose $A$ even in such a way that the former distribution family is also
tight. It then follows by Lemma 5.4 in the next section that

(4.11) $1-\varphi_{\max}(t)\geqq at^{2}$ for some $a>0$ and all $t\in(-b, b)$ .
Next observe that $A$ is a recurrence set for $(M_{N}, M_{p+N})$ whence

$\beta^{d}=^{ef}P_{\nu}((M_{m}, M_{m+P})\in A)>0$ for some $m\geqq 0$ .
We infer

$|E_{\nu}e^{it}\S_{m+p}|\leqq E_{\nu}|E(e^{\ell tS_{m+p}}|\hat{M}_{0},\hat{M}_{m+p})|\leqq E_{\nu}|E(e^{it(s_{m+p}-S_{m})}|M_{m}, M_{m+p})|$

$=E_{\nu}|\phi_{p}(M_{m}, M_{m+p}, t)|\leqq\beta\varphi_{\max}(t)+(1-\beta)$ ,

where $T_{m+p}\geqq m+p$ and the conditional independence of $S_{m},$ $S_{m+p}-S_{m}$ and
$S_{\tau_{m+p}}-S_{m+p}$ given $M_{0},$ $M_{m},$ $M_{m+p},$ $M_{r_{m+p}}$ has been utilized. This yields for
$k\geqq 1$ and $0<|t|<b$

$|E_{\lambda}e^{\ell t\hat{S}_{k}}|\leqq E_{\lambda}(\prod_{f\Leftarrow 2}^{l(k)+1}|E(e^{\ell t(\hat{s}_{j(m+p)}-\hat{s}_{(f-1)(m+p)}}|\hat{M}_{i^{(m+p)}},\hat{M}_{(j-1)(m+p)})|)$

$=E_{\nu}(\prod_{f=1}^{t(k)}|E(e^{\ell t(S_{f(m+p)}-\hat{s}_{(f-1)(m+p)}}|\hat{M}_{j(m+p)},\hat{M}_{(j-1)(m+p)})|)$ by (4.6)

$\leqq\prod_{j=1}^{l(k)}(\beta\varphi_{\max}(t)+(1-\beta))^{\ell(k)}$ ,

where $l(k)=dei$ $sup\{j\geqq 0:j(m+p)\leqq k\}-1$ , and then after a simple calculation

$\hat{\psi}(t)^{def}=\sum_{n\geqq 0}|E_{\nu}e^{\ell t\hat{S}_{n}}|\leqq\frac{C}{1-\varphi_{\max}(t)}$ , $0<|t|<b$ ,

for a suitable constant $C>0$ . Together with (4.11) we obtain integrability of
$t^{2}\hat{\phi}(t)$ on $(-b, b)$ . Moreover, since even

(4.12) $\sum_{n\geq k}E_{\lambda}e^{\ell t5_{n}}\leqq\frac{C\varphi_{\max}(t)^{k}}{1-\varphi_{\max}(t)}$ for all $k\geqq 0$ on $(-b, b)$ ,

we also infer continuity of $\phi$ on $(-b, b)-\{0\}$ by uniform convergence of the
associated finite partial sums on each compact subset. Finally, we must argue
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that $\hat{\psi}$ is also continuous outside $(-b, b)$ . But for each $|t|>b$ we can proceed
as before by choosing some $p\geqq 1$ according to (4.9) (which may depend on t)
such that (4.12) holds true in some neighborhood of $t$ for all $k\geqq 0$, of course
with in general different $\varphi_{\max}$ and $C$ . It follows local continuity of $\hat{\phi}(t)$ for
each $t\neq 0$ and thus validity of (2.2). Assertion (4.10) is now a consequence of
our Theorem 2.1.

Without strong distributional assumptions like stationarity or Markovian
transitions, Blackwell-type renewal theorems for random walks with non-i.i. $d$ .
increments have been discussed earlier in a number of papers, most notably
(besides [11]) in [13] and [14]. A discussion of this literature can be found
in our companion paper [3] and we therefore restrict ourselves now to some
brief remarks on how the results in that latter article compare with the present
ones. Due to the totally different approaches it turns out that a number of
applications there cannot be included here and vice versa. In fact, in [3], as
already pointed out, the main condition on the increments $X_{0},$ $X_{1},$ $\cdots$ is that a
subsequence $X_{\xi_{N+1}}$ shares a common component for an arbitrarily thin sequence
of entrance times $\xi_{N+1}$ . Loosely speaking, $X_{\xi_{N}+1}$ must contain a sequence of
i.i. $d$ . random variables $Y_{N+1}$ . Here we have replaced i.i. $d$ . sequences by more
general sufficiently regular ones of independent random variables and the $\xi_{n}$

need not be stopping times. On the other hand, $\xi_{N}$ cannot be arbitrarily thin
in that conditions (3.1) and (3.2) are imposed. It appears to be an interesting
but probably very difficult problem to combine both said approaches to come
up with a result which applies to all applications presented here and in [3].

5. Proof of Theorem 3.2

It is always assumed in the following that $X_{N}$ is of type AC or CC with
decomposition sequence $\xi_{N}$ and associated sequence $Y_{N}$ , as given by Definition
3.1. Let $\varphi_{n}$ be the F.t. of $Y_{n}$ for each $n\geqq 1$ and

(5.1) $\varphi_{\max}(t)=\sup_{n\geqq 1}|\varphi_{n}(t)|$ .

We further keep the notation of Sections 1-3.
The following lemma forms the basis for the proof of Theorem 3.2. Recall

that $\phi_{n}$ denotes the F.t. of $S_{n}$ .
Lemma 5.1. Let $\rho(n)=\sup\{k\geqq 0:\xi_{k}\leqq n\}$ for $n\in N$

(a) If $X_{N}$ is of type $AC$ (with $Z_{1},$ $Z_{2},$ $\sim B(1,$ $\alpha)$), then

(5.2) $|\phi_{n}(t)|\leqq E((\alpha\varphi_{\max}(t)+(1-\alpha))^{\rho(n)})$ for all $n\geqq 0,$ $t\in R$ .
(b) If $X_{N}$ is of type $CC$ , then

(5.3) $|\phi_{n}(t)|\leqq E(\varphi_{\max}(t)^{\rho(n)})$ for all $n\geqq 0,$ $t\in R$ .
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Proof. The proof of (5.3) is very easy and thus given first. Let $\hat{S}_{n}=$

$\hat{X}_{1}+\cdots+\hat{X}_{n}$ and $W_{n}=Y_{1}+\cdots+Y_{n}$ for $n\geqq 1$ . If $X_{N}$ is of type CC then (A.7)
implies $S_{n}=\hat{S}_{n}+W_{\rho^{(n)}}$ . It follows from the independence of $W_{N}$ and $(\hat{S}_{N}, \rho(N))$ ,
see Definition 3.1, that for all $n\in N$ and $t\in R$

$\phi_{n}(t)=E(e^{\ell\ell W_{\rho(n)}})\cdot E(e^{\ell\iota S_{n}})=E(\prod_{f=1}^{\rho(n)}\varphi_{f}(t))\cdot E(e^{\ell\iota S_{n}})$ ,

which in turn obviously yieds (5.3).
Now suppose $X_{N}$ to be of type AC. Let $I=\{1, \cdots , \rho(n)\},$ $W_{\phi}=0,$ $Z_{\phi}=1$ ,

and for $\phi\neq J\subset N$

$W_{J^{-}}-\sum_{f\in J}Y_{j}$ and $Z_{J^{-}}-(Z_{j})_{f\in J}$ .

We write $Z_{J}=z$ to mean $Z_{j}=z$ for all $j\in J$ . Finally, let $\tilde{S}_{n}=S_{n}-\Sigma_{f=1}^{\rho(n)}Z_{f}Y_{f}$

and observe that $S_{n}=\tilde{S}_{n}+W_{J}$ on $\{Z_{J}=1, Z_{I-J}=0\}$ . By mutual independence
of $Y_{N},$ $Z_{N}$ and $(\hat{X}_{N}, \rho(N))$, it follows for all $n\in Nandt\in R$

$\phi_{n}(t)=\sum_{\iota\geqq 0}\sum_{j=0}^{k}\sum_{J\subset I.|J|=J}\int_{t\rho(n)=k.Z_{J}=1.Z_{I-J}=0\}}e^{\ell t(W_{J}+\tilde{S}_{n})}dP$

$=\sum_{k\geqq 0}\sum_{j-0}^{k}\sum_{J\subset I.|J|=j}E(e^{itW_{J}})\cdot\int_{\{\rho(n)=k.Z_{J}=1.Z_{I-J}=0\}}e^{\ell\ell\tilde{s}_{n}}dP$

$=\sum_{k\geqq 0}\sum_{j\Leftrightarrow 0}^{k}\sum_{J\subset I,|J|=j}(\prod_{m\in J}\varphi_{m}(t))\cdot\int_{\iota\rho(n)=k.Z_{J}=1.z_{I-J^{\approx 0\}}}}e^{\ell t\acute{S}_{n}}dP$ ,

and then further

$|\phi_{n}(t)|\leqq\Sigma\Sigma^{k}$

$\sum_{k\geq 0f=0J\subset I.|JI=f}\varphi_{\max}(t)^{f}P(\rho(n)=k, Z_{J}=1, Z_{I-J}=0)$

$=\sum_{k\geqq 0}\sum_{f=0}^{k}\left(\begin{array}{l}k\\j\end{array}\right)\sum_{J\subset I.|J1-j}\varphi_{\max}(t)^{j}\alpha^{j}(1-\alpha)^{k-j}P(\rho(n)=k)$

$=\sum_{k\geqq 0}(\alpha\varphi_{\max}(t)+(1-\alpha))^{k}P(\rho(n)=k)$

$=E((a\varphi_{\max}(t)+(1-a))^{\rho(n)})$

which is the desired result.

In order for the previous lemma to be useful for our purposes we clearly
have to provide conditions which ensure $\varphi_{\max}(t)<1$ for all $t\in R_{a}$ . The next
lemma does so and is a simple consequence of Levy’s continuity theorem and
the fact that distributional limits of completely d-arithmetic sequences are by
definition again completely d-arithmetic. It is therefore stated without proof.

Lemma 5.2. If $Y_{N+1}$ is completely d-arithmetic and tight, then

(5.4) $\sup_{t\in K}\varphi_{\max}(t)<1$ for each compact $K\subset R_{a}$ .

Proof of Theorem 3.2 (a). Let $X_{N}$ be of type CC with $\xi_{N}$ satisfying (3.1)
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and $Y_{N+1}$ being completely d-arithmetic and tight. Combining Lemmata 5.1
and 5.2, we infer for all $t\in R_{d}$

$|\Psi(t)|\leqq\Psi_{abs}(t)=\sum_{n\geqq 0}|\phi_{n}(t)|\leqq\sum_{n\geqq 0}E(\varphi_{\max}(t)^{\rho(n)})$

(5.5) $=\sum_{k\geqq 0}\varphi_{\max}(t)^{k}\sum_{n\geqq 0}P(\rho(n)=k)=\sum_{k\geqq 0}\varphi_{\max}(t)^{k}\sum_{n\geqq m}P(\xi_{k}\leqq n<\xi_{k+1})$

$=\sum_{k\geqq 0}E(\xi_{k+1}-\xi_{k})\varphi_{\max}(t)^{k}<\infty$ ,

i.e. $\Psi(t)$ and $\Psi_{ab*}(t)$ are both finite on $R_{a}$ . A similar estimation shows that on
compact subsets both functions are uniform limits of their corresponding finite
partial sums which are clearly continuous. Thus $\Psi$ and $\Psi.bs$ must be so, too.

The same arguments apply for AC-type sequences $X_{N}$ . Just replace $\varphi_{\max}(t)$

by $a\varphi_{\max}(t)+(1-\alpha)$ there and note that (5.4) also holds for the latter function
since $a>0$ .

If $Y_{N+1}$ is weakly convergent with completely d-arithmetic limit, let $\varphi$ be
its F.t. By compact convergence of $\varphi_{n}$ to $\varphi$ we infer for each compact $ K\subset$

$R_{d}$ the existence of $N\in N$ and some $C_{K}<1$ such that

$\varphi_{N.\max}(t)=\sup_{n\geqq N}def|\varphi_{n}(t)|\leqq C_{K}$ for all $t\in K$ .

Thus, by using Lemma 5.1 with $\xi_{N},$
$\varphi_{\max},$ $\rho(n)$ replaced by $\xi_{N+N},$ $\varphi_{N.\max},$ $\rho_{N}(n)$

$def=\sup\{k\geqq 0:\xi_{N+k}\leqq n\}$ , the desired conclusions follow almost the same way as
above for the case when $Y_{N+1}$ is completely d-arithmetic and tight. We omit
further details.

For the proof of Theorem 3.2 (b), we must first examine $\varphi_{\max}$ in a small
neighborhood of $0$ . The result is stated in Lemma 5.4 below which in turn is
furnished by an auxiliary one stated next.

Lemma 5.3. Let $X$ be a random variable with F. $t$ . $\varphi$ and

(5.6) $\Gamma(X, x, t)d=ef\sum_{n\geqq 0}P(x+\frac{2n\pi}{t}<X\leqq x+\frac{(2n+1)\pi}{t})$ for $t\neq 0$ and $x>0$ .

Then for all $t\neq 0$

(5.7) $\frac{1-Re(\varphi(t))}{t}=\int_{0}^{\pi/t}\sin(tx)\Gamma(|X|, x, t)dx$ and

$\frac{Im(\varphi(t))}{t}=\int_{0}^{\pi/2t}\cos(tx)(P(X^{+}>x)-P(X^{-}>x))dx$

(5.8)
$-\int_{-\pi/2t}^{\pi/2t}\cos(tx)(\Gamma(X^{+},$ $x+\frac{\pi}{t},$ $t)-\Gamma(X^{-},$ $x+\frac{\pi}{t},$ $t))dx$

Proof. Since
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$1-Re(\varphi(t))=1-E(\cos(tX))=1-E(\cos(t|X|))$

and
$Im(\varphi(t))=E(\sin(tX))=E(\sin(tX^{+}))-E(\sin(tX^{-}))$ ,

it suffices to prove the assertions for nonnegative $X$ which is therefore assumed
in the following. Suppose further first that $X$ is bounded by some $a\in R$ . Then

$1-Re(\varphi(t))=1-E(\cos(tX))=E(\int_{0}^{X}t\sin(tx)dx)$

$=\int_{0}^{\infty}t\sin(tx)P(X>x)dx=\int_{0}^{a}t\sin(tx)P(X>x)dx$ .

Since, for fixed $t\neq 0,$ $s\ln(tx)$ has period $2\pi/t$ and $\sin(tx+\pi)=-\sin(tx)$ , we obtain
on splitting up the range of integration

$\int_{0}^{\infty}t\sin(tx)P(X>x)dx$

$=\int_{0}^{\pi/t}t\sin(tx)\sum_{n\geqq 0}P(X>x+\frac{2n\pi}{t})dx-\int_{\pi/t}^{2\pi/t}t\sin(tx)\sum_{n\geqq 0}P(X>x+\frac{2n\pi}{t})dx$

$=\int_{0}^{n/t}t\sin(tx)\sum_{n\geqq 0}(P(X>x+\frac{2n\pi}{t})-P(X>\frac{(2n+1)\pi}{t}))dx$

$=\int_{0}^{n/t}t\sin(tx)\Gamma(X, x, t)dx$ , i.e. (5.7).

If $X$ is unbounded, then the same formula yields by using it for $X\wedge n$ and by
then letting $n$ tend to infinity. Since $\Gamma(\cdot, x, t)$ is always bounded by 1, the
desired result follows by dominated convergence with majorant $t\sin(tx)$ on the
right-hand side.

The proof of (5.8) goes very similar. Here we have for $t\neq 0$

$Im(\varphi(t))=E(\sin(tX))=E(\int_{0}^{X}t\cos(tx)dx)=\int_{0}^{\infty}t\cos(tx)P(X>x)dx$ .

The remaining calculations are then done analogously, first for bounded $X$, and
by splitting up the range of integration of the last integral above in an obvious
manner. We do not supply the details again.

Lemma 5.4. If $Y_{N+1}$ is non-reducible and tight, then there are $a,$ $T>0$ such
that

(5.9) $1-\varphi_{\max}(t)\geqq at^{2}$ for all $t\in(-T, T)$ .
Proof. Let us consider the sequence $Y_{N+1}^{l}$ whose associated F.t. are given

by $|\varphi_{n}|^{2},$ $n\geqq 1$ . As already mentioned, $Y_{N+1}^{l}$ is also non-reducible and tight
whence

$F(t)=\sup_{n\geqq\iota}P(Y_{n}^{l}\leqq t)def$ and $G(t)=\inf_{n\geqq 1}P(Y_{n}^{\epsilon}\leqq t)def$
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are proper distribution functions (by tightness) and satisfy $F(O)<1$ (by non-
reducibility and symmetry). Now use formula (5.7) to obtain

$\frac{1-|\varphi_{n}(t)|^{2}}{t^{2}}=\int_{0}^{\tau/t}\frac{\sin(tx)}{t}\Gamma(|Y_{n}^{l}|, x, t)dx$

$\geqq\int_{0}^{\pi/t}\frac{\sin(tx)}{t}P(x<Y_{n}^{*}\leqq x+\frac{\pi}{t})dx$

$\geqq\int_{0}^{n/t}\frac{\sin(tx)}{t}(G(x+\frac{\pi}{t})-F(x))^{+}dx$ for all $n\geqq 1$ .

However, the latter integral does no longer depend on $n$ and converges to

$\mu_{+}(F)=def\int_{0}^{\infty}x(1-F(x))dx$ , as $t\downarrow 0$ ,

which is positive, possibly infinite, because $F(O)<1$ . Consequently, by choosing
any $a\in(O, \mu^{+}(F))$ , we finally conclude

$1-\varphi_{\max}(t)=\inf_{n\geq 1}(1-|\varphi_{n}(t)|)=\inf_{n\geqq 1}(\frac{1-|\varphi_{n}(t)|^{g}}{1+|\varphi_{n}(t)|})$

$\geqq\frac{1}{2}\inf_{n\geqq 1}(1-|\varphi_{n}(t)|^{2})\geqq at^{2}$

for all sufficiently small $t$ which proves the desired result.

Proof of Theorem 3.2 (b). Let $X_{N}$ be of type CC and choose $a,$ $T>0$ so
small that (5.9) of the previous lemma holds for $\varphi_{\max}$ given here. The follow-
ing estimation is similar to one given by Smith [13], p. 483. Recall from (5.5)

that $\Psi_{ab*}(t)\leqq\Sigma_{n\geq 0}E(\xi_{n+1}-E\xi_{n})\varphi_{\max}(t)^{n}$ . We obtain with suitable constants $C_{1}$ ,
$C_{2}>0$

$\int_{-T}^{T}t^{2}\Psi_{ab*}(t)dt=\int_{0}^{T}2t^{8}\Psi_{ab*}(t)dt\leqq\sum_{n\geq 0}E(\xi_{n+1}-\xi_{n})\int_{0}^{T}2t^{g}\varphi_{\max}(t)^{n}dt$

$\leqq\sum_{nzo}E(\xi_{n+1}-\xi_{n})\int_{0}^{T}2t^{g}(1-at^{2})^{n}dt$

$\leqq C_{1}\sum_{n\geqq 0}E(\xi_{n+1}-\xi_{n})\int_{0}^{1}u^{1/8}(1-u)^{n}du$

$\leqq C_{\epsilon}\sum_{nP0}n^{-\prime^{\mathfrak{g}}}E(\xi_{n+1}-\xi_{n})$ ,

the latter expression being finite by assumption (3.2). Note that we have used
for it that

$\int_{0}^{1}u^{1/2}(1-u)^{n}du=\frac{\Gamma(3/2)\Gamma(n+1)}{\Gamma(n+(5/2))}=o(n^{-3/\mathfrak{g}})$ , as $ n\rightarrow\infty$ ,

where the asymptotic behavior may be seen by an appeal to Stirling’s formula.
If $X_{N}$ is of type AC the same arguments apply with $\varphi_{\max}$ replaced $\alpha\varphi_{\max}$
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$+(1-\alpha)$ which still satisfies (5.9) of Lemma 5.4 (with $\alpha a$ instead of $a$). We do
not give the details again.
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