RANDOM WALKS WITH STOCHASTICALLY BOUNDED INCREMENTS: RENEWAL THEORY VIA FOURIER ANALYSIS

By
Gerold Alsmeyer

(Received March 23, 1993)

Abstract

Summary. Random walks $S_{N}=\left(S_{n}\right)_{n z 0}$ with stochastically bounded increments X_{0}, X_{1}, \cdots have been introduced in [2], [3] as natural generalizations of those with i.i.d. increments. In this article we present Blackwell-type renewal theorems proved by means of Fourier analysis. In the special case of independent X_{0}, X_{1}, \cdots these results lead to generalizations of earlier ones in the literature, notably in [3] where proofs were based on coupling technique which is a purely probabilistic device. As a further application we prove Blackwell's renewal theorem for certain random walks with stationary 1 dependent increments that appear in Markov renewal theory as subsequences of Markov random walks.

1. Introduction

Random walks with stochastically lower and/or upper bounded increments, see Definition 1.1 below, are a natural generalization of those with i.i.d. increments and have been introduced in [2], [3]. Certain drift bounds describing the mean growth of these random walks over finite remote time intervals as well as related characterization results are given in [2], whereas [3] is devoted to the proof of Blackwell-type renewal theorems under appropriate additional assumptions. Of principal importance there is the use of the coupling method, a probabilistic device which has regained great importance since the seventies. In this article we will derive Blackwell-type renewal theorems via the more classical approach based upon Fourier analysis.

We keep the basic notation of [2] and [3] which is briefly summarized below. Let $X_{N}=\left(X_{n}\right)_{n \geq 0}$ be a sequence of real-valued, integrable random variables on a probability space (Ω, \mathscr{G}, P) with associated random walk S_{N}, defined through $S_{n}=X_{0}+\cdots+X_{n}$ for all $n \in N$. Let Ψ_{N} be an arbitrary filtration to

[^0]which X_{N} is adapted and G_{N} the canonical filtration of X_{N}, i.e. $\mathscr{G}_{n}=\sigma\left(X_{0}, \cdots, X_{n}\right)$. For each measure F, we use the same letter for its "distribution function" and thus write $F(t)$ for $F((-\infty, t])$. If F is a probability measure, let $\bar{F}(t)=1-F(t)$ and $\mu(F)$ its mean value provided it exists. For $n, k \in N$ and $0 \leqq j \leqq n$, we further define
\[

$$
\begin{aligned}
& S_{n, k}=S_{n+k}-S_{n}, \quad m_{n+1}=E\left(X_{n+1} \mid \Im_{n}\right), \\
& L_{0}=X_{0}, \quad L_{n+1}=m_{1}+\cdots+m_{n+1}, \quad L_{n, k}=L_{n+k}-L_{n}, \\
& L_{n, k}^{j}=E\left(S_{n, k} \mid \mathscr{F}_{j}\right)=E\left(L_{n, k} \mid \mathscr{F}_{j}\right), \\
& Q_{n}(d x)=P\left(S_{n} \in d x\right), \quad Q_{n, k}(\omega, d x)=P\left(S_{n, k} \in d x \mid \Im_{n}\right)(\omega),
\end{aligned}
$$
\]

where $Q_{n, k}$ is chosen to be a regular conditional distribution. Finally, \mathscr{B} always denotes the Borel- σ-field over \boldsymbol{R} and $\|\cdot\|_{\infty}^{\infty}$ the supremum norm on the vector space $L_{\infty}(\Omega, \mathscr{F}, P)$.

Definition 1.1. A sequence X_{N}, adapted to a filtration \mathscr{F}_{n}, is called -stochastically bounded (s.b.) w.r.t. \mathscr{F}_{N}, if for distributions F, G with finite means

$$
\begin{equation*}
G(t) \leqq Q_{n, 1}(\cdot, t) \leqq F(t) \quad \text { a.s. for all } t \in R \text { and } n \in N . \tag{A.1}
\end{equation*}
$$

-stochastically stable w.r.t. \mathscr{I}_{N}, if it is s.b. w.r.t. \mathscr{F}_{N} and if additionally

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \operatorname{snp}_{n \geq 0}\left\|k^{-1} L_{n, k}^{n}-\theta\right\|_{\infty}=0 \tag{A.2}
\end{equation*}
$$

holds for some $\theta \in \boldsymbol{R}$ which is then called the mean of X_{N}.
-ultimately stochastically bounded w.r.t. \mathscr{I}_{N}, if $X_{\tau+N}$ is s.b. w.r.t. $\mathscr{T}_{\tau+N}$ for some \mathscr{T}_{N}-time τ, such that $E \tau<\infty$ and $E\left|S_{\tau}\right|<\infty . \tau$ is then called an entrance time of X_{N}.
-ultimately stochastically stable w.r.t. \mathscr{F}_{N}, if it is ultimately s.b. with a sequence τ_{N} of entrance times such that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lim \sup _{k \rightarrow \infty} \sup _{n \geq 0}\left\|k^{-1} L_{r j}^{\tau j+n, k}+\boldsymbol{\eta}\right\|_{\infty}=0 \tag{A.3}
\end{equation*}
$$

for some $\theta \in \boldsymbol{R}$ which again is called the mean of X_{N}.
The distributions F and G in (A.1) are called a minorant and a majorant of X_{N} and of $Q_{N .1}$, resp.

Note that the definition of an entrance time τ differs in [2] and [3]. We have chosen the more restrictive one of [3] because its additional requirements $E \tau<\infty$ and $E\left|S_{\imath}\right|<\infty$ are indispensable for renewal theory. We denote by $\mathcal{E}\left(X_{N}, \mathscr{F}_{N}\right)$ the class of entrance times of X_{N} w.r.t. \mathscr{F}_{N}, and we simply write \mathcal{E} where this is not ambiguous.

It is not difficult to see that stochastic boundedness w.r.t. $\mathscr{F}_{\boldsymbol{N}}$ is slightly
stronger than uniform integrability of

$$
\left\{P\left(\left|X_{n+1}\right| \in \cdot \mid \mathscr{I}_{n}\right)(\omega) ; n \geqq 1, \omega \in \Omega-N\right\}
$$

for some P-null set N and slightly weaker than uniform $L_{1+\dot{\delta}}$-boundedness of this family for some $\delta>0$, i.e.

$$
\sup _{n \geq 0}\left\|E\left(\left|X_{n+1}\right|^{1+\delta} \mid \mathfrak{F}_{n}\right)\right\|_{\infty}<\infty .
$$

It holds particularly true if, for each $n \geqq 0$, the conditional distribution of X_{n+1} given S_{0}, \cdots, S_{n} is chosen from a finite set, a situation which occurs, for instance, in certain stochastic control problems (e.g. treatment allocation). We refer the reader to an article by Lalley and Lorden [10] for a typical application of this type. Further examples of random walks with s.b. increments may e.g. be found in [1], Section 4, and further in Section 4 of this paper. While stochastic boundedness guarantees a uniform tail decrease of the conditional increment distributions, it does not make at all for a uniform mean growth of the associated random walk over finite remote time intervals, formally measured through $k^{-1} L_{n, k}^{n}$ for large n and $k \rightarrow \infty$. Blackwell's renewal theorem, however, just demands for such a uniform growth behavior, and it is for that reason that condition (A.2) (stochastic stability) is introduced. It already occurs in earlier works by Smith [13], Williamson [14] and Maejima [11].

The "optimal" choices for F and G in (A.1)-(A.3) are obviously

$$
\begin{equation*}
F(t) \doteq \sup _{n \geq 0}\left\|Q_{n, 1}(\cdot, t)\right\|_{\infty} \quad \text { and } \quad G(t) \doteq 1-\sup _{n \geq 0}\left\|\bar{Q}_{n, 1}(\cdot, t)\right\|_{\infty} \tag{1.1}
\end{equation*}
$$

and called maximal minorant and minimal majorant, resp., of X_{N} and of $Q_{N, 1}$ (w.r.t. $\mathscr{F}_{\boldsymbol{N}}$, if this is to be emphasized). $[f(t) \doteq g(t)$ means that $f(t)$ is the right continuous modification of $g(t)]$. For an arbitrary entrance time τ let F_{k}^{τ} and G_{k}^{τ} be the maximal minorant and the minimal majorant of $Q_{\tau+N, k}$ w.r.t. $\Im_{\tau+N}$, respectively. With the help of these distributions, we can define

$$
\vartheta_{*}\left(S_{\tau+N}, \mathscr{F}_{\tau+N}\right)=\sup _{k \geq 1} k^{-1} \mu\left(F_{k}^{\tau}\right) \quad \text { and } \quad \vartheta *\left(S_{\tau+N}, \mathscr{I}_{\imath+N}\right)=\inf _{k \geq 1} k^{-1} \mu\left(G_{k}^{\tau}\right)
$$

which are called the lower and upper asymptotic drift of $S_{\tau+N}$ w.r.t. $\Im_{\tau+N}$. It is shown in [2], see Lemma 4.1 there, that supremum and infimum in (1.2) yield as limits, i.e.

$$
\begin{equation*}
\vartheta_{*}\left(S_{\tau+N}, \mathscr{I}_{\tau+N}\right)=\lim _{k \rightarrow \infty} k^{-1} \mu\left(F_{k}^{\tau}\right) \quad \text { and } \quad \vartheta *\left(S_{\tau+N}, \mathscr{F}_{\tau+N}\right)=\lim _{k \rightarrow \infty} k^{-1} \mu\left(G_{k}^{\tau}\right) \tag{1.2}
\end{equation*}
$$

Let us write $\vartheta_{*}, \vartheta^{*}$ for $\vartheta_{*}\left(S_{N}, \mathscr{F}_{N}\right), \vartheta^{*}\left(S_{N}, \mathscr{F}_{N}\right)$. Next, for ultimately s.b. X_{N},

$$
\begin{align*}
& \eta_{*}=\eta_{*}\left(S_{N}, \mathscr{F}_{N}\right)=\sup _{\tau \in \mathcal{E}} \vartheta_{*}\left(S_{\tau+N}, \mathscr{I}_{\tau+N}\right), \tag{1.3}\\
& \eta^{*}=\eta^{*}\left(S_{N}, \mathscr{F}_{N}\right)=\inf _{\tau \in \mathcal{E}} \vartheta_{*}\left(S_{\imath+N}, \mathscr{F}_{\tau+N}\right),
\end{align*}
$$

are, resp., the maximal lower and the minimal upper asymptotic drift of S_{N} (w.r.t. $\mathscr{F}_{\boldsymbol{N}}$). Evidently,

$$
\vartheta_{*} \leqq \eta_{*} \leqq \eta^{*} \leqq \vartheta^{*},
$$

and they are all equal to some θ iff X_{N} is s.s. w.r.t. Ψ_{N} with mean θ, see Theorem 5.1 in [2]. The latter means that a random walk with s.s. increments with positive mean θ has almost constant average drift θ over finite remote time sets $\{n, \cdots, n+k\}$ if k is large. Indeed, it also satisfies a uniform weak law of large numbers as Theorem 5.1 in [2] further states. We already mentioned earlier, that these facts give rise to the conjecture that such a random walk forms a natural candidate for satisfying Blackwell's renewal theorem.

For any given random walk S_{N} we denote by $U=\Sigma_{n \geq 0} P\left(S_{n} \in \cdot\right)$ its associated renewal measure which is locally finite (finite on bounded subsets of \boldsymbol{R}) whenever X_{N} is ultimately s.b. with $\eta_{*}>0$, see Lemma 6.4 in [3]. Finally, the span $d\left(S_{N}\right)$ of S_{N} is defined through

$$
d\left(S_{N}\right)=\sup \left\{d>0 ; P\left(S_{n} \in d \boldsymbol{Z}\right)=1 \text { for all } n \geqq 0\right\}
$$

The paper is organized as follows. In Section 2 we state and prove a basic Blackwell-type renewal theorem for random walks with ultimately s.b. increments and positive drift. Its intrinsic assumption, a technical integrability condition on the Fourier transform of the appearing renewal measure, see (2.2), is further discussed in Section 3 leading to the definition of two suitable subclasses of random walks (in fact, their increments) for which it can be verified. The resulting renewal theorem (Theorem 3.2) is proved in Section 5. Section 4 contains a number of applications, notably to random walks with independent increments satisfying a local limit theorem and to Markov-modulated random walks which arise in Markov renewal theory.

2. The basic Blackwell-type renewal theorem

The Fourier-analytic nature of Theorem 2.1 below first requires further notation. For $n \geqq 0, k \geqq 1, t \in \boldsymbol{R}$ and $\omega \in \Omega$, let

$$
\begin{aligned}
& \phi_{n}(t)=E\left(e^{i t S_{n}}\right), \\
& \phi_{n, k}(\omega, t)=E\left(e^{i t s_{n, k}} \mid \mathcal{G}_{n}\right)(\omega)=\int_{\Omega} e^{i t x} Q_{n, k}(\omega, d x), \\
& \phi_{n+1}(t)=E\left(e^{i t x_{n+1}}\right)=E \phi_{n, 1}(\cdot, t)
\end{aligned}
$$

be the Fourier transforms (F.t.) of S_{n}, of $S_{n, k}$ given Q_{n}, and of X_{n+1}, resp. Note that $\phi_{n, k}(\omega, t)$ can be factorized as

$$
\phi_{n, k}(\omega, t)=\tilde{\phi}_{n, k}\left(X_{n}(\omega), t\right), \quad X_{n}=\left(X_{0}, \cdots, X_{n}\right) .
$$

The so-called discounted renewal measures $U(s, \cdot), 0<s<1$ associated with S_{N}
are defined through

$$
U(s, \cdot)=\sum_{n \geq 0} s^{n} P\left(S_{n} \in \cdot\right)=\sum_{n \geq 0} s^{n} Q_{n} .
$$

$U(s, \cdot)$ has finite total mass $1 /(1-s)$ and F.t.

$$
\hat{O}(s, t)=\sum_{n \geq 0} s^{n} \psi_{n}(t)
$$

Abel's theorem implies

$$
\begin{equation*}
\lim _{s+1} \hat{U}(s, t)=\hat{U}(t) \stackrel{\text { def }}{=} \sum_{n \geq 0} \psi_{n}(t) \tag{2.1}
\end{equation*}
$$

for all $t \in \boldsymbol{D}(\hat{U}) \stackrel{\text { def }}{=}\left\{y \in \boldsymbol{R}:\left|\Sigma_{n \geq 0} \psi_{n}(y)\right|<\infty\right\}$. Since $\psi_{n}(0)=1$ for all $n \geqq 0$, we have $\boldsymbol{D}(\hat{U}) \subset \boldsymbol{R}-\{0\}$. If $S_{\boldsymbol{N}}$ has span $d>0$ then all ψ_{n} are $(2 \pi / d)$-periodic so that even $\boldsymbol{D}(\hat{U}) \subset \boldsymbol{R}-(2 \pi / d) \boldsymbol{Z}$ holds.

With l_{0} and $l_{d}, d>0$ denoting Lebesgue measure and d times counting measure on $d \boldsymbol{Z}$, resp., our basic renewal theorem now takes the following form.

Theorem 2.1. Let S_{N} be a random walk with span d and ultimately s.b. increments X_{0}, X_{1}, \cdots with $\eta_{*}>0$. Suppose that

$$
\begin{equation*}
\int_{(-a, a)} t^{2} \sum_{n \geq 0}\left|R e\left(\psi_{n}\right)(t)\right| d t<\infty \quad \text { for all } \quad 0<a<\frac{2 \pi}{d} . \tag{2.2}
\end{equation*}
$$

Then for all bounded intervals I

$$
\begin{equation*}
\eta^{*-1} l_{d}(I) \leqq \liminf _{t \rightarrow \infty} U(t+I) \leqq \lim _{t \rightarrow \infty} \sup U(t+I) \leqq \eta_{*}^{-1} l_{d}(I) \tag{2.3}
\end{equation*}
$$

If X_{N} is even ultimately s.s. with positive mean θ, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} U(t+I)=\theta^{-1} l_{d}(I) . \tag{2.4}
\end{equation*}
$$

In all cases t runs through $d \boldsymbol{Z}$ only if $d>0$.
Remarks. (a) Condition (2.2) as it stands is obviously difficult to verify in applications and therefore further discussed in the following section. Note that the integrand in (2.2) always has a singularity at $t=0$, but in contrast to the i.i.d. case it may have further ones in $(-2 \pi / d, 2 \pi / d)$, necessarily of integrable order.
(b) It follows from Proposition 5.1 (a) in [3] that under the assumptions of Theorem 2.1 above

$$
\begin{equation*}
\sup _{t \in R} U(t+B)<\infty \quad \text { and } \quad \lim _{t \rightarrow-\infty} U(t+B)=0 \tag{2.5}
\end{equation*}
$$

for all bounded $B \in \mathscr{B}$. As a consequence it is enough to prove the assertions of Theorem 2.1 with U replaced by its symmetrization

$$
V \stackrel{\text { def }}{=} U+U(-\cdot)
$$

Proof of Theorem 2.1. We restrict ourselves to the nonarithmetic case ($d=0$) but note that for $d>0$ the following arguments apply after minor modifications due to the $(2 \pi / d)$-periodicity of all involved F.t.

So let X_{N} be nonarithmetic and ultimately s.b. with $\eta_{*}>0$. By Proposition 5.1 in [3], for each $\mu \in\left(0, \eta_{*}\right)$ and $\nu \in\left(\eta^{*}, \infty\right)$ there is a nonarithmetic distribution F_{0} such that for all bounded $B \in \mathscr{B}$

$$
\begin{equation*}
\nu^{-1} l_{0}(B) \leqq \liminf _{t \rightarrow \infty} F_{0} * U(t+B) \leqq \limsup _{t \rightarrow \infty} F_{0} * U(t+B) \leqq \mu^{-1} l_{0}(B) \tag{2.6}
\end{equation*}
$$

As in [3], this is the key result which considerably simplifies the subsequent arguments because it allows us to prove the theorem's assertions by examining $U-F_{0} * U$ instead of U itself. As one can easily verify, (2.6) remains true when replacing F_{0}, U by their symmetrizations

$$
F_{0}^{s} \stackrel{\text { def }}{=} F_{0} * F_{0}(-\cdot)
$$

and V, resp. It is now enough to show for (2.3) that

$$
W(t+\cdot) \stackrel{\text { def }}{=} V(t+\cdot)-F_{0}^{s} * V(t+\cdot)
$$

tends vaguely to 0 , i.e.

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \int_{R} h(x) W(t+d x)=0 \tag{2.7}
\end{equation*}
$$

for all continuous functions $h: \boldsymbol{R} \rightarrow \boldsymbol{C} \in \mathcal{C}_{0}$, the vector space of continuous functions with compact support. To this end we let, for $0<s<1$ and $a \in \boldsymbol{R}$,

$$
V(s, a, \cdot)=U(s, a+\cdot)+U(s,-a-\cdot) \text { and } W(s, \cdot)=V(s, a, \cdot)-F_{0}^{s} * V(s, a, \cdot)
$$

be the discounted versions of $V(a+\cdot)$ and $W(a+\cdot)$, resp. Their F.t. are easily computed as, resp.,

$$
\hat{V}(s, a, t) \stackrel{\text { def }}{=} 2 e^{-i a t} R e(\hat{U}(s, t)) \quad \text { and } \quad \hat{W}(s, a, t) \stackrel{\text { def }}{=} 2 e^{-i a t}\left(1-\hat{F}_{0}^{8}(t)\right) \operatorname{Re}(\hat{O}(s, t)),
$$

where \hat{F}_{0}^{s} denotes the F.t. of F_{0}^{s}. Note also that $W(s, a, \cdot)$ is a finite signed measure with total mass 0 , and that (2.5) implies for the total variation $|W|$ of W

$$
\begin{equation*}
C_{B} \stackrel{\text { def }}{=} \sup _{a \in R}|W|(a+B)<\infty \tag{2.8}
\end{equation*}
$$

for all bounded $B \in \mathscr{B}$. Now let C_{0}^{∞} be the space of all infinitely differentiable functions with compact support and $\mathscr{D}=\left\{f: \hat{f} \in \mathcal{C}_{0}^{\infty}\right\}$ which is a subspace of all infinitely differentiable and l_{0}-integrable functions. We first prove (2.7) for $h \in \mathscr{D}$ and under the assumption that F_{0}^{s} has finite second moment $\mu_{2}\left(F_{0}^{s}\right)$, in which case its (nonnegative) F.t. is twice continuously differentiable with Taylor expansion

$$
\hat{F}_{0}^{s}(t)=1+r(t) t^{2},
$$

where $r(t)$ is continuous and equals $\mu_{2}\left(F_{0}^{s}\right) / 2$ at 0 . We will show later how to remove the second moment assumption. Parseval's relation (see e.g. [9], p. 619) gives us the key relation

$$
\begin{equation*}
\int_{R} h(x) W(s, a, d x)=\int_{K(\hat{h})} \hat{h}(t) \hat{W}(s, a, t) d t \tag{2.9}
\end{equation*}
$$

for $a, y \in \boldsymbol{R}, 0<s<1$, where K denotes the compact support of \hat{h}. The lefthand side of (2.9) converges to

$$
\int_{R} h(x) W(a+d x), \quad \text { as } \quad s \uparrow 1,
$$

because h is l_{0}-integrable and continuous (thus directly Riemann integrable) and by (2.8). The right-hand side of (2.9) equals

$$
\int_{K(\hat{h})} 2 \hat{h}(t) e^{-i a t} r(t) t^{2} R e(\hat{U}(s, t)) d t
$$

is bounded in absolute value by

$$
\|\hat{h}\|_{\infty} r(t) t^{2} \sum_{n \geq 0}\left|\operatorname{Re}\left(\psi_{n}\right)(t)\right| \quad \text { for all } \quad 0<s<1
$$

and hence converges to

$$
\int_{K(\hat{h})} 2 \hat{h}(t) e^{-i a t} r(t) t^{2} R e(\hat{U}(t)) d t, \quad \text { as } \quad s \uparrow 1
$$

by (2.1), (2.2) and dominated convergence. We have thus obtained

$$
\begin{equation*}
\int_{R} h(x) W(a+d x)=\int_{K(\hat{h})} \hat{h}(t) e^{-i a t} r(t) t^{2} \operatorname{Re}(\hat{O}(t)) d t \tag{2.10}
\end{equation*}
$$

A further appeal to (2.2) together with the Riemann-Lebesgue lemma shows that the right-hand side of (2.10) converges to 0 , as $a \rightarrow \infty$, yielding the desired result (2.7).

For arbitrary $h \in \mathcal{C}_{0}$ with compact support $K(h)$ and $\varepsilon>0$, we can choose a function $h_{\varepsilon} \in \mathscr{D}$ such that $\left\|h-h_{\varepsilon}\right\|_{\infty}<\varepsilon / C_{K(h)}$ (see e.g. [15], p. 114f) and, by (2.8),

$$
\sup _{a \in R} \int_{R-K(h)}\left|h_{\varepsilon}(x)\right||W|(a+d x)<\varepsilon .
$$

Consequently, (2.7) follows from

$$
\begin{aligned}
&\left|\int_{R} h(x) W(a+d x)\right| \leqq\left|\int_{R} h_{\varepsilon}(x) W(a+d x)\right|+C_{K(h)}\left\|h-h_{\varepsilon}\right\|_{\infty} \\
&+\int_{R-K(h)}\left|h_{\varepsilon}(x)\right||W|(a+d x) \\
& \leqq o(1)+2 \varepsilon, \quad \text { as } a \rightarrow \infty .
\end{aligned}
$$

In case where F_{0}^{s} has infinite second mean the following argument will show that it can be replaced by a suitable truncated version H without loosing much in (2.6) if B is replaced by some arbitrary bounded interval there and F_{0}
by H. Let $\varepsilon, b>0$ be arbitrary and $M=\sup _{t \in R} U[t, t+b]$, which is finite by (2.5). Choose $z>0$ so large that $F_{0}^{\circ}(-z)<\varepsilon /(2 M)$ and define

$$
H=F_{0}^{z}((-z, z) \cap \cdot)+F_{0}^{s}(-z)\left(\delta_{-z}+\delta_{z}\right),
$$

δ_{z} being the Dirac measure at $z . H$ is then again symmetric and it clearly has finite second mean. Moreover,

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \sup H * U([t, t+b]) \\
& \quad \leqq 2 M F_{0}^{s}(-z)+\limsup _{t \rightarrow \infty} \int_{(-z, z)} U([t-x, t+b-x]) F_{o}^{s}(d x) \tag{2.11}\\
& \quad \leqq \limsup _{t \rightarrow \infty} F_{0}^{s} * U([t, t+b])+\varepsilon \leqq \frac{b}{\mu}+\varepsilon, \quad[d=0]
\end{align*}
$$

and similarly

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} H * U([t, t+b]) \geqq \frac{b}{\nu}-\varepsilon . \tag{2.12}
\end{equation*}
$$

If we now define $W=V-H * V$ we infer from the previous part of the proof that $W(t+\cdot)$ still converges vaguely to 0 , as $t \rightarrow \infty$, and together with (2.11), (2.12) this implies

$$
\frac{b}{\nu}-\varepsilon \leqq \liminf _{t \rightarrow \infty} H * U([t, t+b]) \leqq \lim _{t \rightarrow \infty} \sup U([t, t+b]) \leqq \frac{b}{\mu}+\varepsilon
$$

proving (2.3) because $\varepsilon, b>0$ and $\mu \in\left(0, \eta_{*}\right), \nu \in\left(\eta^{*}, \infty\right)$ were arbitrarily chosen. (2.4) is now a trivial consequence of (2.3) because $\eta_{*}=\eta^{*}=\theta$ under the holding assumption there.

3. Discussion of condition (2.2)

This section is devoted to a discussion of the intricate analytic condition (2.2) of Theorem 2.1. The problem with it is obviously that the occuring infinite series $\Sigma_{n \geq 0}\left|\operatorname{Re}\left(\psi_{n}\right)(t)\right|$ cannot easily be estimated about its singularity 0 . As a consequence we must be after more transparent, probabilistic alternatives. Definition 3.1 below introduces two appropriate subclasses of increment sequences X_{N} which contain in particular most non-trivial independent sequences. Special cases are considered in Section 4. The essential property of these increment sequences is that infinitely many of its variables contain a distributional component which is independent of the "rest of the world". Such an assumption is by now standard, for instance in the definition of Harris-recurrent Markov chains.

We begin with some further notation which is needed to present the results of this section. $B(1, \alpha), \alpha \in(0,1)$, denotes the Bernoulli distribution on $\{0,1\}$ with α being the probability of $\{1\}$. For each random variable Y let Y^{s} be a
symmetrization, i.e. $Y^{s}=Y-Y^{\prime}$ with Y^{\prime} being an independent copy of Y. We call Y completely d-arithmetic if $Y+z$ is d-arithmetic for all $z \in \boldsymbol{R}$. As one can easily verify, this holds true iff Y and Y^{s} are both d-arithmetic.

A sequence Y_{N} of random variables is called
$-t i g h t$ if $\sup _{n \in N} P\left(\left|Y_{n}\right|>t\right) \rightarrow 0$, as $t \rightarrow \infty$;
-non-reducible if all weakly convergent subsequences have non-degenerate limits (in particular, all Y_{n} are non-degenerate);
-completely d-arithmetic, $d \geqq 0$, if all weakly convergent subsequences have completely d-arithmetic limits (in particular, all Y_{n} are completely d-arithmetic). As one can easily verify, each of the three previously defined properties holds for Y_{N} iff it does so for Y_{N}^{s}. Moreover, a completely d-arithmetic sequence is necessarily non-reducible.

Let us finally stipulate that all hereafter occuring, not explicitly specified random variables with index 0 are supposed to be 0 .

Definition 3.1. A sequence X_{N} is called to be of -type AC (Additive Component), if for an increasing (possibly random) sequence $0 \leqq \xi_{0}<\xi_{1}<\cdots$

$$
X_{n}=\left\{\begin{array}{ll}
Z_{k} Y_{k}+\left(1-Z_{k}\right) \tilde{X}_{n} & \text { if } \xi_{k}=n \tag{A.6}\\
\hat{X}_{n} & \text { otherwise }
\end{array} \quad \text { a.s. for all } n \geqq 0,\right.
$$

where Y_{N} is a non-reducible sequence of independent random variables, Z_{1}, Z_{2}, \cdots are i.i.d. with common distribution $B(1, \alpha)$ for some $\alpha \in(0,1]$ and Y_{N}, Z_{N} and (\hat{X}_{N}, ξ_{N}) are mutually independent.
-type CC (Convolution Component), if for an increasing (possibly random) sequence $0 \leqq \xi_{0}<\xi_{1}<\cdots$

$$
X_{n}=\left\{\begin{array}{ll}
Y_{k}+\hat{X}_{n} & \text { if } \xi_{k}=n \tag{A.7}\\
\hat{X}_{n} & \text { otherwise }
\end{array} \quad \text { a.s. for all } n \geqq 0,\right.
$$

where again Y_{N} is a non-reducible sequence of independent random variables which is further independent of (\hat{X}_{N}, ξ_{N}).

In both cases ξ_{N} is called a decomposition sequence for X_{N}.
Remarks. (a) As we are always dealing with distributional properties of X_{N} in the following, results where X_{N} is assumed to be of type AC or type CC remain of course unchanged if only a copy of X_{N} (constructed on a suitable probability space) is of this type.
(b) In [3] sequences of type IAC [ICC] (identical additive [convolution] component) were introduced which are further specialized versions of the ones defined above. Namely, in [3] $\left(Y_{1}, Z_{1}\right),\left(Y_{2}, Z_{2}\right), \cdots\left[Y_{1}, Y_{2}, \cdots\right]$ must even be
i.i.d. and ξ_{0}, ξ_{1}, \cdots stopping times. These are natural requirements for a coupling approach towards Blackwell-type renewal theorems but can be relaxed if Fourier analysis is used. On the other hand we will here need assumptions on the occurrence rate of ξ_{N}, see (3.1) and (3.2) below, which can be dispensed with in the former approach. A further discussion can be found at the end of Section 4.
(c) Clearly, each non-reducible sequence X_{N} of independent random variables is of type AC as well as of type CC. More generally, if $X_{n}=X_{n}^{\prime}+X_{n}^{\prime \prime}$ for each $n \geqq 0$, where X_{N}^{\prime} and $X_{N}^{\prime \prime}$ are independent and X_{N}^{\prime} is a non-reducible sequence of independent random variables, then X_{N} is of type CC.

As for validity of condition (2.2), we will separately give sufficient conditions for
(C.1) $\Psi_{a b s}(t) \stackrel{\text { def }}{=} \Sigma_{n \geq 0}\left|\psi_{n}(t)\right|$ to be continuous on $\boldsymbol{R}_{0}=\boldsymbol{R}-\{0\} \quad(d=0)$, resp.
$\boldsymbol{R}_{d} \stackrel{\text { def }}{=} \boldsymbol{R}-(2 \pi / d) \boldsymbol{Z} \quad(d>0)$, where d denotes the span of $X_{\boldsymbol{N}}$;
(C.2) $t^{2} \Psi_{a b_{s}}(t)$ to be integrable in some neighborhood of 0.

Validity of both, (C.1) and (C.2), then clearly implies that of (2.2). Our result is stated in the following proposition the proof of which we defer to Section 5.

Theorem 3.2. Let X_{N} be of type $A C$ or $C C$ with span d.
(a) If there exists a decomposition sequence ξ_{N} with associated sequence Y_{N} such that

$$
\begin{equation*}
\Sigma_{n \geq 1} s^{n} E\left(\xi_{n}-\xi_{n-1}\right)<\infty \quad \text { for all } \quad s \in(0,1), \tag{3.1}
\end{equation*}
$$

and Y_{N} is either completely d-arithmetic and tight, or weakly convergent to a completely d-arithmetic limit, then Ψ and $\Psi_{\text {abs }}$ are both continuous on \boldsymbol{R}_{d}, i.e. (C.1) holds true.
(b) If there exists a decomposition sequence $\boldsymbol{\xi}_{N}$ with associated sequence Y_{N} such that

$$
\begin{equation*}
\Sigma_{n \geq 1} n^{-3 / 2} E\left(\xi_{n}-\xi_{n-1}\right)<\infty \tag{3.2}
\end{equation*}
$$

and Y_{N} is tight, then $t^{2} \Psi_{a b s}$ is integrable at 0 , i.e. (C.2) holds true.
We can now easily combine Theorem 2.1 with Theorem 3.2 to get the following renewal theorem for random walks with AC- or CC-type increments.

Corollary 3.3. Let X_{N} be d-arithmetic and of type $A C$ or $C C$ with decomposition sequence ξ_{N} satisfying (3.2) and associated tight sequence Y_{N}. Suppose further that there is a subsequence ξ_{N}^{\prime} of ξ_{N} satisfying (3.1) and such that its
associated subsequence Y_{N}^{\prime} of Y_{N} is additionally either completely d-arithmetic or weakly convergent to a completely d-arithmetic limit. Then, if X_{N} is further -ultimately s.b. with $\eta_{*}>0$, (2.3) of Theorem 2.1 holds true.
-ultimately s.s. with positive mean θ, (2.4) of Theorem 2.1 holds true, i.e.

$$
\lim _{t \rightarrow \infty} U(t+I)=\theta^{-1} l_{d}(I) .
$$

In either case t runs through $d \boldsymbol{Z}$ only if $d>0$.

4. Examples and discussion

In this section we want to look at a number of special cases to which Theorem 2.1 or Corollary 3.3 are applicable. Four examples are picked from the class of random walks with AC- or CC-type increments, a further one deals with a certain subclass of Markov-modulated random walks which arise in Markov renewal theory.

Random walks with increments of type $A C$ or CC
It is evident that AC- and CC-type sequences may be found in abundance in the class of sequences of independent random variables. As a consequence, three of the following four examples have been chosen from this class. Note also that in all these examples Blackwell's renewal theorem cannot be concluded from the results in [3], at least not to the same extent. A further discussion is given at the end of the section.

Example 4.1. [Random walks satisfying a local limit theorem]
It has been shown by Maejima [11], and under more restrictive conditions already by Cox and Smith [8], how Blackwell's renewal theorem can be deduced from a uniform local limit theorem. The result in [11] looks as follows: Let S_{N} be a random walk with s.s. increments with positive mean θ and variances satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\operatorname{Var} S_{n}}{n}=\sigma^{2} \in(0, \infty) . \tag{4.1}
\end{equation*}
$$

Fix $h>0$ and suppose further that with $a_{n}=E S_{n}, b_{n}^{2}=\operatorname{Var} S_{n}$ and with f denoting the standard normal density

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{x \in R} x^{m}\left|\frac{b_{n}}{h} P\left(-\frac{h}{2}+a_{n}+x b_{n}<S_{n} \leqq \frac{h}{2}+a_{n}+x b_{n}\right)-f(x)\right|=0 \tag{4.2}
\end{equation*}
$$

for $m \in\{0,2\}$. Then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} U\left(\left[x-\frac{h}{2}, x+\frac{h}{2}\right]\right)=\frac{h}{\theta} \tag{4.3}
\end{equation*}
$$

At first sight it is hard to compare this result with ours due to the intrinsic assumption (4.2). However, Maejima further shows that it holds true if X_{0}, X_{1}, \cdots satisfy (4.1) and the classical Lindeberg condition, have finite third moments, and if their F.t. $\phi_{0}, \phi_{1}, \cdots$ satisfy for some $\varepsilon>0$

$$
\begin{equation*}
\phi_{\max }(t) \stackrel{\text { def }}{=} \sup _{n \geq 0}\left|\phi_{n}(t)\right|<1 \quad \text { for all }|t| \geqq \varepsilon \text { and } n \geqq 1 \tag{4.4}
\end{equation*}
$$

As for this set of conditions, we can now easily argue that it is much more restrictive than actually needed for (4.3) to be valid. Indeed, (4.4) alone is already equivalent with X_{N} to be completely nonarithmetic. Moreover, since X_{N} is s.s. it is of type AC and CC with trivial decomposition sequence $\xi_{n} \equiv n$, $n \geqq 0$ and associated sequence $Y_{N}=X_{N}$ which is thus clearly tight. Consequently, Corollary 3.3 applies, i.e. (4.3) holds true without needing any of (4.1), the Lindeberg condition and finite third moments.

Example 4.2. [Asymptotically i.i.d. increments]

Suppose that X_{0}, X_{1}, \cdots are independent, d-arithmetic, ultimately s.s. with positive mean θ and weakly convergent to a completely d-arithmetic limit. Such a sequence may be roughly characterized as "asymptotically i.i.d.". It is an immediate consequence of the previous corollary that under the given assumptions Blackwell's renewal theorem (2.4) holds true for the associated random walk. If X_{0}, X_{1}, \cdots are e.g. response variables in a sequential medical trial with treatment allocation, where each treatment corresponds to a certain response distribution, then this sequence will be asymptotically i.i.d. under each allocation sequence which in the long-run chooses always the same treatment (preferably the superior one).

Example 4.3. [Increments with pairwise singular distributions]

Two distributions Q_{1}, Q_{2} on \boldsymbol{R} are called singular if there is a Borel set B such that $Q_{1}(B)=0$ and $Q_{2}\left(B^{c}\right)=0$. In other words, Q_{1} and Q_{2} must "live" on disjoint subsets of \boldsymbol{R}. We call two random variables singular if there distributions are so. In classical renewal theory, random walks with nonarithmetic increment distributions which are singular with respect to Lebesgue measure (e.g. the Cantor distribution) turn out to be bad as to convergence rates in Blackwell's and other renewal theorems even if all moments are finite, see [7]. A typical example is the Laplace distribution on $\{\alpha, 1\}$ with $\alpha>0$ an irrational number. Now consider a sequence X_{N} of independent, pairwise singular random variables which is further completely nonarithmetic and ultimately s.s. with positive mean θ. With view to the previous remark we might conjecture that Blackwell's renewal theorem (2.4) fails under these assumptions, but Corollary
3.3 immediately sets us right. This is also interesting because it cannot be concluded from the results of [3] where X_{0}, X_{1}, \cdots or a subsequence of it must share a distributional component which is clearly excluded by pairwise singularity. For illustration we finally note a simple, more concrete example: Let α_{N} be a sequence of pairwise different irrationals $\in(0,1)$ with no rational limit point. Let X_{0}, X_{1}, \cdots be independent and each $X_{n}-1$ Laplacian on $\left\{ \pm \alpha_{n}\right.$, $\left.\pm\left(\alpha_{n}+1\right)\right\}$ so that $E X_{n}=1$ for all $n \in N$. It is then easily verified that X_{N} is completely nonarithmetic, s.s. with mean 1 and with pairwise singular distributions. Thus Corollary 3.3 applies.

Example 4.4. [Linear growth processes with i.i.d. perturbances]
Our fourth example shall give an application of Corollary 3.3 to random walks S_{N} with dependent increment sequences X_{N}. Let $\theta>0$ and M_{N} be an ultimately s.b. (thus ultimately s.s.) d-arithmetic martingale. Let ξ_{N} be a sequence of random, but not necessarily stopping times for M_{N} which satisfies (3.2). At these "shock" or "perturbance" epochs our random walk is perturbed by i.i.d. zero-mean and completely d-arithmetic random variables Y_{1}, Y_{2}, \ldots which are further independent of $\left(M_{N}, \xi_{N}\right) . S_{n}$ is now defined through

$$
S_{n}=n \theta+M_{n}+\sum_{j \geq 1} Y_{j} \mathbf{1}\left(\xi_{j} \leqq n\right)
$$

for each $n \geqq 0$. Then again it is easily verified that Corollary 3.3 applies yielding (2.4).

Markov-modulated random walks

In Markov renewal theory we are given a bivariate Markov chain (M_{N}, $\left.X_{\boldsymbol{N}}\right)$ with state space $(S \times \boldsymbol{R}, \mathcal{S} \otimes \mathcal{B})$ and transition kernel $\boldsymbol{P}: S \times(\mathcal{S} \otimes \mathcal{B}) \rightarrow[0,1]$, i.e. $\left(M_{n+1}, X_{n+1}\right)$ depends on the past only through M_{n}. Suppose that S is Polish with Borel σ-field \mathcal{S} and that M_{N} forms a Harris chain with transition kernel $\boldsymbol{P}^{*}(x, d y) \stackrel{\text { def }}{=} \boldsymbol{P}(x, d y \times \boldsymbol{R})$ and regeneration set \Re. This implies that for some $r \geqq 1$ and $\alpha>0$ and some probability measure ν on S with $\nu(R)=1$ the r step transition kernel \boldsymbol{P}_{r}^{*} satisfies the minorization condition

$$
\begin{equation*}
\boldsymbol{P}_{r}^{*}(x, \cdot) \geqq \alpha \nu \quad \text { for all } \quad x \in \Re . \tag{4.5}
\end{equation*}
$$

For any distribution λ on $S \times \boldsymbol{R}$ let P_{λ} be such that $P_{\lambda}\left(\left(M_{0}, X_{0}\right) \in \cdot\right)=\lambda$. If λ denotes a distribution on S only then $P_{\lambda} \stackrel{\text { def }}{=} P_{\lambda \otimes \delta_{0}}$. Finally, $P_{x, y} \stackrel{\text { def }}{=} P_{\delta_{x}, y}$ and $P_{x} \stackrel{\text { def }}{=} P_{\delta_{x, 0}}$ for $(x, y) \in S \times \boldsymbol{R}$.

By using the regeneration technique of Athreya and Ney [5] one can define (on a possibly enlarged probability space) a version of (M_{N}, X_{N}) together with a sequence T_{N} of randomized stopping times for $M_{N}, T_{0}=0$, such that for each
initial distribution λ and all $n \geqq 1$

$$
\begin{equation*}
P_{\lambda}\left(M_{T_{n}+N} \in \cdot\right)=P_{\nu}\left(M_{N} \in \cdot\right), \tag{4.6}
\end{equation*}
$$

and ($\left.M_{j}, X_{j}\right)_{0 \leq j \leq T_{n-1}}$ and $\left(M_{T_{n}+N}, X_{T_{n}+N}\right)$ are independent. Thus T_{N} forms a sequence of regeneration epochs for M_{N}, and its unique (up to a multiplicative constant) stationary measure is given by

$$
\begin{equation*}
\boldsymbol{\xi}(A) \stackrel{\text { def }}{=} E_{\nu}\left(\sum_{j=0}^{T_{1}-1} 1\left(M_{j} \in A\right)\right), \quad A \in \mathcal{S} \tag{4.7}
\end{equation*}
$$

Induced by T_{N} and under P_{ν}, we are now given an i.i.d. sequence $\hat{M}_{N}, \hat{M}_{n}=$ $M_{T_{n}}$, together with a random walk $\hat{S}_{n}=S_{T_{n}}, n \geqq 0$ whose increments $\hat{X}_{n}=S_{T_{n}}$ -$S_{r_{n-1}}, n \geqq 1$ form a stationary, 1-dependent sequence with mean

$$
\begin{equation*}
\mu=\int_{S} E\left(X_{1} \mid M_{0}=x\right) \boldsymbol{\xi}(d x), \tag{4.8}
\end{equation*}
$$

as one can easily verify. Under arbitrary P_{λ}, the same holds true for (M_{N+1}, $\hat{S}_{N+1}-\hat{S}_{1}$). Consequently, if \hat{X}_{N} is s.b. under any P_{λ}, then it is also s.s. with mean μ due to the stationarity and 1-dependence. In the following, we want to show that \hat{S}_{N} then satisfies Blackwell's renewal theorem provided $\mu>0$ and an additional nonlatticeness assumption on X_{N} holds true, see (4.9) below. The result can be used for the derivation of a general Markov renewal theorem, see [4].

So suppose $\mu \in(0, \infty)$ and furthermore for all $t \neq 0$

$$
\begin{equation*}
\inf _{n \geq 1}\left|E\left(e^{i t S_{n}} \mid M_{0}, M_{n}\right)\right|<1 \quad P_{\xi} \text {-a.s. } \tag{4.9}
\end{equation*}
$$

It can be shown that this condition implies $\boldsymbol{P}(x, \cdot)$ be nonlattice as defined in [12], see also Lemma 3.3 and the subsequent Remark in [4]. Denote by U_{λ} the renewal measure of \hat{S}_{N} under P_{λ}, i.e.

$$
U_{\lambda}(B)=\sum_{n \geq 0} P_{\lambda}\left(\hat{S}_{n} \in B\right)=\sum_{n \geq 0} P_{\lambda}\left(S_{T_{n}} \in B\right) .
$$

We will prove now
Theorem 4.5. Let λ be an arbitrary distribution on $S \times \boldsymbol{R}$. If \hat{X}_{N} is s.s. under P_{λ} with mean $\mu \in(0, \infty)$ and if (4.9) holds true, then for all bounded intervals I

$$
\begin{equation*}
\lim _{t \rightarrow \infty} U_{\lambda}(t+I)=\mu^{-1} l_{0}(I) . \tag{4.10}
\end{equation*}
$$

Proof. Let ν be as given in (4.5). We define

$$
\varphi(x, y, t)=E\left(e^{i t x_{1}} \mid M_{0}=x, M_{1}=y\right), \quad \psi_{n}(x, y, t)=E\left(e^{i t S_{n}} \mid M_{0}=x, M_{n}=y\right),
$$

and similarly $\hat{\varphi}, \hat{\phi}_{n}$ for $\left(\hat{M}_{N}, \hat{X}_{N}\right)$. It is now verified that condition (2.2) holds for \hat{S}_{N}, more precisely

$$
\int_{(-a, a)} t^{2} \sum_{n \geq 0}\left|E_{\nu} e^{i t \hat{s}_{n}}\right| d t<\infty \quad \text { for all } \quad a>0
$$

If $\gamma_{n}\left(M_{0}, M_{n}\right)=\inf \left\{t>0:\left|\psi_{n}\left(M_{0}, M_{n}, t\right)\right|=1\right\}$, where $\inf \phi \stackrel{\text { def }}{=} \infty$, then (4.9) implies $P_{\xi}\left(\gamma_{p}\left(M_{0}, M_{p}\right)>0\right)>0$ for some $p \geqq 1$. Hence there are some $b>0$ and $A \in S^{2}$ such that $P_{\xi}\left(\left(M_{0}, M_{p}\right) \in A\right)>0$ and

$$
\varphi_{\max }(t) \stackrel{\text { def }}{=} \sup _{(x, y) \in A}\left|\psi_{p}(x, y, t)\right|<1 \quad \text { for all } \quad 0<|t|<b
$$

The latter particularly implies that $\left\{P\left(S_{p} \in \cdot \mid M_{0}=x, M_{p}=y\right):(x, y) \in A\right\}$ is nonreducable, and since S_{p} has a.s. finite conditional mean given M_{0}, M_{p}, we can choose A even in such a way that the former distribution family is also tight. It then follows by Lemma 5.4 in the next section that

$$
\begin{equation*}
1-\varphi_{\max }(t) \geqq a t^{2} \quad \text { for some } a>0 \text { and all } t \in(-b, b) \tag{4.11}
\end{equation*}
$$

Next observe that A is a recurrence set for (M_{N}, M_{p+N}) whence

$$
\beta \stackrel{\text { def }}{=} P_{\nu}\left(\left(M_{m}, M_{m+p}\right) \in A\right)>0 \quad \text { for some } \quad m \geqq 0
$$

We infer

$$
\begin{aligned}
\left|E_{\nu} e^{i t \hat{s}_{m+p}}\right| & \leqq E_{\nu}\left|E\left(e^{i t \hat{s}_{m+p}} \mid \hat{M}_{0}, \hat{M}_{m+p}\right)\right| \leqq E_{\nu}\left|E\left(e^{i t\left(s_{m+p}-s_{m}\right)} \mid M_{m}, M_{m+p}\right)\right| \\
& =E_{\nu}\left|\psi_{p}\left(M_{m}, M_{m+p}, t\right)\right| \leqq \beta \varphi_{\max }(t)+(1-\beta)
\end{aligned}
$$

where $T_{m+p} \geqq m+p$ and the conditional independence of $S_{m}, S_{m+p}-S_{m}$ and $S_{T_{m+p}}-S_{m+p}$ given $M_{0}, M_{m}, M_{m+p}, M_{r_{m+p}}$ has been utilized. This yields for $k \geqq 1$ and $0<|t|<b$

$$
\begin{aligned}
\left|E_{\lambda} e^{i t \hat{s}_{k}}\right| & \leqq E_{\lambda}\left(\prod_{j=2}^{l(k)+1} \mid E\left(e^{i t\left(\hat{S}_{j(m+p)}-\hat{s}_{(j-1)(m+p)} \mid \hat{M}_{j(m+p)}, \hat{M}_{(j-1)(m+p)}\right)} \mid\right)\right. \\
& =E_{\nu}\left(\prod_{j=1}^{l(k)} \mid E\left(e^{i t\left(\hat{S}_{j(m+p)}-\hat{S}_{(j-1)(m+p)}\left|\hat{M}_{j(m+p)}, \hat{M}_{(j-1)(m+p))}\right|\right) \text { by (4.6) }}\right.\right. \\
& \leqq \prod_{j=1}^{l(k)}\left(\beta \varphi_{\max }(t)+(1-\beta)\right)^{l(k)},
\end{aligned}
$$

where $l(k) \stackrel{\text { def }}{=} \sup \{j \geqq 0: j(m+p) \leqq k\}-1$, and then after a simple calculation

$$
\hat{\phi}(t) \stackrel{\text { def }}{=} \sum_{n \geq 0}\left|E_{\nu} e^{i t \hat{s}_{n}}\right| \leqq \frac{C}{1-\varphi_{\max }(t)}, \quad 0<|t|<b
$$

for a suitable constant $C>0$. Together with (4.11) we obtain integrability of $t^{2} \hat{\psi}(t)$ on ($-b, b$). Moreover, since even

$$
\begin{equation*}
\sum_{n \geq k} E_{\lambda} e^{i t \hat{s}_{n}} \leqq \frac{C \varphi_{\max }(t)^{k}}{1-\varphi_{\max }(t)} \quad \text { for all } k \geqq 0 \text { on }(-b, b), \tag{4.12}
\end{equation*}
$$

we also infer continuity of $\hat{\psi}$ on $(-b, b)-\{0\}$ by uniform convergence of the associated finite partial sums on each compact subset. Finally, we must argue
that $\hat{\psi}$ is also continuous outside $(-b, b)$. But for each $|t|>b$ we can proceed as before by choosing some $p \geqq 1$ according to (4.9) (which may depend on t) such that (4.12) holds true in some neighborhood of t for all $k \geqq 0$, of course with in general different $\varphi_{\max }$ and C. It follows local continuity of $\hat{\phi}(t)$ for each $t \neq 0$ and thus validity of (2.2). Assertion (4.10) is now a consequence of our Theorem 2.1.

Without strong distributional assumptions like stationarity or Markovian transitions, Blackwell-type renewal theorems for random walks with non-i.i.d. increments have been discussed earlier in a number of papers, most notably (besides [11]) in [13] and [14]. A discussion of this literature can be found in our companion paper [3] and we therefore restrict ourselves now to some brief remarks on how the results in that latter article compare with the present ones. Due to the totally different approaches it turns out that a number of applications there cannot be included here and vice versa. In fact, in [3], as already pointed out, the main condition on the increments X_{0}, X_{1}, \cdots is that a subsequence $X_{\xi_{N^{+1}}}$ shares a common component for an arbitrarily thin sequence of entrance times ξ_{N+1}. Loosely speaking, $X_{\xi_{N+1}}$ must contain a sequence of i.i.d. random variables Y_{N+1}. Here we have replaced i.i.d. sequences by more general sufficiently regular ones of independent random variables and the ξ_{n} need not be stopping times. On the other hand, ξ_{N} cannot be arbitrarily thin in that conditions (3.1) and (3.2) are imposed. It appears to be an interesting but probably very difficult problem to combine both said approaches to come up with a result which applies to all applications presented here and in [3].

5. Proof of Theorem 3.2

It is always assumed in the following that X_{N} is of type AC or CC with decomposition sequence ξ_{N} and associated sequence Y_{N}, as given by Definition 3.1. Let φ_{n} be the F.t. of Y_{n} for each $n \geqq 1$ and

$$
\begin{equation*}
\varphi_{\max }(t)=\sup _{n \geq 1}\left|\varphi_{n}(t)\right| . \tag{5.1}
\end{equation*}
$$

We further keep the notation of Sections 1-3.
The following lemma forms the basis for the proof of Theorem 3.2. Recall that ψ_{n} denotes the F.t. of S_{n}.

Lemma 5.1. Let $\rho(n)=\sup \left\{k \geqq 0: \xi_{k} \leqq n\right\}$ for $n \in \boldsymbol{N}$.
(a) If X_{N} is of type $A C$ (with $Z_{1}, Z_{2}, \cdots \sim B(1, \alpha)$), then

$$
\begin{equation*}
\left|\psi_{n}(t)\right| \leqq E\left(\left(\alpha \varphi_{\max }(t)+(1-\alpha)\right)^{\rho(n)}\right) \quad \text { for all } \quad n \geqq 0, t \in \boldsymbol{R} . \tag{5.2}
\end{equation*}
$$

(b) If X_{N} is of type CC, then

$$
\begin{equation*}
\left|\psi_{n}(t)\right| \leqq E\left(\varphi_{\max }(t)^{\rho(n)}\right) \quad \text { for all } \quad n \geqq 0, t \in \boldsymbol{R} \tag{5.3}
\end{equation*}
$$

Proof. The proof of (5.3) is very easy and thus given first. Let $\hat{S}_{n}=$ $\hat{X}_{1}+\cdots+\hat{X}_{n}$ and $W_{n}=Y_{1}+\cdots+Y_{n}$ for $n \geqq 1$. If X_{N} is of type CC then (A.7) implies $S_{n}=\hat{S}_{n}+W_{\rho(n)}$. It follows from the independence of W_{N} and ($\hat{S}_{N}, \boldsymbol{\rho}(\boldsymbol{N})$), see Definition 3.1, that for all $n \in \boldsymbol{N}$ and $t \in \boldsymbol{R}$

$$
\psi_{n}(t)=E\left(e^{i t W_{\rho}(n)}\right) \cdot E\left(e^{i t \hat{S}_{n}}\right)=E\left(\prod_{j=1}^{\rho(n)} \varphi_{j}(t)\right) \cdot E\left(e^{i t \hat{S}_{n}}\right)
$$

which in turn obviously yieds (5.3).
Now suppose X_{N} to be of type AC. Let $I=\{1, \cdots, \rho(n)\}, W_{\phi}=0, Z_{\phi}=1$, and for $\phi \neq J \subset N$

$$
W_{J}=\sum_{j \in J} Y_{j} \quad \text { and } \quad Z_{J}=\left(Z_{j}\right)_{j \in J} .
$$

We write $Z_{J}=z$ to mean $Z_{j}=z$ for all $j \in J$. Finally, let $\tilde{S}_{n}=S_{n}-\sum_{j=1}^{\rho(n)} Z_{j} Y_{j}$ and observe that $S_{n}=\widetilde{S}_{n}+W_{J}$ on $\left\{Z_{J}=1, Z_{I-J}=0\right\}$. By mutual independence of Y_{N}, Z_{N} and ($\hat{X}_{N}, \rho(N)$), it follows for all $n \in N$ and $t \in \boldsymbol{R}$

$$
\begin{aligned}
\phi_{n}(t) & =\sum_{k \geq 0} \sum_{j=0}^{k} \sum_{J \subset I,|J|=j} \int_{\left(\rho(n)=k, Z_{J}=1, Z_{I-J}=0\right)} e^{i t\left(W_{J}+\tilde{S}_{n}\right)} d P \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \sum_{J \subset I,|J|=j} E\left(e^{\left.i t W_{J}\right)} \cdot \int_{\left(\rho(n)=k, Z_{J}=1, Z_{I-J}=0\right)} e^{i t \tilde{S}_{n}} d P\right. \\
& =\sum_{k \geq 0} \sum_{j=0}^{k} \sum_{J \subset I,|J|=j}\left(\prod_{m \in J} \varphi_{m}(t)\right) \cdot \int_{\left(\rho(n)=k, Z_{J}=1, Z_{I-J}=0\right)} e^{i t \hat{S}_{n}} d P,
\end{aligned}
$$

and then further

$$
\begin{aligned}
\left|\psi_{n}(t)\right| & \leqq \sum_{k \geq 0} \sum_{j=0}^{k} \sum_{J \subset I,|J|=j} \varphi_{\max }(t)^{j} P\left(\rho(n)=k, Z_{J}=1, Z_{I-J}=0\right) \\
& =\sum_{k \geq 0} \sum_{j=0}^{k}\binom{k}{j}_{J \subset I,|J|=j} \sum_{\max }(t)^{j} \alpha^{j}(1-\alpha)^{k-j} P(\rho(n)=k) \\
& =\sum_{k \geq 0}\left(\alpha \varphi_{\max }(t)+(1-\alpha)\right)^{k} P(\rho(n)=k) \\
& =E\left(\left(\alpha \varphi_{\max }(t)+(1-\alpha)\right)^{\rho(n)}\right)
\end{aligned}
$$

which is the desired result.
In order for the previous lemma to be useful for our purposes we clearly have to provide conditions which ensure $\varphi_{\max }(t)<1$ for all $t \in \boldsymbol{R}_{d}$. The next lemma does so and is a simple consequence of Levy's continuity theorem and the fact that distributional limits of completely d-arithmetic sequences are by definition again completely d-arithmetic. It is therefore stated without proof.

Lemma 5.2. If Y_{N+1} is completely d-arithmetic and tight, then

$$
\begin{equation*}
\sup _{t \in K} \varphi_{\max }(t)<1 \quad \text { for each compact } K \subset \boldsymbol{R}_{d} \tag{5.4}
\end{equation*}
$$

Proof of Theorem 3.2(a). Let X_{N} be of type CC with ξ_{N} satisfying (3.1)
and Y_{N+1} being completely d-arithmetic and tight. Combining Lemmata 5.1 and 5.2, we infer for all $t \in \boldsymbol{R}_{d}$

$$
\begin{align*}
|\Psi(t)| & \leqq \Psi_{a b s}(t)=\sum_{n \geq 0}\left|\psi_{n}(t)\right| \leqq \sum_{n \geq 0} E\left(\varphi_{\max }(t)^{\rho(n)}\right) \\
& =\sum_{k \geq 0} \varphi_{\max }(t)^{k} \sum_{n \geq 0} P(\rho(n)=k)=\sum_{k \geq 0} \varphi_{\max }(t)^{k} \sum_{n \geq m} P\left(\xi_{k} \leqq n<\xi_{k+1}\right) \tag{5.5}\\
& =\sum_{k \geq 0} E\left(\xi_{k+1}-\xi_{k}\right) \varphi_{\max }(t)^{k}<\infty,
\end{align*}
$$

i.e. $\Psi(t)$ and $\Psi_{a b s}(t)$ are both finite on \boldsymbol{R}_{d}. A similar estimation shows that on compact subsets both functions are uniform limits of their corresponding finite partial sums which are clearly continuous. Thus Ψ and $\Psi_{a b s}$ must be so, too.

The same arguments apply for AC-type sequences X_{N}. Just replace $\varphi_{\max }(t)$ by $\alpha \varphi_{\max }(t)+(1-\alpha)$ there and note that (5.4) also holds for the latter function since $\alpha>0$.

If Y_{N+1} is weakly convergent with completely d-arithmetic limit, let φ be its F.t. By compact convergence of φ_{n} to φ we infer for each compact $K \subset$ \boldsymbol{R}_{d} the existence of $N \in N$ and some $C_{K}<1$ such that

$$
\varphi_{N, \max }(t) \stackrel{\text { def }}{=} \sup _{n \geq N}\left|\varphi_{n}(t)\right| \leqq C_{K} \quad \text { for all } t \in K
$$

Thus, by using Lemma 5.1 with $\xi_{N}, \varphi_{\max }, \rho(n)$ replaced by $\xi_{N+N}, \varphi_{N, \max }, \rho_{N}(n)$ def $\stackrel{\text { def }}{=} \sup \left\{k \geqq 0: \xi_{N+k} \leqq n\right\}$, the desired conclusions follow almost the same way as above for the case when Y_{N+1} is completely d-arithmetic and tight. We omit further details.

For the proof of Theorem 3.2 (b), we must first examine $\varphi_{\max }$ in a small neighborhood of 0 . The result is stated in Lemma 5.4 below which in turn is furnished by an auxiliary one stated next.

Lemma 5.3. Let X be a random variable with F.t. φ and

$$
\begin{equation*}
\Gamma(X, x, t) \stackrel{\text { def }}{=} \sum_{n \geq 0} P\left(x+\frac{2 n \pi}{t}<X \leqq x+\frac{(2 n+1) \pi}{t}\right) \text { for } t \neq 0 \text { and } x>0 \tag{5.6}
\end{equation*}
$$

Then for all $t \neq 0$

$$
\begin{align*}
& \frac{1-\operatorname{Re}(\varphi(t))}{t}=\int_{0}^{\pi / t} \sin (t x) \Gamma(|X|, x, t) d x \text { and } \tag{5.7}\\
& \begin{aligned}
\frac{\operatorname{Im}(\varphi(t))}{t}= & \int_{0}^{\pi / 2 t} \cos (t x)\left(P\left(X^{+}>x\right)-P\left(X^{-}>x\right)\right) d x \\
& -\int_{-\pi / 2 t}^{\pi / 2 t} \cos (t x)\left(\Gamma\left(X^{+}, x+\frac{\pi}{t}, t\right)-\Gamma\left(X^{-}, x+\frac{\pi}{t}, t\right)\right) d x
\end{aligned} \tag{5.8}
\end{align*}
$$

Proof. Since
and

$$
1-\operatorname{Re}(\varphi(t))=1-E(\cos (t X))=1-E(\cos (t|X|))
$$

$$
\operatorname{Im}(\varphi(t))=E(\sin (t X))=E\left(\sin \left(t X^{+}\right)\right)-E\left(\sin \left(t X^{-}\right)\right)
$$

it suffices to prove the assertions for nonnegative X which is therefore assumed in the following. Suppose further first that X is bounded by some $\boldsymbol{a} \in \boldsymbol{R}$. Then

$$
\begin{aligned}
1-\operatorname{Re}(\varphi(t)) & =1-E(\cos (t X))=E\left(\int_{0}^{x} t \sin (t x) d x\right) \\
& =\int_{0}^{\infty} t \sin (t x) P(X>x) d x=\int_{0}^{a} t \sin (t x) P(X>x) d x
\end{aligned}
$$

Since, for fixed $t \neq 0, \sin (t x)$ has period $2 \pi / t$ and $\sin (t x+\pi)=-\sin (t x)$, we obtain on splitting up the range of integration

$$
\begin{aligned}
\int_{0}^{\infty} t & \sin (t x) P(X>x) d x \\
& =\int_{0}^{\pi / t} t \sin (t x) \sum_{n \geq 0} P\left(X>x+\frac{2 n \pi}{t}\right) d x-\int_{\pi / t}^{2 \pi / t} t \sin (t x) \sum_{n \geq 0} P\left(X>x+\frac{2 n \pi}{t}\right) d x \\
& =\int_{0}^{\pi / t} t \sin (t x) \sum_{n \geq 0}\left(P\left(X>x+\frac{2 n \pi}{t}\right)-P\left(X>\frac{(2 n+1) \pi}{t}\right)\right) d x \\
& =\int_{0}^{\pi / t} t \sin (t x) \Gamma(X, x, t) d x, \quad \text { i.e. (5.7). }
\end{aligned}
$$

If X is unbounded, then the same formula yields by using it for $X \wedge n$ and by then letting n tend to infinity. Since $\Gamma(\cdot, x, t)$ is always bounded by 1 , the desired result follows by dominated convergence with majorant $t \sin (t x)$ on the right-hand side.

The proof of (5.8) goes very similar. Here we have for $t \neq 0$

$$
\operatorname{Im}(\varphi(t))=E(\sin (t X))=E\left(\int_{0}^{x} t \cos (t x) d x\right)=\int_{0}^{\infty} t \cos (t x) P(X>x) d x
$$

The remaining calculations are then done analogously, first for bounded X, and by splitting up the range of integration of the last integral above in an obvious manner. We do not supply the details again.

Lemma 5.4. If Y_{N+1} is non-reducible and tight, then there are $a, T>0$ such that

$$
\begin{equation*}
1-\varphi_{\max }(t) \geqq a t^{2} \quad \text { for all } \quad t \in(-T, T) \text {. } \tag{5.9}
\end{equation*}
$$

Proof. Let us consider the sequence Y_{N+1}^{s} whose associated F.t. are given by $\left|\varphi_{n}\right|^{2}, n \geqq 1$. As already mentioned, Y_{N+1}^{s} is also non-reducible and tight whence

$$
F(t) \stackrel{\text { def }}{=} \sup _{n \geq 1} P\left(Y_{n}^{s} \leqq t\right) \quad \text { and } \quad G(t) \stackrel{\text { def }}{=} \inf _{n \geq 1} P\left(Y_{n}^{s} \leqq t\right)
$$

are proper distribution functions (by tightness) and satisfy $F(0)<1$ (by nonreducibility and symmetry). Now use formula (5.7) to obtain

$$
\begin{aligned}
\frac{1-\left|\varphi_{n}(t)\right|^{2}}{t^{2}} & =\int_{0}^{\tau / t} \frac{\sin (t x)}{t} \Gamma\left(\left|Y_{n}^{s}\right|, x, t\right) d x \\
& \geqq \int_{0}^{\pi / t} \frac{\sin (t x)}{t} P\left(x<Y_{n}^{s} \leqq x+\frac{\pi}{t}\right) d x \\
& \geqq \int_{0}^{\pi / t} \frac{\sin (t x)}{t}\left(G\left(x+\frac{\pi}{t}\right)-F(x)\right)^{+} d x \quad \text { for all } n \geqq 1
\end{aligned}
$$

However, the latter integral does no longer depend on n and converges to

$$
\mu_{+}(F) \stackrel{\text { def }}{=} \int_{0}^{\infty} x(1-F(x)) d x, \quad \text { as } \quad t \downarrow 0
$$

which is positive, possibly infinite, because $F(0)<1$. Consequently, by choosing any $a \in\left(0, \mu^{+}(F)\right)$, we finally conclude

$$
\begin{aligned}
1-\varphi_{\max }(t) & =\inf _{n \geq 1}\left(1-\left|\varphi_{n}(t)\right|\right)=\inf _{n \geq 1}\left(\frac{1-\left|\varphi_{n}(t)\right|^{2}}{1+\left|\varphi_{n}(t)\right|}\right) \\
& \geqq \frac{1}{2} \inf _{n \geq 1}\left(1-\left|\varphi_{n}(t)\right|^{2}\right) \geqq a t^{2}
\end{aligned}
$$

for all sufficiently small t which proves the desired result.
Proof of Theorem 3.2(b). Let X_{N} be of type CC and choose $a, T>0$ so small that (5.9) of the previous lemma holds for $\varphi_{\max }$ given here. The following estimation is similar to one given by Smith [13], p. 483. Recall from (5.5) that $\Psi_{a b_{s}}(t) \leqq \Sigma_{n \geq 0} E\left(\xi_{n+1}-E \xi_{n}\right) \varphi_{\max }(t)^{n}$. We obtain with suitable constants C_{1}, $C_{2}>0$

$$
\begin{aligned}
\int_{-T}^{T} t^{2} \Psi_{a b s}(t) d t & =\int_{0}^{T} 2 t^{2} \Psi_{a b s}(t) d t \leqq \sum_{n \geq 0} E\left(\xi_{n+1}-\xi_{n}\right) \int_{0}^{T} 2 t^{2} \varphi_{\max }(t)^{n} d t \\
& \leqq \sum_{n \geq 0} E\left(\xi_{n+1}-\xi_{n}\right) \int_{0}^{T} 2 t^{2}\left(1-a t^{2}\right)^{n} d t \\
& \leqq C_{1} \sum_{n \geq 0} E\left(\xi_{n+1}-\xi_{n}\right) \int_{0}^{1} u^{1 / 2}(1-u)^{n} d u \\
& \leqq C_{2} \sum_{n \geq 0} n^{-3 / 2} E\left(\xi_{n+1}-\xi_{n}\right)
\end{aligned}
$$

the latter expression being finite by assumption (3.2). Note that we have used for it that

$$
\int_{0}^{1} u^{1 / 2}(1-u)^{n} d u=\frac{\Gamma(3 / 2) \Gamma(n+1)}{\Gamma(n+(5 / 2))}=o\left(n^{-3 / 2}\right), \quad \text { as } n \rightarrow \infty,
$$

where the asymptotic behavior may be seen by an appeal to Stirling's formula.
If X_{N} is of type AC the same arguments apply with $\varphi_{\max }$ replaced $\alpha \varphi_{\max }$
$+(1-\alpha)$ which still satisfies (5.9) of Lemma 5.4 (with αa instead of a). We do not give the details again.

References

[1] G. Alsmeyer, On the moments of certain first passage times for linear growth processes, Stoch. Proc. Appl., 25 (1987), 109-136.
[2] -, Random walks with stochastically bounded increments: Foundations and characterization results, Results in Math., 19 (1991), 22-45.
[3] -, Random walks with stochastically bounded increments: Renewal theory, to appear in Math. Nachr. (1994).
[4] -, On the Markov renewal theorem, Stoch. Proc. Appl., 50 (1994), 37-56.
[5] K.B. Athreya and P. Ney, A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc., 245 (1978), 493-501.
[6] L. Breiman, Probability. Addison-Wesley, Reading, Massachussets 1968.
[7] H. Carlsson, Remainder term estimates of the renewal function, Ann. Probab., 11 (1983), 143-157.
[8] D. Cox and W.L. Smith, A direct proof of a fundamental theorem of renewal theory, Skand. Aktuarietidskr. 36 (1953), 139-150.
[9] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed. Wiley, New York 1971.
[10] S. Lalley and G. Lorden, A control problem arising in the sequential design of experiments, Ann. Probab., 14 (1986), 136-172.
[11] M. Maejima, On local limit theorems and Blackwell's renewal theorem, Ann. Inst. Statist. Math., 27 (1975), 507-520.
[12] V.M. Shurenkov, On the theory of Markov renewal, Th. Probab. Appl., 29 (1984), 247-265.
[13] W. Smith, On some general renewal theorems for nonidentically distributed random variables, Proc. 4th Berkeley Symp. on Math. Stat. and Prob., Vol. 2, 467-514, (1961).
[14] J. A. Williamson, Some renewal theorems for non-negative random variables, Trans. Amer. Math. Soc., 114 (1965), 417-445.
[15] M. Woodroofe, Nonlinear Renewal Theory in Sequential Analysis, Society for Industrial and Applied Mathematics, Philadelphia 1982.

Mathematisches Seminar Universität Kiel Ludewig-Meyn-Straße 4 D-24098 Kiel 1

[^0]: 1991 Mathematics Subject Classification: Primary 60K05; Secondary 60G40, 60G42, 60G50, 60J15.

 Key words and phrases: Random walk, stochastic boundedness, stochastic stability, maximal minorant, minimal majorant, Blackwell's renewal theorem, sequences of type AC and CC, Markov renewal theory, Fourier analysis.

