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Summary. Jaeger proposed the strong embedding conjecture: every 2-conncted
simple graph has a strong embeddin.$g$ into some closed surface. In this Paper,

we show that the strong $embeddin_{*}g$ conjecture for chain graphs is equivalent

to the strong embedding conjecture. We solve the stron,$g$ embedding conjecture

for 3-representative chain graphs.

1. Introduction

By a graPh, we mean a finite, undirected graph. A graph $G$ is said to be

simple if $G$ has no loops and no multiple edges. A cycle is a regular connected
graph of degree two. We denote the complete graph with $n$ vertices by $K_{n}$ .

A family $C$ of cycles of a graph $G$ is called a cycle double cover of $G$ if

each edge of $G$ is contained in exactly two cycles in $C$ . In [5], Seymour pro-
posed the cycle double cover conjecture: every 2-edge-connected simple graph

has the cycle double cover conjecture: every 2-edge-connected simple graph has

a cycle double cover. Many mathematicians have been studying the cycle

double cover conjecture, but it is still open.
By a surface, we mean a compact connected 2-dimensional manifold (Pos-

sibly with boundary). A surface $S$ is said to be closed if the boundary of $S$ is
empty. Let $f:G\rightarrow S$ be a 2-cell embedding of a graph $G$ into a closed surface
$S$ . For any face $r$ of $f$ , the boundary circuit of $r$ is denoted by $W(r)$ . Then
$W(r)$ is not always a cycle of $G$ . A 2-cell embedding $f$ is said to be strong if
$W(r)$ is a cycle of $G$ for any face $r$ of $f$ . In [3], Jaeger presented the strong

embedding conjecture as a strengthening of the cycle double cover conjecture

(it is unsolved whether the strong embedding conjecture and the cycle double
cover conjecture are equivalent or not).

Conjecture 1.1. (The Strong. Embedding Conjecture) Every 2-connected simple

graph has a strong embedding into some closed surface.
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For any planar 2-connected simple graph $G$ , we can easily prove that every
planar embedding of $G$ is strong. Some results are known concerning the
strong embedding conjecture (see [4, Lemma 2.1] and [8]). In this paper, we
present the definition of chain graphs. We consider the strong embedding con-
jecture for chain graphs.

Let $G$ be a 2-connected simple graph and $v$ a vertex of $G$ . A connected
simple graph $H$ is called a vertex-splitting of $G$ at $v$ if there exist two non-
adjacent vertices $v^{\prime}$ and $v^{\prime\prime}$ of $H$ such that $H-\{v^{\prime}, v^{\prime\prime}\}=G-v$ and $G$ is obtained
from $H$ by identifying $v^{\prime}$ with $t)^{\prime\prime}$ . Two vertices $v^{\prime}$ and $v^{\prime\prime}$ of $H$ are called the
splittings of $u$ . We denote a vertex-splitting of $G$ at $v$ by Sp $(G;v)$ .

Let $G$ be a connected graph. A block of $G$ is a maximal subgraph $B$ of $G$

such that there exists no cut-vetex of $B$ . Therefore every block of $G$ is either
a 2-connected graph or the complete graph $K_{2}$ . Let 9? be a sequence of some
blocks $B_{1},$ $\cdots$ , $B_{m}$ of $G$ . For any two distinct vertices $v^{\prime}$ and $v^{\prime\prime}$ of $G,$ $B$ is
called a block-Path of $G$ from $v^{\prime}$ to $v^{\prime\prime}$ if $B$ satisfies the following conditions:
(B1) $ B_{i}\cap B_{i^{\prime}}\neq\emptyset$ for $|i-i^{\prime}|\leqq 1$ ,

(B2) $ B_{i}\cap B_{\ell^{\prime}}=\emptyset$ for $|i-i^{\prime}|>1$ and

(B3) $v^{\prime}\in V(B_{1})-V(B_{2})$ and $v^{\prime\prime}\in V(B_{m})-V(B_{m-1})$ .
The block-path of $G$ may have just a single block. We denote $U_{\ell=1}^{m}B_{i}$ by $|\ovalbox{\tt\small REJECT}|$ .
We note that there exists the unique block-path of a connected graph $G$ from
$v^{\prime}$ to $\iota)^{\prime\prime}$ for any two distinct vertices $v^{\prime}$ and $v^{\prime\prime}$ of $G$ . Thus, for any 2-connected
simple graph $G$ and any vertex $v$ of $G$ , every vertex-splitting Sp $(G;v)$ has the
unique block-path $B$ from $v^{\prime}$ to $v^{\prime\prime}$ such that Sp $(G;v)=|B|$ , where $v^{\prime}$ and $v^{\prime\prime}$

are the splittings of $v$ .
A vertex-splitting Sp $(G;v)$ is said to be strong if, for any block $B$ of

Sp $(G;v)$ , either $B=K_{2}$ or $B$ has a strong embedding into some closed surface.
A 2-connected simple graph $G$ is called a chain graph if there exists a strong
vertex-splitting of $G$ at some vertex of $G$ . We propose the strong embedding
conjecture for chain graphs.

Conjecture 1.2. Every chain graph has a strong embedding into some closed
surface.

In Section 3, we shall show that Conjecture 1.1 and Conjecture 1.2 are
equivalent. In [8], the author proved the following proposition.

Proposition1.3. Every chain graph of genus one has either a troidal strong
embedding or a strong embedding into some closed non-orientable surface.

Let $f$ be a 2-cell embedding of a graph $G$ into a closed surace $S$ . In [7],
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Vitray defined the representativity of $f$ . A 2-cell embedding $f$ is said to be
$k$-representative if every essential closed curve in $S$ which does not intersect
edges of $f(G)$ must contain at least $k$ vertices of $f(G)$ . A simple graph $G$ is
said to be $k$-representable into a closed surface $S$ if $G$ has a k-representative
embedding into $S$ .

Let $G$ be a chain graph and $v$ a vertex of $G$ . A strong vertex-splitting
$Sp(G;v)$ of $G$ at $v$ is said to be $k$-representative if each block of Sp $(G;v)$ is
either planar or k-representable into some closed surface. A chain graph $G$ is
said to be $k$-representative if there exists a k-representative strong vertex-
splitting of $G$ at some vertex of $G$ . By the definition, every chain graph is 2-
representative. In Section 5, we shall show the strong embedding theorem for
3-representative chain graphs, as follows.

Theorem 1.4. Every 3-representative chain graph has a strong embedding into
some closed surface.

2. Definitions and notation

In this section, we define the terminology used in this paper. We refer to
[1] and [2] for the basic terminology and notation in graph theory and topolog-
ical graph theory respectively. The vertex set and the edge set of a graph $G$

are denoted by $V(G)$ and $E(G)$ respectively. We shall define the terminology
for 2-cell embeddings. Let $f$ be a 2-cell embedding of a graph $G$ into a closed
surface $S$ . We denote the set of all faces of $f$ by $R(f)$ . For any $r\in R(f)$ , the
closure of $r$ in $S$ is denoted by $\overline{r}$ . A closed walk $W$ of $G$ is called the boundary
circuit of a face $r$ of $f$ if a closed walk $f(W)$ is obtained from $\overline{r}\cap f(G)$ by
traversing a simple closed curve just inside $r$ (see [2], p. 101). We denote the
boundary circuit of a face $r$ of $f$ by $W(r)$ .

We shall define the basic terminology in PL-topology. Let $K$ be a simplicial
n-complex for $n=1,2$ . The polyhedron of $K$ is denoted by $|K|$ . The boundary
of $K$ is the simplicial $(n-1)$-subcomplex of $K$ consisting of all $(n-1)$-simplexes
each of which is contained in exactly one n-simplex of $K$, and it is denoted by
$\partial K$. The polyhedron $|\partial K|$ is called the boundary of $|K|$ . The boundary of
$|K|$ is denoted by $\partial|K|$ . We suppose that $n=2$ . Then $|K|$ is called a pseudo-
surface if each l-simplex of $K$ is contained in one or two 2-simplexes of $K$.
By the definition, a surface is a pseudo-surface.

We suppose that $\partial K=\emptyset$ . Let $\sigma^{2}$ be a 2-simplex of $K$ and $\sigma^{1}$ a l-simplex of
$\sigma^{2}$ which is contained in $\partial K$. The simplicial complex $K-\{\sigma^{1}, \sigma^{2}\}$ is said to be
obtained from $K$ by an elementary collapsing. A simplicial 2-complex $K$ is said
to collapse to a subcomplex $K^{\prime}$ of $K$ if $K^{\prime}$ is obtained from $K$ by a finite se-
quence of elementary collapsings.
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Let $S$ be a surface and $X$ a topological subspace of S. The interior of $X$

is denoted by int $X$ . A compact 2-manifold $N$ with $\partial N\neq\emptyset$ is called a regular
neighborhood of $X$ in $S$ if $S$ has a triangulation which has subcomplexes $L$ and
$L^{\prime}$ satisfying that $N=|L|,$ $X=|L^{\prime}|$ and $L$ collapses to $L^{\prime}$ . A regular neigh-
borhood of $X$ in $S$ is denoted by $N(X;S)$ .

We shall define curves in a pseudo-surface. Let $\Sigma$ be a pseudo-surface.
A continuous map $\omega$ from the unit interval $[0,1]$ to $\Sigma$ is called a path. The
image $\omega([0,1])$ is called a curve in $\Sigma$ . For any curve $\gamma$ in $\Sigma$ , we denote the
path whose image is $\gamma$ by $\omega_{\gamma}$ . A path $\omega$ is said to be closed if $\omega(0)=\omega(1)$ , and
a curve $\gamma$ in $\Sigma$ is said to be closed if $\omega_{\gamma}$ is closed. We denote the set of all
closed curves in $\Sigma$ by $\Gamma(\Sigma)$ . A path $\omega$ is said to be simple if $\omega$ is one-to-one,
and a curve $\gamma$ in $\Sigma$ is said to be simple if $\omega_{\gamma}$ is simple.

We shall define the homotopy in a pseudo-surface (see [6]). Let $\gamma_{1}$ and $\gamma_{2}$

be two curves in $\Sigma$ . A curve $\gamma_{1}$ is said to be homotopic to $\gamma_{2}$ in $\Sigma$ , denoted
by $’\gamma_{1}\simeq\gamma_{2}$ in $\Sigma$ , if $\omega_{\gamma_{1}}$ is freely homotopic to $\omega_{\gamma_{2}}$ in $\Sigma$ . For any $\gamma\in\Gamma(\Sigma)$ , the
homotopy class of $\gamma$ in $\Sigma$ is denoted by $[\gamma]$ .

A point $x$ in $\Sigma$ is a closed curve in $\Sigma$ such that $\omega_{x}$ is a constant map. A
closed curve $\gamma$ in $\Sigma$ is said to be inessntial in $\Sigma$ if there exists a point $x$ in $\Sigma$

such that $\gamma\simeq x$ in $\Sigma$ . Otherwise, a curve $\gamma$ is said to be essential in $\Sigma$ . It is
well-known that a simple closed curve $\gamma$ is inessential in $\Sigma$ if and only if $\gamma$

bounds a disk in $\Sigma$ . If $\gamma$ is inessential in $\Sigma$ , then the homotopy class of $\gamma$ in
$\Sigma$ is denoted by $[\gamma]=1$ . Let $S$ be a closed surface and $\gamma$ a simple closed curve
in $S$ . If $ S-\gamma$ is not connected, then $\gamma$ is said to be seParating in $S$ .

We suppose that $\Sigma$ is a pseudo-surface in a closed surface $S$ with $\partial\Sigma\neq\emptyset$ .
A closed curve $C$ in $\partial\Sigma$ is called a boundary component of $\Sigma$ in $S$ if there exists
a 1-sphere component $C^{\prime}$ of $\partial N(\Sigma;S)$ such that $C\simeq C^{\prime}$ in $N(\Sigma;S)-$ int $\Sigma$ .

3. Conjectures

We have the strong embedding theorem for planar graphs: every planar
2-connected simple graph has a planar strong embedding. In this secion, our
goal is to prove the following proposition.

Proposition 3.1. Conjecture 1.1 and Conjectrue 1.2 are equivalent.

Proof. It is obvious that if Conjecture 1.1 holds, then Conjecture 1.2 holds.
We assume that Conjecture 1.2 holds. By induction on the genus of a graph,
we shall show that Conjecture 1.1 holds. Let $G$ be a 2-connected simple graph
and $g(G)$ the genus of $G$ . If $g(G)=0$ , then every planar embedding of $G$ is strong.
Thus Conjecture 1.1 holds. We suppose that if $g(G)<g(g\geqq 1)$ , then Conjecture
1.1 holds. If $g(G)=g$ , then there exists a 2-cell embedding $f$ of $G$ into a closed
orientable surface $S$ with genus $g$ . We may assume that $f$ is not strong.
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Then there exists a face $r$ of $f$ such that $W(r)$ is not a cycle of $G$ . There
exists a vertex $v$ of $W(r)$ such that $v$ occurs twice in $W(r)$ . We can choose a
simple closed curve $\gamma$ in $\overline{r}$ such that $\gamma\cap f(G)=f(v)$ and $[\gamma]\neq 1$ in $\overline{r}$ . Since $G$ is
2-connected, $[\gamma]\neq 1$ in $S$ and $\gamma$ is not separating in $S$ . We obtain the surface
$\overline{S}$ by cutting $S$ along $\gamma$ . Let $\hat{S}$ be the closed surface obtained from $\overline{S}$ by caPping
off each l-sphere component of $\partial\overline{S}$ with a 2-cell and let $f$ be a 2-cell embedding
of a connected graph $\hat{G}$ into $\hat{S}$ naturally induced by this construction of $\hat{S}$ .
Then $\hat{G}$ is a vertex-splitting of $G$ at $v$ . Since $\hat{S}$ has genus $g-1$ , $g(B)\leqq g-1$

for any block $B$ of $\hat{G}$ . If a block $B$ is 2-conneted, then $B$ has a strong em-
bedding into a closed surface by induction hypothesis. Therefore $\hat{G}$ is a strong
vertex-splitting. Thus $G$ is a chain graph. By the assumption that Conjecture
1.2 holds, $G$ has a strong embedding into some closed surface. $\square $

By Proposition 1.3 and Proposition 3.1, we have the following corollary.

Corollary 3.2. Every 2-connected simple graph of genus one has a strong
embedding into some closed surface.

By Proposition 3.1, it is sufficient to consider only chain graphs for the
strong embedding conjecture.

4. Ladder face-paths

Let $f$ be a strong embedding of a graph $G$ into a surface $S$ . Let $P$ be a
sequence of faces $r_{1},$ $\cdots\gamma_{n}$ of $f$ . For any two distinct vertices $v^{\prime}$ and $v^{\prime\prime}$ of $G$ ,
$P$ is called a face-path of $f$ from $v^{\prime}$ to $v^{\prime\prime}$ if $P$ satisfies the following conditions:

(F1) $\partial\overline{r}_{i}\cap\partial\overline{r}_{i^{\prime}}\neq\emptyset$ for $|i-i^{\prime}|\leqq 1$ ,

(F2) $\partial\overline{r}_{\ell}\cap\partial\overline{r}_{i^{\prime}}=\emptyset$ for $|i-i^{\prime}|>1$ and
(F3) $n^{\prime}\in V(W(r_{1}))-V(W(r_{2}))$ and $v^{\prime\prime}\in V(W(r_{n}))-V(W(r_{n-1}))$ .
We denote $U_{\ell=1}^{n}\overline{r}_{i}$ by $|P|$ . We note that $|P|$ is a connected pseudo-surface in
$S$ . We can easily prove the following proposition. We omit the proof (see [8]).

Proposition4.1. Let $f$ be a strong embedding of a 2-connected graph $G$ into
a surface S. For any two distinct vertices $v^{\prime}$ and $v^{\prime\prime}$ of $G$ , there exists a face-
path of $f$ from $v^{\prime}$ to $v^{\prime\prime}$ .

A face-path $P$ of $f$ from $v^{\prime}$ to $v^{\prime\prime}$ is said to be ladder if $P$ satisfies the
following conditions:

(F4) a regular neighborhood $N(|P| ; S)$ is planar and
(F5) $f(v^{\prime})$ and $f(v^{\prime})$ are contained in the same boundary component of $|P|$ in $S$
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In this section, our goal is to prove Theorem 4.2. Let $G$ be a chain graph
and Sp $(G;v)$ a strong vertex-splitting of $G$ at a vertex $v$ of $G$ , and let $v^{\prime}$ and
$v^{\prime\prime}$ be the splittings of $v$ . Then Sp $(G;v)$ has the unique block-path $B_{1}\cdots B_{m}$

from $v^{\prime}$ to $v^{\prime\prime}$ . Let $v_{i}$ be the cut-vertex of Sp $(G;v)$ in $V(B_{i})\cap V(B_{i+1})$ for $ 1\leqq$

$i<m$ . We set $v_{0}=v^{\prime}$ and $v_{m}=v^{\prime\prime}$ . Let $f_{\ell}$ be a 2-cell embedding of $B_{\ell}$ into a
closed surface $S_{\ell}$ such that $f_{i}$ is strong if $B_{i}\neq K_{2}$ . Then the following theorem
holds.

Theorem 4.2. Let $G$ be a chain graph as above. We suPpose that if $B_{\ell}\neq K_{8}$ ,
then there exists a ladder face-path of $f_{\ell}$ from $v_{\ell-1}$ to $v_{i}$ for $1\leqq i\leqq m$ .
(1) If $m=1$ and if there exists at most one face $r_{1}$ of $f_{1}$ such that $v^{\prime},$ $ v^{\prime\prime}\in$

$V(W(r_{1}))$ , then $G$ has a strong embedding into some closed surface.
(2) If $m>1$ , then $G$ has a strong embedding into some closed surface.

The following proposition holds for planar embeddings.

Proposition 4.3. Let $G$ be a planar 2-connected simple graph and $f$ a strong
embedding of $G$ into either a disk or a sphere S. 7hen there exists a ladder
face-path of $f$ from $v^{\prime}$ to $v^{\prime}$ for any two distinct vertices $\nu^{\prime}$ and $v^{\phi}$ of $G$ .

Proof. It is sufficient to show the proposition when $S$ is a disk. Since $G$

is 2-connected, there exists a cycle $C$ of $G$ containing $v^{\prime}$ and $v^{\prime\prime}$ and bounding
a disk $D$ in $S$ . By Proposition4.1, there exists a face-path $P$ of $f$ from $v^{\prime}$ to

$\iota)^{\prime\prime}$ such that $|P|\subset D$ . Then $P$ is a face-path of $f$ from $v^{\prime}$ to $v^{\prime\prime}$ which satisfies
Condition (F4). Because $D$ is a disk, there exists a boundary component $C$ of
$|P|$ in $S$ such that $C\simeq\partial D$ in $N(D;S)-$ int $|P|$ . Since $f(n^{\prime}),$ $f(\uparrow)^{\prime\prime})\in\partial D$ , $P$

satisfies Condition (F5). Therefore $P$ is ladder. $\square $

The following lemma is necessary to prove Theorem 4.2.

Lemma 4.4. Let $B$ be a 2-connected simple graPh and let $v^{\prime}$ and $v^{\prime\prime}$ be two
non-adjacent vertices of B. We assume that there exists a strong embedding $f_{0}$

of $B$ into some closed surface $S_{0}$ such that there exists a ladder face-path of $f_{0}$

from $v^{\prime}$ to $v^{\prime\prime}$ . We set the edge $e=v^{\prime}v^{\prime\prime}$ and the graph $G_{0}=B+e$ . Then $G_{0}$ has
a strong embedding into some closed surface.

Proof. Let $P=r_{1}\cdots r_{n}$ be a ladder face-path of $f_{0}$ from $v^{\prime}$ to $v^{\prime}$ with $n\geqq 2$ .
Let $\overline{S}_{0}=(S_{0}-U_{i=1}^{n}r_{i})\cup N(f_{0}(B);S_{0})$ . We choose a vertex $u_{i}\in V(W(r_{\ell}))\cap V(W(r_{i+1}))$

for $1\leqq i<n$ . We set $u_{0}=v^{\prime}$ and $u_{n}=v^{\prime\prime}$ . We deform $N(f_{0}(u_{i});\overline{S}_{0})$ as shown in
Figure 1 for $1\leqq i<n$ .
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$|$ $|$

$N(f_{0}(u_{\int});\overline{S}_{0})$

Figure 1

By the above deformation, we obtain the surface $\overline{S}$ from $\overline{S}_{0}$ . Then $\partial\overline{S}$ is
a l-sphere. We obtain the closed surface $S$ from $\overline{S}$ by capping off $\partial\overline{S}$ with a
2-cell $D$ and a 2-cell embedding $\overline{f}$ of $B$ into $S$ . By embedding $e$ into $N(D;S)$ ,
we get a 2-cell embedding $f$ of $G_{0}$ into $S$ such that $f|_{B}=\overline{f}$ .

We shall show that $f$ is strong. Let $r^{\prime}$ and $r^{\prime}$ be two faces of $f$ satisfying
that $e\in E(W(r^{\prime}))\cap E(W(r^{\prime\prime}))$ . Then $D\subset\overline{r}^{\prime}\cup\overline{r}^{\prime\prime}$ . By the construction of $f$, we
note that $W(r)$ is a cycle of $G_{0}$ for any $r\in R(f)-\{r^{\prime}, r^{\prime\prime}\}$ because $r\in R(f_{0})$ .
We shall check that $W(r^{\prime})$ and $W(r^{\prime\prime})$ are cycles of $G_{0}$ .

Since $P$ is a ladder face-path of $f_{0}$ from $v^{\prime}$ to $v^{\prime\prime},$ $N(|P| ; S_{0})$ is planar. We
regard $N$ $(|P| ; S_{0})$ as an oriented planar surface. Giving the orientation over
$N$ $(|P| ; S_{0})$ , we regard $W(r_{i})$ as a directed cycle for $1\leqq i\leqq n$ . We can take the
directed path $\alpha_{i}$ in $W(r_{l})$ from $u_{\ell-1}$ to $u_{i}$ and the directed path $\beta_{\ell}$ in $W(r_{\ell})$

from $u_{i}$ to $u_{\ell-1}$ for $1\leqq i\leqq n$ (see Figure 2).

$N(|P|jS_{0})$

Figure 2
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Since $E(W(r^{\prime}))\cup E(W(r^{\prime\prime}))=(U_{i=1}^{n}E(W(r_{i})))\cup e$ , we may assume that $\alpha_{1}\subset W(r^{\prime})$

and $\beta_{1}\subset W(r^{\prime\prime})$ . By the construction of $S$ ,

$W(r^{\prime})=(\bigcup_{\ell\approx 1}^{\lceil n/2\rceil}\alpha_{2i-1})\cup(\bigcup_{\ell=1}^{Ln/2\rfloor}\beta_{2i})\cup e$

and
$W(r^{\prime})=(\bigcup_{\ell\Leftarrow 1}^{Ln/2\rfloor}\alpha_{2f})\cup(\bigcup_{\ell=1}^{\lceil n\prime 2\rceil}\beta_{2\ell-1})\cup e$ .

Since $P$ is a face-path of $f_{0}$ from $v^{\prime}$ to $v_{l},,$ $\alpha_{i}\cap\beta_{i^{\prime}}=\emptyset$ for i-i’ $|>1$ . It suffices
to show that $\alpha_{i}\cap\beta_{\ell+1}=\alpha_{\ell+1}\cap\beta_{\ell}=u_{i}$ for $1\leqq i\leqq n$ .

We can choose a simple curve $\gamma_{\ell}$ in $\overline{r}_{i}$ satisfying that $\gamma_{i}\cap\partial\overline{r}_{i}=\partial\gamma_{i}=\{f_{0}(u_{\ell-1})$ ,
$f_{0}(u_{i})\}$ for $1\leqq i\leqq n$ . We extend $U_{\ell=1}^{n}\gamma_{\ell}$ to a simple curve $\gamma$ in $N(|P| ; S_{0})$ satisfy-
ing that $\gamma\cap\partial N$ $(|P| ; S_{0})=\partial\gamma\subset N(f_{0}(u_{0});S_{0})\cup N(f_{0}(u_{n});S_{0})$ . Since $P$ is a ladder
face-path of $f_{0}$ from $v^{\prime}$ to $v^{\prime\prime}$ , two points of $\partial\gamma$ are contained in the same con-
nected component of $\partial N(|P| ; S_{0})$ by Condition (F5). There exist two planar
surfaces $N_{a}$ and $N_{\beta}$ in $N$ $(|P| ; S_{0})$ such that $N_{\alpha}\cup N_{\beta}=N(|P|;S_{0})$ and $ N_{a}\cap N_{\beta}=\gamma$ .
We assume that $f_{0}(\alpha_{1})\subset N_{a}$ and $f_{0}(\beta_{1})\subset N_{\beta}$ . By the consideration of the orienta-
tion of $N(|P| ; S_{0}),$ $f_{0}(\alpha_{\ell})\subset N_{\alpha}$ and $f_{0}(\beta_{i})\subset N_{\beta}$ for $1\leqq i\leqq n$ . Therefore $ f_{0}(a_{\ell})\cap$

$ f_{0}(\beta_{i+1})\subset\gamma$ and $ f_{0}(\alpha_{i+1})\cap f_{0}(\beta_{i})\subset\gamma$ for $1\leqq i<n$ . It follows that $\alpha_{\ell}\cap\beta_{\ell+1}=\alpha_{i+1}\cap$

$\beta_{i}=u_{\ell}$ for $1\leqq i<n$ . Thus $W(r^{\prime})$ and $W(r^{\prime\prime})$ are cycles of $G_{0}$ . $\square $

To prove Theorem 4.2, we make use of an edge-contraction of a graph.
Let $G$ be a graph and $e$ an edge of $G$ which is not a loop. We denote the
graph obtained from $G$ by the edge-contraction of $e$ by $G/e$ . Let $f$ be a 2-cell
embedding of $G$ into a closed surface $S$ . We can obtain a 2-cell embedding of
$G/e$ into $S$ by contracting $f(e)$ to a vertex in $S$ . Such a 2-cell embedding is
denoted by $f_{e}$ . We can easily prove the following proposition. We omit the
proof (see [8]).

Proposition 4.5. Let $G$ be a 2-connected graph and $e$ an edge of $G$ with two
distinct endvertices $v^{\prime}$ and $v^{\prime\prime}$ , and let $f$ be a strong embedding of $G$ into a closed
surface S. We suppose that there exists no face $r$ of $f$ such that $e\not\in E(W(r))$ and
$v^{\prime},$ $v^{\prime\prime}\in V(W(r))$ . Then $f_{e}$ is strong.

By Lemma 4.4 and Proposition 4.5, we can show Theorem 4.2 (1).

Proof of Theorem 4.2 (1). Since $m=1$ , Sp $(G;v)$ is 2-connected and $f_{1}$ is
strong. We set the edge $e=v^{\prime}v^{\prime\prime}$ and the graph $G_{0}=Sp(G;v)+e$ . We first
suppose that there exists a face $r_{1}$ of $f_{1}$ such that $v^{\prime},$ $v^{\prime\prime}\in V(W(r_{1}))$ . Then there
exists a strong embedding $f$ of $G_{0}$ into $S_{1}$ such that $f|_{Sp(G;v)}=f_{1}$ and $f(e)\subset\overline{r}_{1}$ .
By the assumption of Theorem 4.2(1), there exists no face $r$ in $R(f_{1})-\{r_{1}\}$

such that $v^{\prime},$ $v^{\prime\prime}\in V(W(r))$ . Thus there exists no face $r$ of $f$ such that $ e\not\in$

$E(W(r))$ and $v^{\prime},$ $v^{\prime\prime}\in V(W(r))$ . By Proposition 4.5, $f_{e}$ is a strong embedding of $G$ .
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Now we may assume that there exists no face $r_{1}$ of $f_{1}$ such that $v^{\prime},$ $ v^{\prime\prime}\in$

$V(W(r_{1}))$ . By Lemma 4.4, there exists a strong embedding $f$ of $G_{0}$ into some
closed surface. By the construction of $f$ in Lemma 4.4, if a face $r$ of $f$ satisfies
that $e\not\in E(W(r))$ and $v^{\prime},$ $v^{\prime\prime}\in V(W(r))$ , then $r\in R(f_{1})$ , contrary to our assumption.
Therefore there exists no face $r$ of $f$ such that $e\not\in E(W(r))$ and $v^{\prime},$ $v^{\prime\prime}\in V(W(r))$ .
By Proposition 4.5, $f_{e}$ is a strong embedding of $G$ . $\square $

To prove Theorem 4.2 (2), we shall define a connected sum of surfaces and
a connected sum of graphs. Let $S_{1}$ and $S_{2}$ be two closed surfaces. A surface
$S$ is called a connected sum of $S_{1}$ and $S_{2}$ if there exists a disk $D_{\ell}$ in int $S_{i}$ and
a homeomorphism $h_{i}$ : $S_{i}$ –int $D_{i}\rightarrow S$ , for $i=1,2$ , such that $S=h_{1}$ ( $S_{1}$ –int $D_{1}$ ) $\cup$

$h_{2}$($S_{2}-$ int $D_{2}$) and $h_{1}$ ( $S_{1}$ –int $D_{1}$ ) $\cap h_{2}$($S_{2}-$ int $D_{2}$) $=h_{1}(\partial D_{1})=h_{2}(\partial D_{2})$ . A connected
sum of $S_{1}$ and $S_{2}$ is unique up to homeomorphisms, and it is denoted by $S_{1}\# S_{2}$ .

Let $G_{1}$ and $G_{2}$ be two graphs, $e_{i}$ an edge of $G_{\ell}$ with endvertices $v_{\ell}^{1}$ and $v_{i}^{2}$

for $i=1,2$ . A graph $G$ is called a connected sum of $G_{1}$ and $G_{2}$ associated with
$e_{1}$ and $e_{2}$ if $G$ is obtained from $(G_{1}-e_{1})\cup(G_{2}-e_{2})$ by adding two edges $v_{1}^{1}v_{2}^{1}$ and
$v_{1}^{2}v_{2}^{2}$ . We can easily prove the following proposition. We omit the proof (see [8]).

Proposition 4.6. Let $G_{1}$ and $G_{2}$ be two 2-connected graphs as above. If $G_{i}$

has a strong embedding into a closed surface $S_{i}$ for $i=1,2$ , then $G$ has a strong
embedding $f$ inlo $S_{1}\# S_{2}$ satisfying that there exists no face $r$ of $f$ such that $\nu_{1}^{j}$ ,
$v_{2}^{j}\in V(W(r))$ and $v_{1}^{j}v_{2}^{j}\not\in E(W(r))$ for $j=1,2$ .

By Proposition 4.6, we shall complete the proof of Theorem 4.2.

Proof of Theorem 4.2 (2). Let $B_{1}^{*},$ $\cdots$ , $B_{m}^{*}$ be disjoint copies of $B_{1},$ $\cdots$ , $B_{m}$ ,

and let $v_{\ell}^{1}$ and $v_{\ell}^{2}$ be the vertices of $B_{i+1}^{*}$ and $B_{i}^{*}$ corresponding to $v_{i}$ for $0\leqq i\leqq m$ .
Since $B_{i}^{*}$ is isomorphic to $B_{i},$ $f_{i}$ is regarded as a 2-cell embedding of $B_{i}^{*}$ into
$S_{l}$ . We set $\overline{B}_{i}^{*}=B_{i}^{*}+v_{i-1^{\{)}i}^{12}$ . If $B_{i}=K_{2}$ , then there exists a planar strong em-
bedding $f_{j}^{*}$ of $\overline{B}_{\ell}^{*}$ into $S_{\ell}$ . We set $S_{i}^{*}=S_{i}$ in this case.

If $B_{i^{-,-}}\neq K_{2}$ , then there exists a strong embedding $f_{i}^{*}$ of $\overline{B}_{i}^{*}$ into some closed
surface $S_{i}^{*}$ by Lemma 4.4. Let $G_{1}$ be the connected sum of $\overline{B}_{1}^{*}$ and $\overline{B}_{2}^{*}$ associated
with $v_{0}^{1}v_{1}^{2}$ and $v_{1}^{1}v_{2}^{2}$ such that $v_{0}^{1}v_{2}^{2},$ $v_{1}^{1}v_{1}^{2}\in E(G_{1})$ . For $1<i<m$ , a 2-connected simple
graph $G_{i}$ is the connected sum of $G_{i-1}$ and $\overline{B}_{\ell+1}^{*}$ associated with $v_{0}^{1}v_{i}^{2}$ and $v_{\ell}^{1}v_{i+1}^{2}$

such that $v_{0}^{1}v_{i+1}^{2},$ $v_{i}^{1}v_{i}^{2}\in E(G_{i})$ . We set $e_{i}=v_{\ell}^{1}v_{i}^{2}$ , for $1\leqq i<m$ , and $e_{m}=v_{0}^{1}v_{m}^{2}$ . By
Proposition 4.6, $G_{m-1}$ has a strong embedding $f$ into $S_{1}^{*}\#\cdots\# S_{m}^{*}$ satisfying that
there exists no face $r$ of $f$ such that $v_{i}^{1},$ $v_{i}^{2}\in V(W(r))$ and $e_{\ell}\not\in E(W(r))$ for $1\leqq i\leqq m$ ,

where $v_{m}^{1}=v_{0}^{1}$ . Since $(\cdots((G_{m-1}/e_{1})/e_{2})/e_{m}=G, (\cdots((f_{e_{1}})_{e_{2}})\cdots)_{e_{m}}$ is a strong em-
bedding of $G$ by Proposition 4.5. $\square $
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5. 3-Representative chain graphs

In this section, our goal is to prove Theorem 1.4 by applying Theorem 4.2
for 3-representative chain graphs.

We shall show the existence of a ladder face-path of a 3-representative
embedding of a 2-connected simple graph. The following lemma is necessary
to prove Theorem 5.2.

Lemma 5.1. Let $S$ be a closed surface and $D_{i}$ a disk in $S$ for $i=1,2$ . We
suPpose that $D_{1}$ and $D_{2}$ satisfy the following conditions:

(D1) $ D_{1}\cap D_{2}=\partial D_{1}\cap\partial D_{2}\neq\emptyset$ and

(D2) for any $\gamma\in\Gamma(D_{1}\cup D_{2})$ , if $\gamma\cap(D_{1}\cap D_{2})$ consists of two points, then $[\gamma]=1$

in $S$ .

Then there exists a disk $D$ in $S$ such lhat $N(D_{1}\cup D_{2} ; S)\subset D$ .

Proof. We choose closed curves $\gamma_{1},$ $\cdots$
$\gamma_{m}$ in $D_{1}\cup D_{2}$ such that $\gamma_{i}\cap(D_{1}\cap D_{2})$

consists of two points for $1\leqq i\leqq m$ . Then the fundamental group $\pi_{1}(D_{1}\cup D_{2})$ is
generated by $[\gamma_{I}],$ $\cdots$ $[\gamma_{m}]$ . By Condition (D2), there exists a disk $D_{i}^{\prime}$ in $S$

bounding $\gamma_{i}$ for $1\leqq i\leqq m$ . Then $D_{0}=D_{1}\cup D_{2}\cup\bigcup_{i=1}^{m}D_{i}^{\prime}$ is compact and $\pi_{1}(D_{0})=1$ .
By the classification theorem of compact surfaces, $D_{0}$ is either a disk or a sphere.
Therefore we can choose a disk $D$ in $D_{0}$ such that $N(D_{1}\cup D_{2} ; S)\subset D$ . $\square $

By Lemma 5.1, we can obtain Lemma 5.2.

Lemma 5.2. Let $f$ be a strong embedding of a 2-connected simple graPh $G$

into a closed surface $S$ , and let $P=r_{1}\cdots r_{n}$ be a face-path of $f$ from $v^{\prime}lov^{\prime\prime}$ for
any two distinct vertices $v^{\prime}$ and $v^{\prime\prime}$ of G. If $\overline{r}_{i}$ and $\overline{r}_{i+1}$ satisfy Conditions (D1)
and (D2) of Lemma 5.1 for $1\leqq i<n$ , then there exists a ladder face-path of $f$

from $v^{\prime}$ to $v^{\prime\prime}$ .

Proof of Lemma 5.2. First, we show the following proposition by induc-
tion on $n$ :
(P) there exists a disk $D$ in $S$ such that $N(|P| ; S)\subset D$ .
If $n=1$ , then $N(|P|;S)$ is a disk. Let $n>1$ . We choose a vertex $u\in V(W(r_{n-1}))$

$\cap V(W(r_{n}))$ and we set $P(n-1)=r_{1}\cdots r_{n-1}$ . Then $P(n-1)$ is a face-path of $f$

from $v^{\prime}$ to $u$ . By induction hypothesis, there exists a disk $D(n-1)$ in $S$ such
that $N$ $(|P(n-1)| ; S)\subset D(n-1)$ . If $r_{n}\subset D(n-1)$ , then $N(|P| ; S)\subset D(n-1)$ . Pro-
position (P) holds in this case.

If $r_{n}\not\subset D(n-1)$ , then let $\Sigma=\overline{r}_{n-1}U\overline{r}_{n}$ . By Lemma 5.1, there exists a disk
$D(\Sigma)$ in $S$ such that $N(\Sigma;S)\cup D(\Sigma)$ . We may assume that $\partial D(n-1)\subset$
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$\partial N$ $(|P(n-1)| ; S)$ and $\partial D(\Sigma)\subset\partial N(\Sigma;S)$ since Conditions (D1) and (D2) hold for
$\gamma_{n-1}$ and $\gamma_{n}$ . Let $D=D(n-1)\cup D(\Sigma)$ . Since $D(n-1)\cap D(\Sigma)$ coincides with the
disk $N(\overline{r}_{n-1} ; S),$ $D$ is a disk. Proposition (P) holds.

Let $G_{D}$ be the subgraph of $G$ induced by $f^{-1}(f(V(G))\cap D)$ . Then $G_{D}$ has
the unique block-path $B=B_{1}$ $B_{m}$ from $v^{\prime}$ to $v^{\prime\prime}$ . Smce $f$ is strong, $G_{D}$ has
no cut edge and hence any $B_{f}$ is not $K_{2}$ . Let $v_{j}$ be the cut-vertex of $ V(B_{f})\cap$

$V(B_{f+1})$ for $1\leqq j<m$ . We set $v_{0}=v^{\prime}$ and $v_{m}=v^{\prime\prime}$ . For $1\leqq j\leqq m$ , there exists a
disk $D_{j}^{\prime}$ in $D$ such that $f(B_{j})\subset D_{f}^{\prime}$ and $\partial D_{f}^{\prime}\subset f(B_{j})$ . Then $f|_{B_{f}}$ is a strong em-
bedding of $B_{f}$ into $D_{f}^{\prime}$ . By Proposition 4.3, there exists a ladder face-path $P_{j}$

of $f$ from $v_{j-1}$ to $v_{f}$ such that $|P_{j}|\subset D_{j}^{\prime}$ for $1\leqq j\leqq m$ . Let $P_{0}=P_{1}\cdots P_{m}$ . Since
$f$ is strong, $D_{f}^{\prime}\cap D_{J+1}^{\prime}=f(v_{f})$ for $1\leqq j<m$ . Thus $P_{0}$ is a ladder face-path of $f$

from $v^{\prime}$ to $v^{\prime\prime}$ such that $|P_{0}|\subset D$ . $\square $

Theorem 5.3. Let $f$ be a 3-representative embedding of a 2-connected simple
graph into a closed surface. For any two distinct vertices $v^{\prime}$ and t)“ of $G$ , there
exists a ladder face-path of $f$ from $\iota^{\prime}$ to $v$“.

Proof. By Proposition 4.1, there exists a face-path $P=r_{1}\cdots r_{n}$ of $f$ from
$v^{\prime}$ to $v^{\prime\prime}$ . Let $r^{\prime}$ and $r^{\prime\prime}$ be two distinct faces of $f$ such that $\overline{r}^{\prime}\cap\overline{r}^{\prime}=\partial\overline{r}^{\prime}\cap\partial\overline{r}^{\prime\prime}$

$\neq\emptyset$ . For any $\gamma\in\Gamma(\overline{r}^{\prime}\cup\overline{r}^{\prime\prime})$ , if $\gamma\cap(\overline{r}^{\prime}\cap\overline{r}^{\prime\prime})$ consists of two vertices of $f(G)$ , then
$[\gamma]=1$ in $S$ because $f$ is 3-representative. Therefore $\overline{\gamma}^{\prime}$ and $\overline{\gamma}^{\prime\prime}$ satisfy Condi-
tions (D1) and (D2) of Lemma 5.1. It follows that $\overline{\gamma}_{i}$ and $\overline{\gamma}_{i+1}$ satisfy Conditions
(D1) and (D2) of Lemma 5.1 for $1\leqq i<n$ . By Lemma 5.2, there exists a ladder
face-path of $f$ from $v^{\prime}$ to $v^{\prime\prime}$ . $\square $

We shall show Theorem 1.4 by Theorem 5.3.

Proof of Theorem 1.4. Let $G$ be a 3-representative chain graph and
$Sp(G;v)$ a 3-representative strong vertex-splitting of $G$ at a vertex $v$ of $G$ ,
and let $v^{\prime}$ and $v^{\prime\prime}$ be the splittings of $v$ . Then Sp $(G;v)$ has the unique block-
path $B_{1}\cdots B_{m}$ from $v^{\prime}$ to $v^{\prime\prime}$ . Let $v_{t}$ be the cut-vertex of Sp $(G;v)$ in $ V(B_{i})\cap$

$V(B_{i+1})$ for $1\leqq i<m$ . We set $v_{0}=v^{\prime}$ and $v_{m}=v^{\prime\prime}$ . Let $f_{\ell}$ be a 2-cell embedding
of $B_{i}$ into a closed surface $S_{i}$ such that $f_{\ell}$ is either planar or 3-representative.
By Proposition 4.3, if $B_{i^{-\dot{r}}}^{l}K_{2}$ and $f_{i}$ is planar, then there exists a ladder face-
path of $f_{i}$ from $v_{i-1}$ to $v_{\ell}$ . By Theorem 5.3, if $f_{i}$ is non-planar, then there
exists a ladder face-path of $f_{i}$ from $V_{i-1}$ to $v_{\ell}$ . We may assume that Sp $(G;v)$

is non-planar.
Assume that $m=1$ , that is, $B_{1}=Sp(G;v)$ . We set the edge $e=v^{\prime}v^{\prime\prime}$ and the

2-connected simple graph $\overline{B}_{1}=B_{1}+e$ . We shall show that there exists at most
one face $r_{1}$ of $f_{1}$ such that $v^{\prime},$ $v^{\prime\prime}\in V(W(r_{1}))$ . We suppose that there exist two
faces $r_{1}$ and $r_{2}$ of $f_{1}$ such that $v^{\prime},$ $v^{\prime\prime}\in V(W(r_{f}))$ for $j=1,2$ . Then there exists
a 3-representative embedding $f$ of $\overline{B}_{1}$ into $S_{1}$ such that $f|_{B_{1}}=f_{1}$ and $f(e)\subset\overline{r}_{1}$ .
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We note that $r_{2}\in R(f)$ . We take a simple curve $\gamma_{2}$ in $\overline{r}_{2}$ such that $\gamma_{2}\cap\hat{o}\overline{r}_{2}=\partial\gamma_{2}$

$=\{f(v^{\prime}), f(v^{\prime\prime})\}$ . Since $f_{1}$ is 3-representative, $[\gamma_{2}\cup f(e)]=1$ in $S_{1}$ . Then there
exists a disk $D$ in $S_{1}$ such that $\partial D=\gamma_{2}\cup f(e)$ . We note that $ f(\overline{B}_{1})\cap intD\neq\emptyset$ .
Contract $f(e)$ to get the 2-cell embedding $f_{e}$ of $G$ into $S_{1}$ . Since $r_{2}\in R(f_{e})$ , the
simple closed curve $\gamma_{2}^{*}$ in $\overline{r}_{2}$ is obtained from $\gamma_{2}\cup f(e)$ by contracting $f(e)$ to
$f_{e}(v)$ in $S_{1}$ . Since $[\gamma_{2}^{*}]=[\gamma_{2}\cup f(e)]=1$ in $S_{1}$ , we may assume that $\partial D=\gamma_{2}^{*}$ by

the construction of $f_{e}$ . Since $f_{e}(G)\cap intD\neq\emptyset,$ $v$ is a cut-vertex of $G$ . This
contradicts that $G$ is 2-connected. Therefore there exists at most one face $r_{1}$

of $f_{1}$ such that $v^{\prime},$ $v^{\prime\prime}\in V(W(r_{1}))$ . By Theorem 4.2(1), $G$ has a strong embedding
into some closed surface.

If $m>1$ , then $G$ has a strong embedding into some closed surface by

Theorem 4.2 (2). $\square $
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