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Abstract. This paper is devoted to weak convergence of sums of negatively
dependent random variables, we establish the central limit theorem and the
rate of convergence in the CLT. An extension of the CLT to the invariance
principle in D[0,1] is presented as well as conditions for weak relative com-
pactness and weak invariance principle in L2[0,1]. We also prove some new
properties of negatively dependent random variables.

1. Introduction

At the begining we shall recall some negative dependence concepts. Let
(Xn)nen be a sequence of random variables defined on some probability space
(2, % P). Two random variables X, and X, are said to be negative quadrant
dependent (NQD) if

(1'1) P[X1>x1y X2>x2]—P[X1>x1] P[X2>x2]§0, fOI‘ all xl, xZER'

We define random variables (X,),cx to be linearly negative quadrant dependent
(LNQD) if for any finite, disjoint subsets A, BCN and positive numbers (A#) reaus,
2readr X, and Deer A X are NQD.

If Cov(f(X:, k= A), g(Xs, k=B))<0 for any coordinatewise nondecreasing
functions f: R4—R, g: R®—R, such that this covariance exists, with A and B
as above, then we say that random variables (X,).cy are negatively associated
(NA). 1t is easy to see, that NA random variables are LNQD and LNQD are
pairwise NQD. For more details about positive and negative dependence see
Newman where further references are given, we only mention that if
X, ---, X, are LNQD, then

1.2) ‘E(exp(iﬁth,,))—ﬁE(exp(z’t,.Xk)g 3 titm! ICov(Xs, Xu)l,
k=1 k=1 i1sk<msn )

for any real t,, ---, t,.
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Now we shall prove that weak limit of LNQD (respectively NA) random
variables is also LNQD (NA), these properties have not been stated anywhere,
so we formulate them as propositions.

Proposition 1.1. Let X7, -+, X} be LNQD for every n&N and [ X?, -+, X}]
d
——é[Xlr Tty Xk]) then Xl, "'Xk are LNQD.

Proof. Let A, Bc({l, ---, k}, ANB=@, 4,20 for jeAUB. Let us put
YI;:EJEAA_;X?, Y?;:E,EBZ,X?, YAZZjEAZij; YB':EjEszXj- BY definition of
LNQD, we have

P[Y%>x, Y3>x,]—P[Y3>x,] P[Y3>x,]1<0, for all x,, x,€R.

If n—oo, then from this inequality, assumed weak convergence and Crammer-
Wald theorem we get

P[Y 4> x,, Yp>x,]—P[Y 4,>x,] P[Y 5>x,]1<0,

for all continuity points x;, x,R and by standard argument for every x,, x,ER,
thus (1.1) is valid and the proof is completed.
From this proposition and inequality (1.2) we derive the following remark.

Remark 1.1. If X7 ... X} are LNQD for every neN, [X?, -, X}]—>

nio
[X:, -+, X1, Cov(X;, X;)=0 for 1<i<j<k, then X, ---, X; are jointly inde-
pendent. In particular this statement remains valid if X?, ..., X? are NA for

every neN.

This remark remark is sufficient for our further purposes, but for the sake
of completness we present a very important analogue of Proposition 1.1] for NA
random variables, it will be preceded by some auxiliary statements.

Proposition 1.2. Random variables X,, ---, X, are NA if and only if for any

disjoint subsets A, BC{l, ---, n} and nondecreasing, binary functions u: R*-R,
v: RB>R,
(1.3) Cov(u(X,, jeA), X, jeB)=0,

where a binary function is a function, which takes only two values 0 and 1.

Proposition 1.3. If for every disjoint subsets A, BC {1, ---, n} and bounded,
continuous and nondecreasing function f: R*—R, g: RB—R

Cov(f(X,, 7€A), g(X;, j€B)=0,
then
Cov(uw(X;, j€A), v(X,, j€B)=0,

for every binary, upper continuous and nondecreasing functions u : RA—R, v: RE—R.
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Propositions 1.2 and may be proved in the same manner as
and Lemma 3.2 of [4], so we omit details.

Proposition 1.4. Assume that for any disjoint subsets A, BC{l, ---, n} and
bounded, continuous and nondecreasing functions f: R‘*—R, g: RE—R

COV(f(Xj, JEA)’ g(Xj; ]EB))éO,
then X,, ---, X, are NA.

Proof. Our proof is similar to the proof of [Theorem 3.3 of [4], so we only
sketch it. Let A, B be such as above, by virtue of Proposition 1.2 it suffices
to prove for every binary, nondecreasing functions u: R4A—R, v: RE—>R.
Letus put U={x=R4: u(x)=1}, V={x=R?: v(x)=1}. For any >0 there exist
compact sets K,CU, K,CV, such that P(UNK,)<e, P(V\K,<e. Now take

Ki,={x+t: x€K,, teR4, t=0},

Kiy={x+t: xeK,, teRB, t=0} .
Functions
1, if xeK,

0, if x&K,;
1, if xeKjy
0, if x&K,

u’(x):{

v’(x):{

are binary, nondecreasing, upper continuous on R4 and R? respectively, thus
from our assumptions and [Proposition 1.3 follows that

(1.4) Cov(u'(X;, 1€ A), v(X;, j€B))=<0.
We have
(1'5) ICOV(u(Xj, JEA)’ U(Xj) J.EB))_COV(u,(Xh JEA)) v,(Xj) ]EB))I '

=|Fuv—FEuEv—Eu'v'+Eu' Ev"|
=|Ev(u—u)+Euw'(v—v)+EuEQW —v)+Ev E(u’' —u)|
S2E|u—uw'|+2E |v—0' | <2P(UNK,)+2P(V\K,)<A4e¢.
Combining [1.4) with (1.5) we get
Cov(u, v)<Cov(u’, v')+4e<4e,

since ¢ is arbitrarily close to (, this proves [1.3).
From Proposition 1.4/ and the Helly-Bray theorem we get the following pro-
perty of negatively associated random variables.

Proposition 1.5. Let X%, ---, X2 be NA for every neN and [X?%, -, X}]
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:d—>[X1, o, X4, then X, -, Xs are NA.

As far as we know there are only two results concerning weak convergence
of sums of negatively dependent r.v.’s—central limit theorems for strictly sta-
tionary sequences of LNQD or NA r.v.’s (cf. [7], Theorems 12 and 17). The
aim of this paper is to extend these results to nonstationary case as well as to
the invariance principle. In Section 2 we study the central limit problem for
nonstationary sequences of LNQD r.v.’s and investigate the rate of convergence
in the CLT. For strictly stationary sequences of NA r.v.’s we establish sufficient
conditions for the invariance principle in the space D[0, 1] of all real functions
on [0, 1], which have left hand side limits and are continuous from the right,
endowed with the Skorohod topology. In Section 3 we are concerned with the
invariance principles in L’[0, 1], developing the approach of Oliveira [8]. The
proofs of our main theorems from Sections 2 and 3 are given in Section 4.

2. CLT, rate of convergence in CLT, invariance principle in D[0, 1]

Let EX,=0, EXi<c, k=N and for nsNlet us put S,=>7,X,, 02=ES32.
Similarly as for positively associated r.v.’s we introduce the following coefficient
(cf. [2D

u(n)=sup > . |Cov (X, X)), for neNU{0}.

kEN J:1i-k12

We remark that for wide sense stationary sequence of negatively correlated
r.v.’s u(n)=23%n.1 |Cov(X,, X;)| and by Lemma 8 of

(2.1) u(0)<eo and limu(n)=0.

In the stationary case define ¢*=E X423, Cov (X;, X,), notice that e2<[0, EX?],
for t=[0, 1] define W,()=S(s:1/(an'/?), where S,=0.

Theorem 2.1. Let (Xn)nen be a sequence of LNQD r.v.’s with EX,=0.
EXi<oco, keN. If

2.2) Li_r_lgu(n)=0, u(l)<oo,
2.3) inf n7%2¢2>0.
neN
2.4) lim 07* 31 BT |X,| 260,D=0,  for any £>0,

then S,,/o,.n—d—>N(0, 1.

When moments of higher than second order exsist we may deduce from
the following Corollary, which extends Theorem 12 of [7] from
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strictly to wide sense stationary sequences.

Corollary 2.1. Let (X,)en be a wide sense stationary sequence of LNQD
d
r.v.’s with EX,=0, E|X,|***<co for some §>0. If ¢>0, then S,/a,—>N(0, 1).

Proof. follows from [2.1), we also have lim,..c2/n=a? thus

holds, under given assumptions Lapunov condition is fulfilled implying the
Lindeberg condition [2.4).

Theorem 2.2. Let (X,)nen be a sequence of LNQD r.v,’s such that EX,=0,
E|X,|*<oco, for keN. For n=kp, with k, pN we have:

(25)  sup| P[Sn/0,Sx]—0(x)]

k k k
n(Zvaré) |, SEI SEIG

=0y e 2O g + 0
(ZE1ar) 77 (ZVere)” o g Vare,

where él::z?in(l—l)+1Xj, l=1: 2; Tty k.
Positive constants C,, Cy, Cs do not depend on n, k, p and ®(x) denotes the
standard normal distributio.

Imposing some regularity conditions on moments E(S,,n—Sn)?, E [Snem—Sal®
we may obtain more clear bounds on the rate of convergence, but they are still
far from optimal estimate O(n~'/?) and the best convergence rate which may be

obtained from is O(n~'/®) (compare with [3], [10]).

Corollary 2.2. Let (Xu)nen be a sequence of LNQD r.v.’s such that EX =0,
E|X,|1®3<oo, for keN. If

(2.6) meig']\flm ESnim—Sn)=Bn,

2.7 mesggmEISMm—SmIsngns’z, for positive B,, B,,
(2.8) i u(j)<eo,

then

(2.9) sup IP[Sn/dn.éx]—@(x), =0(n"%).

Proof. Under conditions and from we get

(2.10) sup lP[Sn/dngx]—ﬁ(x)léC;ﬁ_{_Cé_%_z,
ZER p kY

where Ci, C; are absolute constants. It is easy to see that the best estimation
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in [2.10) we have for k(n)=n?*® and p(n)=n®®, thus is proved.
In the next theorem we present an extension of the CLT to the invariance
principle.

Theorem 2.3. Let (X,).en be a strictly stationary sequence of NA r.v.’s

such that EX,=0, E|X,|**%<co for some 6>0. If moreover >0, then Wn—f—>W
in D[0, 11, where W denotes the Wiener measure on D[O0, 1].

3. Tightness and invariance principles in L*[0,1]

In this paragraph we study weak convergence in L%[0, 1] of processes
W o(t)=Stne1/(en"?) and W,(t)=Sn, /k¥? where m,(t)=max(i:t=k,/k,) and
(Ba)nenuin fulfills the following condition

B.1)  O=ke=ki= -, kn —> o0, MaX (ki—ki1)/kn —>0, as n—co.

In the sequel we follow the idea of Oliveira [8]. Let us remind some funda-
mental concepts (for more details see and references given therein). Introduce
an auto-reproducing Hibert space Hp, defined by the kernel R(s, t)=1—max(s, ).

Functions f € Hy are of the form f(u):S1 g(t)dt for some g L%[0, 1]. scalar product
in Hg is given by {f,, fz>R=S:g1(t)gs(t)dt, where ft(u>=SLgi(t)dt, i=1,2. Hgis
isometrically isomorph to L2[0, 1] by the isomorphism

(3.2) T: L0, 1] —> Hp, g —> Sig(t)dt.

The space of Borel, bounded, signed measures g on [0, 1] may be embedded in
1 1

Hy by the function (p(p)(s)=SoR(s, t)dp:Ss,u[o, uldu, ¢ has the following pro-

perty :

3.3) <, <p(,u)>n=S:g(u)yE0, u]du=g:f(u)dy(u), where f(u)=S:g(t)dt.

Define random measures

1 o, : _ 1
ﬂn—m2t=1xia(z/n); then g0, u]= 0\/75':’“‘3’

1 1
fin= ’\/H 2=t Xia(ki/kn); then ﬁn.[or ul= \/E smn(“) .

In view of isometry ¥ and embedding ¢, we interpret g, or /i, as elements of
Hg. Let us also take an orthonormal basis G,=+/2,g:, Where 1, =((k+1/2)n)2,
gr(t)=cos(k+1/2)tr. ‘

We have the following tightness criterion in L*[0, 1].
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Theorem 3.1. Suppose that (X),en is a sequence of r.v.’s, such that EX,=0,
EX: <o, neN, and satisfying condition

(3.4) sup k7' 3 EXi+ 3 |EX.X,|)<B,
nenN k=1 1gi#jsn

st#j

for some nonnegative constant B. Then the set {W,(t), nN} is weakly relatively
compact in L*[0, 17.

When k,=¢%n. then the above theorem reduces to of [8]
We remark, that processes W,(¢) correspond to the stationary case, while it is
more appropriated to study W,(t) in nonstationary cases (see [6], where further
references are given). In the stationary case we have the following invariance
principle in L2[0, 1].

Theorem 3.2. Let (X,)zen be a strictly stationary sequence of LNQD r.v.’s
d
with EX,=0 and EX%<oo, if ¢>0, then W,—>W in L?[0, 1].

N—s0o

In nonstationary case we get the following extension of to
weak invariance principle.

Theorem 3.3. Let (X,).en be a sequence of LNQD r.v.’s with EX,=0,
EXi;<oc, ke N, assume that conditions (2.2), (2.3) and (2.4) are satisfied, then

— d
W,,:——>W in L*[0, 1] with k,=a}k, provided that (3.1) is fulfilled for such chosen k..

Using the representation of characteristic functionals in L2*[0, 1] we may
derive the following corollary concerning stochastic integrals (see also Corollary

4.5 of [8].

Corollary 3.1. Let F(u):Sl F@)dt for some fe L0, 1].
(1) If assumptions of Theorem 3.2 are satisfied, then
L Sx.Fa/m)
avniS !

=1

> S:F(u)dW(u).

Nn-— oo

(ii) Under assumptions of Theorem 3.3

. d o
o3t X, F(a%/ %) ——> S F(u)dW (w).
i=1 n— oo VO
4. Proofs

Proof of [Theorem 2.1. Since the inequality (1.2) holds and r.v.’s are nega-
tively correlated, we may follow the proof of Theorem 3 of [[2], so we omit it.
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Proof of We shall modify the idea of [I10]. One can easily
get

(4.1) | P[Sa/on=x]—@(x)| = (Li+1)+C/T,

for every xR, T>0 and some constant C>0, where

/1t1dt,
/Itldt.

12=ST

=T

T k
Il:S lEeitSn/on_ HEettel/an
=1

k
HEe"E”""—e'ﬂ/z
[=1

We have

(4.2) ll—o‘;zé Var (&)\ =272

’g COV(&, Ek] Em)\

m=l+1
2, 2,
éZa#kg:, u(J)§20;2n1>“j§ u(y).
Using inequality (1.2) and (4.2) we get the following estimation of I,.

4.3) 11=G#ST 1 |Cov(Es, £/t dt

-Tigi#jsk

T2
=—03

2

03— BCov(€)| ST awtnp™ Sju(i).

k 1/2 .
In order to estimate I, we set t=s0,46%*, Where 6,,:(1‘_‘_‘,1 Var&) , then we obtain

Téglay k . 2
@4 IFS_T:W lLIlEeXD(ZSSszFI)—eXp(——82——0,2,6;2) /Islds
§-13+I4)
where
_ (Taxlon s s,
IS—S—TEk/an exp _—z_)—exp("—T"nak ) /!Slds.
. TGploy k . oy _3_2
I‘—S—T&k/an ll_'[lEexp(stwk ) exp( D) )’/Islds.

Standard inequality |e"*—e?|<|x—y|, which holds for every x, y=0 and (4.2)
yields

Tﬁk/dn 2 g
(4.5) Isggo s?|1—a257?| /| 5| ds

2

— 2

.
2032 |1—a 255 gTza;an"jg u(y).
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Applying Lemma 1 from Section 5.2 of we get

k 2 -

(46) | LIE expliséiar)—exp(——5-)|S16(Z Vars) ™" SEI&IIs i,
i=1 2 =1 =1

for

1= b vere) ()"

hence, if
1 = k -1
4.7 Tsgo. 3 Varg( BEIGIY)
then from (4.6) we obtain
k -3/2 k
4.8) Lsc(x Vars) ZEI&P,

for some constant C, which do not depend on 7, p, k. Now, from (4.3),
(4.5), [4.7) and [4.8) we get the desired conclusion.

Proof of Under our conditions, from the Corollary to the
Theorem 4 of [5], follows that

(4.9) sup )EISM,,,—S,,LI“"éCn“”/z.

meNv(0

Thus by inequality (12.42) and Theorem 12.2 of with y=2+44d, a=1+4/2 and
U= =u,=C792, we get

(410) P[oglkasx |Ss I ;Z]é(KI/ZZ'H;)Cn”WZ ,

where K, is positive and depends only on J, 4 is an arbitrary positive real number.
Replacing 4 by Ad6+/n we obtain

4.11) PLmax |S,| 2o/ m1<Ky/2.

where K, is a positive constant. From stationarity and [(4.11) follows that the
assumptions of Theorem 8.4 of are satisfied, thus (W,).en is tight. Let us
take a sequence 0<¢,<t, < --- <t.<1, then using stationarity and the central
limit theorem, which is satisfied under our assumptions, we obtain

(412) Yn,i :=Wn(ti+1)—Wn(ti) N(O, ti+1'—'ti) for any 2=0, teey, r—1.

n-— oo

We also easily verify that Cov (Y, Yi,;)—0 as n—oo for i#j, if [V, -+, Vil
is a weak limit of any subsequence of [V, ---, Y. -], then by Remark 1.1
from Section 1, Y, ---, Y, are independnt. We may conclude that finite dimen-
sional distributions of W, converge to those of W and the proof is completed.
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Proof of Theorem 3.1. It suffices to prove that

4.13) supS 3 <F, G,58Pu(dF) —>0, as N—oo,
HﬂiﬂN

neN
where P, is a distribution of g, on Hp.

Applying (3.3) and we get:

4.14) |, 2 <F GorPudR)|

Hpi=N

=|B( 5 <o) 6ok)|=| B(S(| cwamw)))|

n

= évzik;‘(,.il gi(kf/kﬁgi(km/k")EXfX'")\

m=1

<| S akat(, 2 18k k) |gulken/kn) | EX Xl )| < 53 4B,

using |g:(t)|=llg:l.=1, for every t&[0, 1].
The convergence of 33, 4; and yield (4.13).

Proof of Under given conditions holds, thus Corollary
3.2 of implies tightness. To end the proof we establish stronger result,
namely the convergence of marginal distributions

d
[Wn(tl), ) Wn(tk)]'__’[W(tl), Ty W(tk)];

n — oo

but it may be similarly done as in the end of the proof of S0 we
omit details.

Proof of Random variables are negatively correlated, so have

415) oD EXi+ 3 |EXX,)=1+207" 3 |EX.X,|S1+205nu(l)
k=1 1z sn 1si#jsn

i+j

applying and we easily see that from (4.15) follows and tightness
is proved. Now we shall use similar argument as in the proof of

(4‘16) lazzE(SMn(h)—STnn(ts))(Smn(tz)_Smn(tl))] §0’52‘§ u(Z) I O s as n—oo,

We easily check that
4.17) 6%, y/0% —>t, as n— oo, for every t<[0, 1].

From and follows that
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d
(4.18) 07'Sm, N(0, t) and moreover
n— oo
(4.19) the sets {67'Sn, @, n € N}, {07'Sn,>Sm, @, n € N} are

uniformly integrable for any ¢, s&€ N. We shall prove

(4.20) 07 (S m 6> —Smy0) NQ, t—s),  for 0<s<t<l,

n—oo

d
by [4.18) {(67'Sn @), 07'Sn,w), nEN} is tight, thus (¢7'Sm,w, Uilsmnm)—n::
(X, Y), for subsequence, of course X and Y have normal distributions with mean
0 and variance s and ¢, respectively. Furthermore (d3'Sm ), 62" (Sm 00— Sm )

—>(X, Y=X). 07'Sm,w and 07(Sp 0 —Syw) are LNQD, thus X and ¥ —X
are LNQD. By (4.16) and Cov(X, Y —X)=lim; .. Cov(a7'Sn ), 07 (Sn,w
—Sn,w)=0, thus X and Y —X are independent, so Y —X has normal distribu-
tion with mean 0 and variance t—s, and is proved. together with
(4.16) completes the proof.
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