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1. Introduction

A Legendre foliation is a foliation of a $(2n+1)$-dimensional contact manifold
$(M, \eta)$ by n-dimensional integral submanifolds of $\eta$ . This paper investigates on
a Legendre foliation the sectional curvature of non-degenerate plane sections
containing $\xi$ . \S 2 is devoted to the preliminaries on contact metric manifolds
and Legendre foliations. In \S 3 a formula for the sectional curvature for any
non-degenerate plane section containing $\xi$ and its simplification for non-degenerate
Legendre foliations on the canonical contact manifold are found. In \S 4, the
major section of this paper, we investigate Legendre foliations on contact metric
manifolds with constant $\xi$-sectional curvature, that is, the sectional curvature
$K(W, \xi)$ is constant for all nonnull vector fields $W$ . Contact metric manifolds
where the curvature tensor $R$ satisfies $R(W, W^{\prime})\xi=\varpi(g(W^{\prime}, \xi)W-g(W, \xi)W^{\prime})$ for
some real number bl and any vector fields $W,$ $W^{\prime}$ on $M$, have been studied by
D. E. Blair and S. Tanno. It can be shown that these manifolds have constant
$\xi$-sectional curvature, also there are naturally defined Legendre foliations on these
contact manifolds. In Theorem 4.4 we prove that when $\infty<1$ and $\varpi\neq 0$ the
Legendre foliations naturally defined are non-degenerate and the contact metric
structure is not the canonical one. In Theorem 4.6 we generalise this result to
Legendre foliation on contact metric manifolds with constant $\xi$-sectional curvature
with the added condition that $hX=\mu X$ where $X$ is a tangential vector field.
Finally in Theorem 4.7 we prove that for a non-degenerate Legendre foliation
on the canonical contact metric manifold with constant $\xi$-sectional curvature,
$\xi$-sectional curvature of zero or one.

2. Preliminaries

A contact manifold $(M, \eta)$ has a contact metric structure $(\phi, \xi, \eta, g)$ where $\phi$

is a tensor of type $(1, 1)$ , $\xi$ is a global vector field and $g$ is a semi-Riemannian
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metric such that

(2.1) $\eta(\xi)=1$ , $\phi^{2}=-I+\eta\otimes\xi$ , $g(W, \phi W^{\prime})=d\eta(W, W^{\prime})$ $\forall W,$ $W^{\prime}\in\Gamma TM$ .
A contact metric structure $(\phi, \xi, \eta, g)$ usually has $g$ positive definite but we do
not make this restriction and allow $g$ to be any semi-Riemannian metric com-
patible with the contact structure. A contact metric manifold $(M, \phi, \xi, \eta, g)$ is
a contact manifold $(M, \eta)$ with $(\phi, \xi, \eta, g)$ as its contact metric structure. We
will assume that $\xi$ , the characteristic vector field, is spacelike, that is $g(\xi, \xi)=1$ .
From this and the properties of (2.1) it can be shown that

(2.2) (i) $\phi\xi=0$ ,

(ii) $\eta(W)=g(\xi, W)$ $\forall W,$ $W^{\prime}\in\Gamma TM$ ,

(iii) $g(\phi W, \phi W^{\prime})=g(W, W^{\prime})-\eta(W)\eta(W^{\prime})$ $\forall W,$ $W^{\prime}\in\Gamma TM$ ,

(iv) $g(\phi W, W^{\prime})+g(W, \phi W^{\prime})=0$ $\forall W,$ $W^{\prime}\in\Gamma TM$ .
Other properties of $(\phi, \xi, \eta, g)$ are
(2.3) $\nabla_{\xi}\phi=0$ and $\nabla_{\xi}\xi=0$ .
An operator $h$ is defined by $h=1/2(\mathcal{L}_{\xi}\phi)$ , where $\mathcal{L}$ denotes Lie differentiation,
it can be shown, see Blair [1] and [2], that $h$ satisfies

(2.4) (i) $h\xi=0$ ,

(ii) $\nabla_{W}\xi=-\phi hW-\phi W$ $\forall W,$ $W^{\prime}\in\Gamma TM$ ,

(iii) $h$ and $\phi h$ are symmetric operators,

(iv) $\phi h+h\phi=0$ ,

where $\nabla$ is the Levi-Civita connection of $g$ . $\xi$ is a Killing vector field if and only
if $h$ vanishes and a contact metric manifold with $\xi$ a Killing vector field is
called a K-contact manifold.

Since the leaves of a Legendre foliation $\mathcal{F}$ are integral submanifolds of $\eta$ ,
the tangent bundle, $L$ , of $\mathcal{F}$ is a subbundle of $H$, where $H=ann\{\eta\}$ is the contact
distribution of $(M, \eta)$ . For a Legendre foliation $\mathcal{F}$ on a contact manifold we
introduce a contact metric structure, $(\phi, \xi, \eta, g)$ , and define 9 on the resultant
contact metric manifold. This contact metric structure allows us to define
$L^{\perp}=\{Y\in TM|g(Y, X)=0, \forall X\in L\}$ the transverse bundle of $\mathcal{F}$ and also $Q=H\cap L^{\perp}$

subbundle of $H$.
In Jayne [3] it is shown that the leaves of a Legendre foliation on a con-

tact metric manifold are anti-invariant submanifolds which gives us
(2.5) (i) $\phi X\in\Gamma Q$ $\forall X\in\Gamma L$

(ii) $\phi Y\in\Gamma L$ $\forall Y\in\Gamma Q$ .
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Furthermore if $\{X_{\alpha}\}$ is a local orthonormal frame for $L$ with respect to $g$

then $\{\phi X_{a}\}$ is a local orthonormal frame for $Q$ with respect to $g$ .
For a Legendre foliation, $\mathcal{F}$ , on a contact manifold $(M, \eta)$ , Pang [4] in-

troduced on $L$ a symmetric, bilinear form $\Pi$ which can be defined by, Jayne [3],

(2.6) $\Pi(X, X^{\prime})=2g([\xi, X], \phi X^{\prime})$ $\forall X,$ $X^{\prime}\in\Gamma L$

where $(\phi, \xi, \eta, g)$ is any contact metric structure on $(M, \eta)$ . When $\Pi$ is non-
degenerate $\mathcal{F}$ is a non-degenerate Legendre foliation and when $\Pi\equiv 0$ is $\mathcal{F}$ is a
flat Legendre foliation. For a non-degenerate Legendre foliation on a contact
manifold $(M, \eta)$ tbere exists a family of contact metric structures for $(M, \eta)$

such that $ g|_{L}=(1/4)\Pi$ , Jayne [3]. Furthermore there exists a unique member
of this family, $(\phi^{c}, \xi, \eta, g^{c})$ , called the canonical contact metric structure defined
by the properties

(2.7) (i) $ g^{c}|_{L}=\frac{1}{4}\Pi$ ,

(ii) $h^{c}$ : $L\rightarrow L$ .
$(M, \phi^{C}, \xi, \eta, g^{c})$ is called the canonical contact metric manifold. We also have the
following equivalence

(2.8) $g|_{L}=\frac{1}{4}\Pi\Leftarrow\Rightarrow p_{Q}([\xi, X])=2\phi X$ $\forall X\in\Gamma L$ ,

where $p_{Q}$ is the natural projection $p_{Q}$ : $TM\rightarrow Q$ .
A Legendre foliation on a contact metric manifold $(M, \phi, \xi, \eta, g)$ where $g$

is a bundle-like metric, that is

$X_{X}g(W, W^{\prime})=0$ $\forall X\in\Gamma L,$ $\forall W,$ $W^{\prime}\in\Gamma Q\oplus\Gamma E$

is a semi-Riemannian Legendre foliation. Finally if $Q$ is completely integrable

then $Q$ also defines a Legendre foliation, we call this $\overline{\mathcal{F}}$ the conjugate Legendre

foliation of $\mathcal{F}$ .

3. Sectional Curvature

For any contact metric manifold the following theorem gives us the sec-
tional curvature of non-degenerate plane sections containing $\xi$ .

Theorem 3.1. For any contact metric manifold $(M, \phi, \xi, \eta, g)$ we have

$K(W, \xi)=_{g(W,W)}^{g(W,W)+\xi g(\phi hW,W)-2g(\nabla_{\xi}W,\phi hW)-g(hW,hW)}\ovalbox{\tt\small REJECT}$

for any $W\in H$ such that $g(W, W)\neq\ulcorner 0$ .
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Proof. Using the torison free property of $\nabla,$ $(2.3)$ and (2.4) it is a straight-
forward calculation to express the sectional curvature

$K(W, \xi)=\frac{g(R(W,\xi)\xi,W)}{g(W,W)}$

without $\nabla_{W}\xi$ , and $[, ]$ , to obtain the required result. $\square $

Note that if $(M, \phi, \xi, \eta, g)$ is a K-contact manifold, that is $h=0$ , we have
Theorem 3.1, part (2), Yano and Kon [6], Chapter 5, that for a K-contact
manifold the sectional curvature for non-degenerate plane sections containing $\xi$

are equal to 1 at every point of $M$.

Lemma 3.2. Let $\mathcal{F}$ be a non-degenerate Legendre foliation on a contact metric
manifold $(M, \phi, \xi, \eta, g)$ with $ g|_{L}=(1/4)\Pi$ . Then for any $X\in\Gamma L$ and $Y\in\Gamma Q$

$g(\nabla_{\xi}X, Y)=g(\phi X-\phi hX, Y)$ .

Proof. For any $X\in\Gamma L$ and $Y\in\Gamma Q$ we have

$2g(\phi X, Y)=g([\xi, X], Y)$ by (2.8) as $ g|_{L}=\frac{1}{4}\Pi$

$=g(\nabla_{\xi}X, Y)+g(\phi X, Y)+g(\phi hX, Y)$ by (2.4) (ii). $\square $

By using this lemma when $\mathcal{F}$ is a non-degenerate Legendre foliation on the
canonical contact metric manifold we obtain the following $simpl\cdot ification$ of
Theorem 3.1.

Theorem 3.3. Let $\mathcal{F}$ be a non-degenerate Legendre foliation on the canonical
contact metric manifold $(M, \phi^{c}, \xi, \eta, g^{c})$ . Then

$K(X_{a}, \xi)=\frac{g^{c}(X_{a}-h^{c}X_{a},X_{a}-h^{c}X_{a})}{g^{c}(X_{\alpha},X_{\alpha})}$

and

$K(\phi^{c}X_{\alpha}, \xi)=\frac{g^{c}(X_{a}+3h^{c}X_{a},X_{\alpha}-h^{c}X_{a})}{g^{c}(X_{\alpha},X_{a})}$

where $\{X_{a}, \phi^{c}X_{\alpha}, \xi\}\alpha=1,$ $\cdots$ $n$ is a local orthonormal frame of $TM$ with resPect
to $g^{c}$ .

Proof. As $(M, \phi^{c}, \xi, \eta, g^{c})$ is the canonical contact metric structure by (2.5)
(i) and (2.7) (ii) for any $\alpha,$ $\phi^{c}h^{c}X_{a}\in\Gamma Q$ , this enables us to use Lemma 3.2 in
the proof of Theorem 3.1 to obtain

$g^{c}(R(X_{a}, \xi)\xi,$ $X_{\alpha}$ ) $=g^{c}(X_{a}, X_{a})-g^{c}(h^{c}X_{a}, h^{c}X_{\alpha}, )$

$-2g^{c}(\nabla_{\xi}X_{\alpha}, \phi^{c}h^{c}X_{\alpha})+\xi g^{c}(\phi^{c}h^{c}X_{a}, X_{\alpha})$
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$=g^{c}(X_{a}, X_{a})-g^{c}(h^{c}X_{a}, h^{c}X_{\alpha})-2g^{c}(\phi^{c}X_{\alpha}, \phi^{c}h^{c}X_{a})$

$+2g^{c}(\phi^{c}h^{c}X_{a}, \phi^{c}h^{c}X_{a})$

$=g^{c}(X_{\alpha}-h^{c}X_{a}, X_{\alpha}-h^{c}X_{a})$ by (2.2) (iii).

Similarly for any $a$ we have

$g^{c}(R(\phi^{c}X_{a}, \xi)\xi,$ $\phi^{c}X_{a}$ ) $=g^{c}(X_{a}+3h^{c}X_{a}, X_{\alpha}-h^{c}X_{a})$ $\square $

4. Constant sectional curvature for plane sections, containing $\xi$

The sectional curvature of a plane section spanned by $\xi$ and a mon-null
vector orthogonal to $\xi$ is called a $\xi$-sectional curvature. In this section we con-
sider Legendre foliations on contact metric manifolds with constant $\xi$-sectional
curvature. That is there exists a real number $\varpi$ such that

$ K(W, \xi)=\varpi$ $\forall W\in\Gamma H$ such that $g(W, W)\neq 0$ .
Theorems 4.4 and 4.6 use the following Lemma in their proofs.

Lemma 4.1. Let 9 be a Legendre foliation on a contact metric manifold
$(M, \phi, \xi, \eta, g)$ with constant $\xi$-sectional curvature then for any $\alpha$

$g(\nabla_{\xi}X_{\alpha}, \phi hX_{a})=0$

where $\{X_{\alpha}, \phi X_{\alpha}, \xi\}\alpha=1,$
$\cdots,$

$n$ is a local orthonormal frame of $TM$ with resPect
to $g$ .

Proof. As the non-degenerate plane sections containing $\xi$ have constant
sectional curvature for any $\alpha$ we have.

$0=g(X_{\alpha}, X_{a})\{K(X_{\alpha}, \xi)-K(\phi X_{a}, \xi)\}$

$=\xi g(\phi hX_{\alpha}, X_{\alpha})-2g(\nabla_{\xi}X_{\alpha}, \phi hX_{\alpha})-\xi g(hX_{\alpha}, \phi X_{\alpha})$

$+2g(\nabla_{\xi}\phi X_{a}, hX_{a})$ by Theorem 3..1
$=-4g(\nabla_{\xi}X_{a}, \phi hX_{a})$ by (2.2) (iv), (2.3), (2.5) (i) and (2.4) (iv) $\square $

Tanno [5] investigated contact metric manifolds where the curvature tensor
satisfied

$R(W, W^{\prime})\xi=\varpi(g(W^{\prime}, \xi)W-g(W, \xi)W^{\prime})$ $\forall W,$ $W^{\prime}\in\Gamma TM$ .
We will first investigate Legendre foliations on contact metric manifolds of this
class. It is easily seen that these manifolds have constant $\xi$-sectional curvature.
On these contact metric manifolds a Legendre foliation and its conjugate are
naturally defined as given by the following proposition, which is a rewording
of [5] Proposition 5.1.
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Proposition 4.2. Let $(M, \phi, \xi, \eta, g)$ be a contact metric manifold where for
some real number $\varpi$ the curvature of $\nabla$ , the Levi-Civita connection of $g$ , satisfies

$R(W, W^{\prime})\xi=W(g(W^{\prime}, \xi)W-g(W, \xi)W^{\prime})$ $\forall W,$ $W^{\prime}\in\Gamma TM$ .
Then $\infty\leqq 1$ , also if $\varpi<1$ then $(M, \phi, \xi, \eta, g)$ admits three mutually orthogonal
and completely integrable distributions $D(O),$ $D(\mu)$ and $D(-\mu)$ defined by the eigen-
spaces of $h$ where $\mu=\sqrt{1-\varpi}$ .

Note: $D(\mu)=\{W\in TM|hW=\mu W\}$ , $D(-\mu)=\{W\in TM|hW=-\mu W\}$ , $D(O)=E$ .
Let $\mathcal{F}$ be the Legendre foliation defined by $D(\mu)$ then $\overline{\mathcal{F}}$ the conjugate Legendre
foliation of 9 is defined by $D(-\mu)$ .

When $\varpi=0$ we get the following theorem from Jayne [3], the proof of which
adapts the proof of Blair [2] Theorem $B$ , to Legendre foliations.

Theorem 4.3. Let $(M, \phi, \xi, \eta, g)$ be a contact metric manifold such that

$R(W, W^{\prime})\xi=0$ $\forall W,$ $W^{\prime}\in\Gamma TM$ .
Then $D(1)$ defines a semi-Riemannian Legendre foliation $D(-1)$ defines its con-
jugate which is flat and totally geodesic. Furthermore $(\phi, \xi, \eta, g)$ is the canonical
contact metric structure of the Legendre foliation defined by $D(1)$ .

The last theorem of Blair [1] gives the flat Legendre foliation defined by
$D(-1)$ , but Theorem 4.2 has strengthened the condition

$R(Y, Y^{\prime})\xi=0$ $\forall Y,$ $Y^{\prime}\in\Gamma D(-1)$

to
$R(W, W^{\prime})\xi=0$ $\forall W,$ $W^{\prime}\in\Gamma H$

tbis is a sufficient condition for $D(1)$ to also be completely integrable, hence
$D(1)$ defines a Legendre foliation transverse to the Legendre foliation defined by
$D(-1)$ . Furthermore this Legendre foliation can be shown to be semi-Riemannian.

When $\varpi<1$ and $\varpi_{-}\pm 0$ we have the following theorem.

Theorem 4.4. Let $(M, \phi, \xi, \eta, g)$ be a contact metric manifold such that
$R(W, W^{\prime})\xi=\varpi(g(W^{\prime}, \xi)W-g(W, \xi)W^{\prime})$ $\forall W,$ $W^{\prime}\in\Gamma TM$ ,

for some real number $\varpi<1$ and $\varpi_{-\neg}^{\ell}’- 0$ . Then the Legendre foliations $\mathcal{F}$ defined
by $D(\mu)$ and $\Xi$ defined by $D(-\mu)$ are non-degenerate and $(\phi, \xi, \eta, g)$ is not the
canonical contact metric structure for either $\mathcal{F}$ or $\overline{\mathcal{F}}$ .

Proof. Let $\{X_{\alpha}\}$ be a local orthonormal frame for $L$ with respect to $g$

where $L=D(\mu)$ is the tangent bundle of $\mathcal{F}$ . Then $\{\phi X_{\alpha}\}$ is a local orthonormal
frame for $\overline{L}$ with respect to $g$ where $\overline{L}=Q=D(-\mu)$ is the tangent bundle of 9.
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Therefore

(4.5) $hX_{\alpha}=\mu X_{\alpha}$ and $h\phi X_{\alpha}=-\mu\emptyset X_{\alpha}$ .

As bl $<1$ and $\varpi^{\prime}\neq 0$ we have $\mu>0$ and $\mu\neq 1$ where $\mu=\sqrt{1-\varpi^{\prime}}$ .
For any $\alpha$ by substituting (4.5) into (2.6) we obtain

$\Pi(X_{\alpha}, X_{\alpha})=\frac{2}{\mu}(g[\xi, X_{\alpha}], \phi hX_{a})$

$=2g((1+\mu)X_{\alpha}, X_{\alpha})$ by (2.2) (iii), (2.4) (ii), Lemmas 4.1 and 4.5.

Therefore as $\mu>0\Pi(X_{\alpha}, X_{a})\neq 0$ for any $\alpha$ hence $\mathcal{F}$ is a non-degenerate Legendre
foliation. Furthermore as $\mu\neq 1,$ $ g|_{L}\neq(1/4)\Pi$ thus by (2.7) (i) $(\phi, \xi, \eta, g)$ is not

the canonical contact metric structure for $\mathcal{F}$ .
Now we let $\Pi$ be the symmetric, bilinear form on $\overline{L}$ defined by (2.6), thus

for any $\alpha$ , substituting (4.5) into (2.6) we obtain

$\Pi(\phi X_{a}, \phi X_{a})=-\frac{2}{\mu}g([\xi, \phi X_{a}], hX_{a})$

$=2g((1-\mu)X_{\alpha}, X_{a})$

by (2.2) (iii) &(iv), (2.3), (2.4) (ii), Lemmas 4.1 and 4.5.

Therefor as $\mu-\perp 1\Pi(\phi X_{a}, \phi X_{\alpha})\neq 0$ for any $\alpha$ hence a is a non-degenerate
Legendre foliation. Furthermore as $\mu>0g|_{L}\neq(1/4)\Pi$ thus by (2.7) (i) $(\phi, \xi, \eta, g)$

is not the canonical contact metric structure for 9. $\square $

In the following theorem we generalise Theorems 4.3 and 4.4.

Theorem 4.6. Let $\mathcal{F}$ be a Legendre foliation on a contact metric manifold
$(M, \phi, \xi, \eta, g)$ with constant $\xi$-sectional curvature such that for any $X\in LhX=$

$\mu X$ for some real number $\mu$ , then

(i) $(M, \phi, \xi, \eta, g)$ has $\xi$-sectional curvature of $\varpi=1-\mu^{2}$ ,

(ii) If: $\mu=0$ then $(M, \phi, \xi, \eta, g)$ is a K-contact manifold,
$\mu=-1$ then $\mathcal{F}$ is a flat Legendre foliation,
$\mu=1$ then $\mathcal{F}$ is a non-degenerate Legendre foliation and $(\phi, \xi, \eta, g)$

is the canonical contact metric structure,

otherwise $\mathcal{F}$ is a non-degenerate Legendre foliation and $(\phi, \xi, \eta, g)$ is
not the canonical contact metric structure.

Proof.
(i) $K(X_{\alpha}, \xi)$ is calculated from Theorem 3.1 using $hX=\mu X$, (2.5) (i) and

Lemma 4.1.
(ii) If $\mu=0$ then $h\equiv 0$ thus $(M, \phi, \xi, \eta, g)$ is a K-contact manifold.

Suppose $\mu\neq 0$ , let $\{X_{a}\}$ be a local orthonormal frame for $L$ with respect
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to $g$ , then for any $\alpha$ we have $\Pi(X_{\alpha}, X_{\alpha})=2g((1+\mu)X_{\alpha}, X_{\alpha})$ and the result
follows directly from this. $\square $

The example in [1] gives a flat Legendre foliation with zero $\xi$-sectional
curvature which satisfies the conditions of Theorem 4.6, with $\mu=-1$ , but not
those of Theorem 4.3, thus Theorem 4.6 is a generalization of Theorem 4.3.

For a non-degenerate Legendre foliation on the canonical contact metric
manifold with constan $\xi$-sectional curvature we get the following theorem and
corollary.

Theorem 4.7. Let $\mathcal{F}$ be a non-degenerate Legendre foliation on the canonical
contact metric manifold $(M, \phi^{c}, \xi, \eta, g^{c})$ such that the sectional curvature for non-
degenerate plane sections containing $\xi$ is constant. Then either

(i) $(M, \phi^{c}, \xi, \eta, g^{c})$ has constant $\xi$-sectional curvature of one and if $g^{c}$ is a
Riemannian metric then $(M, \phi^{c}, \xi, \eta, g^{c})$ is a K-contact manifold, $or$

(ii) $(M, \phi^{c}, \xi, \eta, g^{c})$ has zero $\xi$-sectional curvature.

Proof. Let $\{X_{\alpha}\}$ be a local orthonormal frame for $L$ with respect to $g^{c}$ .
As the non-degenerate plane sections containing $\xi$ have constant sectional

curvature, for any $\alpha$ we have,

$0=g^{c}(X_{\alpha}, X_{\alpha})\{K(X_{a}, \xi)-K(\phi^{c}X_{\alpha}, \xi)\}$

$=g^{c}(X_{\alpha}-h^{c}X_{a}, X_{a}-h^{c}X_{a})-g^{c}(X_{a}+3h^{c}X_{a}, X_{a}-h^{c}X_{\alpha})$ by Theorem 3.3
$=-4g^{c}(h^{c}X_{\alpha}, X_{a}-h^{c}X_{\alpha})$ .

Therefore as $h^{c}$ : $L\rightarrow L$ by (2.7) (ii) this implies that $g^{c}(X_{\alpha}, h^{c}X_{a})=g^{c}(h^{c}X_{\alpha}$ ,
$h^{c}X_{a})=0$ or $h^{c}X_{\alpha}=X_{\alpha}$ .

If $g^{c}(X_{\alpha}, h^{c}X_{\alpha})=g^{c}(h^{c}X_{\alpha}, h^{c}X_{\alpha})=0$ , by substituting this in Theorem 3.3 we
obtain $K(X_{\alpha}, \xi)=K(\phi^{c}X_{a}, \xi)=1$ . Also if $g^{c}$ is a Riemannian metric $g^{c}(h^{c}X_{a}$ ,
$h^{c}X_{\alpha})=0$ if and only if $h^{c}=0$ , that is $(M, \phi^{c}, \xi, \eta, g^{c})$ is a K-contact manifold
hence (i).

If $h^{c}X_{\alpha}=X_{a}$ , by substituting this in Theorem 3.3 we obtain $K(X_{\alpha}, \xi)=$

$K(\phi^{c}X_{\alpha}, \xi)=0$ hence (ii). $\square $

Corollary 4.8. Let $\mathcal{F}$ be a non-degenerate Legendre foliation on a contact
metric manifold $(M, \phi, \xi, \eta, g)$ with constant $\xi$-sectional curvature not equal to one
or zero, then $(\phi, \xi, \eta, g)$ is not the canonical contact metric structure.

Corollary 4.8 is illustrated by the following example.

Example. Let $M=R^{3}=\{(x, y, z)\}$ and $\eta=(\cos zdx+\sin zdy)/2$ , thus $(M, \eta)$

is a contact manifold with $\xi=2(sz(\partial/\partial x)+\sin z(\partial/\partial y))$ . Then define a contact
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metric structure $(M, \phi, \xi, \eta, g)$ on $(M, \eta)$ by

$\phi=\left\{\begin{array}{lll}-sin^{2}z & sinzcosz & sinz\\sinzcosz & -cos^{2}z & -cosz\\-2sinz & 2cosz & 1\end{array}\right\}$

and $g$ is the Riemannian metric such that {X, $\phi X,$ $\xi$ } is a orthonormal frame of
$TM$ where $X=2(\partial/\partial z)$ .

It is a straightforward calculation to show that $(M, \phi, \xi, \eta, g)$ has constant
$\xi$-sectional curvature of $-3$ and that $L=span\{X\}$ defines a non-degenerate

Legendre foliation $\mathcal{F}$ . Thus by Corollary 4.8 $(\phi, \xi, \eta, g)$ is not the canonical
contact metric structure for $\mathcal{F}$ .
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