Yokohama Mathematical Journal Vol. 41, 1994

A NOTE ON THE SECTIONAL CURVATURE OF LEGENDRE FOLIATIONS

By

NICOLA JAYNE*

(Received January 19, 1993; Revised June 10, 1993)

1. Introduction

A Legendre foliation is a foliation of a (2n+1)-dimensional contact manifold (M, η) by *n*-dimensional integral submanifolds of η . This paper investigates on a Legendre foliation the sectional curvature of non-degenerate plane sections containing ξ . §2 is devoted to the preliminaries on contact metric manifolds and Legendre foliations. In §3 a formula for the sectional curvature for any non-degenerate plane section containing ξ and its simplification for non-degenerate Legendre foliations on the canonical contact manifold are found. In §4, the major section of this paper, we investigate Legendre foliations on contact metric manifolds with constant ξ -sectional curvature, that is, the sectional curvature $K(W, \xi)$ is constant for all nonnull vector fields W. Contact metric manifolds where the curvature tensor R satisfies $R(W, W')\xi = \varpi(g(W', \xi)W - g(W, \xi)W')$ for some real number ϖ and any vector fields W, W' on M, have been studied by D. E. Blair and S. Tanno. It can be shown that these manifolds have constant ξ -sectional curvature, also there are naturally defined Legendre foliations on these contact manifolds. In Theorem 4.4 we prove that when $\varpi < 1$ and $\varpi \neq 0$ the Legendre foliations naturally defined are non-degenerate and the contact metric structure is not the canonical one. In Theorem 4.6 we generalise this result to Legendre foliation on contact metric manifolds with constant ξ -sectional curvature with the added condition that $hX = \mu X$ where X is a tangential vector field. Finally in Theorem 4.7 we prove that for a non-degenerate Legendre foliation on the canonical contact metric manifold with constant ξ -sectional curvature, ξ -sectional curvature of zero or one.

2. Preliminaries

A contact manifold (M, η) has a contact metric structure (ϕ, ξ, η, g) where ϕ is a tensor of type $(1, 1), \xi$ is a global vector field and g is a semi-Riemannian

^{* 1991} Mathematics Subject Classification: 53C12, 53C15.

Key words and phrases: Contact (Manifolds and metric structures), Legendre foliations.

metric such that

(2.1) $\eta(\xi)=1$, $\phi^2=-I+\eta\otimes\xi$, $g(W,\phi W')=d\eta(W,W') \quad \forall W,W'\in\Gamma TM$.

A contact metric structure (ϕ, ξ, η, g) usually has g positive definite but we do not make this restriction and allow g to be any semi-Riemannian metric compatible with the contact structure. A contact metric manifold (M, ϕ, ξ, η, g) is a contact manifold (M, η) with (ϕ, ξ, η, g) as its contact metric structure. We will assume that ξ , the characteristic vector field, is spacelike, that is $g(\xi, \xi)=1$. From this and the properties of (2.1) it can be shown that

(2.2) (i)
$$\phi \xi = 0$$
,

- (ii) $\eta(W) = g(\xi, W)$ $\forall W, W' \in \Gamma T M$, (iii) $g(\phi W, \phi W') = g(W, W') - \eta(W)\eta(W')$ $\forall W, W' \in \Gamma T M$,
- (iv) $g(\phi W, W') + g(W, \phi W') = 0$ $\forall W, W' \in \Gamma T M.$

Other properties of (ϕ, ξ, η, g) are

(2.3)
$$\nabla_{\xi}\phi=0 \text{ and } \nabla_{\xi}\xi=0.$$

An operator h is defined by $h=1/2(\mathcal{L}_{\xi}\phi)$, where \mathcal{L} denotes Lie differentiation, it can be shown, see Blair [1] and [2], that h satisfies

(2.4) (i)
$$h\xi = 0$$
,
(ii) $\nabla_W \xi = -\phi h W - \phi W$ $\forall W, W' \in \Gamma T M$,

- (iii) h and ϕh are symmetric operators,
- (iv) $\phi h + h\phi = 0$,

where ∇ is the Levi-Civita connection of $g. \xi$ is a Killing vector field if and only if h vanishes and a contact metric manifold with ξ a Killing vector field is called a *K*-contact manifold.

Since the leaves of a Legendre foliation \mathcal{F} are integral submanifolds of η , the tangent bundle, L, of \mathcal{F} is a subbundle of H, where $H=\operatorname{ann}\{\eta\}$ is the contact distribution of (M, η) . For a Legendre foliation \mathcal{F} on a contact manifold we introduce a contact metric structure, (ϕ, ξ, η, g) , and define \mathcal{F} on the resultant contact metric manifold. This contact metric structure allows us to define $L^{\perp}=\{Y \in TM | g(Y, X)=0, \forall X \in L\}$ the transverse bundle of \mathcal{F} and also $Q=H \cap L^{\perp}$ subbundle of H.

In Jayne [3] it is shown that the leaves of a Legendre foliation on a contact metric manifold are anti-invariant submanifolds which gives us

(2.5) (i) $\phi X \in \Gamma Q$ $\forall X \in \Gamma L$ (ii) $\phi Y \in \Gamma L$ $\forall Y \in \Gamma Q$. Furthermore if $\{X_{\alpha}\}$ is a local orthonormal frame for L with respect to g then $\{\phi X_{\alpha}\}$ is a local orthonormal frame for Q with respect to g.

For a Legendre foliation, \mathcal{F} , on a contact manifold (M, η) , Pang [4] introduced on L a symmetric, bilinear form Π which can be defined by, Jayne [3],

(2.6)
$$\Pi(X, X') = 2g([\xi, X], \phi X') \quad \forall X, X' \in \Gamma L$$

where (ϕ, ξ, η, g) is any contact metric structure on (M, η) . When Π is nondegenerate \mathcal{F} is a non-degenerate Legendre foliation and when $\Pi \equiv 0$ is \mathcal{F} is a flat Legendre foliation. For a non-degenerate Legendre foliation on a contact manifold (M, η) there exists a family of contact metric structures for (M, η) such that $g|_L = (1/4)\Pi$, Jayne [3]. Furthermore there exists a unique member of this family, (ϕ^c, ξ, η, g^c) , called *the canonical contact metric structure* defined by the properties

(2.7) (i)
$$g^c|_L = \frac{1}{4}\Pi$$
,
(ii) $h^c: L \longrightarrow L$.

 $(M, \phi^c, \xi, \eta, g^c)$ is called the canonical contact metric manifold. We also have the following equivalence

(2.8)
$$g|_{L} = \frac{1}{4} \Pi \iff p_{Q}([\xi, X]) = 2\phi X \quad \forall X \in \Gamma L,$$

where p_q is the natural projection $p_q: TM \rightarrow Q$.

A Legendre foliation on a contact metric manifold (M, ϕ, ξ, η, g) where g is a bundle-like metric, that is

$$\mathcal{L}_{X}g(W, W') = 0 \qquad \forall X \in \Gamma L, \ \forall W, \ W' \in \Gamma Q \oplus \Gamma E$$

is a semi-Riemannian Legendre foliation. Finally if Q is completely integrable then Q also defines a Legendre foliation, we call this $\overline{\mathcal{F}}$ the conjugate Legendre foliation of \mathcal{F} .

3. Sectional Curvature

For any contact metric manifold the following theorem gives us the sectional curvature of non-degenerate plane sections containing ξ .

Theorem 3.1. For any contact metric manifold (M, ϕ, ξ, η, g) we have

$$K(W, \xi) = \frac{g(W, W) + \xi g(\phi hW, W) - 2g(\nabla_{\xi}W, \phi hW) - g(hW, hW)}{g(W, W)}$$

for any $W \in H$ such that $g(W, W) \neq 0$.

Proof. Using the torison free property of ∇ , (2.3) and (2.4) it is a straightforward calculation to express the sectional curvature

$$K(W, \xi) = \frac{g(R(W, \xi)\xi, W)}{g(W, W)}$$

without $\nabla_w \xi$, and [,], to obtain the required result.

Note that if (M, ϕ, ξ, η, g) is a K-contact manifold, that is h=0, we have Theorem 3.1, part (2), Yano and Kon [6], Chapter 5, that for a K-contact manifold the sectional curvature for non-degenerate plane sections containing ξ are equal to 1 at every point of M.

Lemma 3.2. Let \mathcal{F} be a non-degenerate Legendre foliation on a contact metric manifold (M, ϕ, ξ, η, g) with $g|_L = (1/4)\Pi$. Then for any $X \in \Gamma L$ and $Y \in \Gamma Q$

 $g(\nabla_{\xi}X, Y) = g(\phi X - \phi hX, Y).$

Proof. For any $X \in \Gamma L$ and $Y \in \Gamma Q$ we have

$$2g(\phi X, Y) = g([\xi, X], Y) \quad \text{by (2.8) as } g|_{L} = \frac{1}{4}\Pi$$
$$= g(\nabla_{\xi} X, Y) + g(\phi X, Y) + g(\phi h X, Y) \quad \text{by (2.4) (ii).} \quad \Box$$

By using this lemma when \mathcal{F} is a non-degenerate Legendre foliation on the canonical contact metric manifold we obtain the following simplification of Theorem 3.1.

Theorem 3.3. Let \mathcal{F} be a non-degenerate Legendre foliation on the canonical contact metric manifold $(M, \phi^c, \xi, \eta, g^c)$. Then

$$K(X_{\alpha}, \boldsymbol{\xi}) = \frac{g^{c}(X_{\alpha} - h^{c}X_{\alpha}, X_{\alpha} - h^{c}X_{\alpha})}{g^{c}(X_{\alpha}, X_{\alpha})}$$

and

$$K(\phi^{c}X_{\alpha}, \xi) = \frac{g^{c}(X_{\alpha}+3h^{c}X_{\alpha}, X_{\alpha}-h^{c}X_{\alpha})}{g^{c}(X_{\alpha}, X_{\alpha})}$$

where $\{X_{\alpha}, \phi^{c}X_{\alpha}, \xi\} \alpha = 1, \dots, n$ is a local orthonormal frame of TM with respect to g^{c} .

Proof. As $(M, \phi^c, \xi, \eta, g^c)$ is the canonical contact metric structure by (2.5) (i) and (2.7) (ii) for any $\alpha, \phi^c h^c X_{\alpha} \in \Gamma Q$, this enables us to use Lemma 3.2 in the proof of Theorem 3.1 to obtain

$$g^{c}(R(X_{\alpha}, \xi)\xi, X_{\alpha}) = g^{c}(X_{\alpha}, X_{\alpha}) - g^{c}(h^{c}X_{\alpha}, h^{c}X_{\alpha}) - 2g^{c}(\nabla_{\xi}X_{\alpha}, \phi^{c}h^{c}X_{\alpha}) + \xi g^{c}(\phi^{c}h^{c}X_{\alpha}, X_{\alpha})$$

$$=g^{c}(X_{\alpha}, X_{\alpha})-g^{c}(h^{c}X_{\alpha}, h^{c}X_{\alpha})-2g^{c}(\phi^{c}X_{\alpha}, \phi^{c}h^{c}X_{\alpha})$$
$$+2g^{c}(\phi^{c}h^{c}X_{\alpha}, \phi^{c}h^{c}X_{\alpha})$$
$$=g^{c}(X_{\alpha}-h^{c}X_{\alpha}, X_{\alpha}-h^{c}X_{\alpha}) \quad \text{by (2.2) (iii).}$$

Similarly for any α we have

$$g^{c}(R(\phi^{c}X_{\alpha},\xi)\xi,\phi^{c}X_{\alpha}) = g^{c}(X_{\alpha}+3h^{c}X_{\alpha},X_{\alpha}-h^{c}X_{\alpha}) \qquad \Box$$

4. Constant sectional curvature for plane sections, containing *\xi*

The sectional curvature of a plane section spanned by ξ and a mon-null vector orthogonal to ξ is called a ξ -sectional curvature. In this section we consider Legendre foliations on contact metric manifolds with constant ξ -sectional curvature. That is there exists a real number ϖ such that

$$K(W, \xi) = \varpi$$
 $\forall W \in \Gamma H$ such that $g(W, W) \neq 0$.

Theorems 4.4 and 4.6 use the following Lemma in their proofs.

Lemma 4.1. Let \mathfrak{F} be a Legendre foliation on a contact metric manifold (M, ϕ, ξ, η, g) with constant ξ -sectional curvature then for any α

$$g(\nabla_{\xi}X_{\alpha}, \phi hX_{\alpha})=0$$

where $\{X_{\alpha}, \phi X_{\alpha}, \xi\} \alpha = 1, \dots, n$ is a local orthonormal frame of TM with respect to g.

Proof. As the non-degenerate plane sections containing ξ have constant sectional curvature for any α we have.

$$0 = g(X_{\alpha}, X_{\alpha}) \{ K(X_{\alpha}, \xi) - K(\phi X_{\alpha}, \xi) \}$$

= $\xi g(\phi h X_{\alpha}, X_{\alpha}) - 2g(\nabla_{\xi} X_{\alpha}, \phi h X_{\alpha}) - \xi g(h X_{\alpha}, \phi X_{\alpha})$
+ $2g(\nabla_{\xi} \phi X_{\alpha}, h X_{\alpha})$ by Theorem 3..1
= $-4g(\nabla_{\xi} X_{\alpha}, \phi h X_{\alpha})$ by (2.2) (iv), (2.3), (2.5) (i) and (2.4) (iv) \Box

Tanno [5] investigated contact metric manifolds where the curvature tensor satisfied

$$R(W, W')\xi = \varpi(g(W', \xi)W - g(W, \xi)W') \qquad \forall W, W' \in \Gamma TM.$$

We will first investigate Legendre foliations on contact metric manifolds of this class. It is easily seen that these manifolds have constant ξ -sectional curvature. On these contact metric manifolds a Legendre foliation and its conjugate are naturally defined as given by the following proposition, which is a rewording of [5] Proposition 5.1.

Proposition 4.2. Let (M, ϕ, ξ, η, g) be a contact metric manifold where for some real number ϖ the curvature of ∇ , the Levi-Civita connection of g, satisfies

$$R(W, W')\xi = \varpi(g(W', \xi)W - g(W, \xi)W') \quad \forall W, W' \in \Gamma TM.$$

Then $\varpi \leq 1$, also if $\varpi < 1$ then (M, ϕ, ξ, η, g) admits three mutually orthogonal and completely integrable distributions D(0), $D(\mu)$ and $D(-\mu)$ defined by the eigenspaces of h where $\mu = \sqrt{1-\varpi}$.

Note:
$$D(\mu) = \{W \in TM \mid hW = \mu W\}$$
, $D(-\mu) = \{W \in TM \mid hW = -\mu W\}$, $D(0) = E$.

Let \mathcal{F} be the Legendre foliation defined by $D(\mu)$ then $\overline{\mathcal{F}}$ the conjugate Legendre foliation of \mathcal{F} is defined by $D(-\mu)$.

When $\varpi = 0$ we get the following theorem from Jayne [3], the proof of which adapts the proof of Blair [2] Theorem B, to Legendre foliations.

Theorem 4.3. Let (M, ϕ, ξ, η, g) be a contact metric manifold such that

$$R(W, W')\xi = 0 \quad \forall W, W' \in \Gamma T M.$$

Then D(1) defines a semi-Riemannian Legendre foliation D(-1) defines its conjugate which is flat and totally geodesic. Furthermore (ϕ, ξ, η, g) is the canonical contact metric structure of the Legendre foliation defined by D(1).

The last theorem of Blair [1] gives the flat Legendre foliation defined by D(-1), but Theorem 4.2 has strengthened the condition

to

$$R(Y, Y')\xi = 0 \quad \forall Y, Y' \in \Gamma D(-1)$$

$$R(W, W')\xi = 0 \quad \forall W, W' \in \Gamma H$$

this is a sufficient condition for D(1) to also be completely integrable, hence D(1) defines a Legendre foliation transverse to the Legendre foliation defined by D(-1). Furthermore this Legendre foliation can be shown to be semi-Riemannian.

When $\varpi < 1$ and $\varpi \neq 0$ we have the following theorem.

Theorem 4.4. Let (M, ϕ, ξ, η, g) be a contact metric manifold such that

$$R(W, W')\xi = \mathfrak{W}(g(W', \xi)W - g(W, \xi)W') \qquad \forall W, W' \in \Gamma TM,$$

for some real number $\varpi < 1$ and $\varpi \neq 0$. Then the Legendre foliations \mathfrak{F} defined by $D(\mu)$ and \mathfrak{F} defined by $D(-\mu)$ are non-degenerate and (ϕ, ξ, η, g) is not the canonical contact metric structure for either \mathfrak{F} or \mathfrak{F} .

Proof. Let $\{X_{\alpha}\}$ be a local orthonormal frame for L with respect to g where $L=D(\mu)$ is the tangent bundle of \mathcal{F} . Then $\{\phi X_{\alpha}\}$ is a local orthonormal frame for \overline{L} with respect to g where $\overline{L}=Q=D(-\mu)$ is the tangent bundle of $\overline{\mathcal{F}}$.

Therefore

(4.5)
$$hX_{\alpha} = \mu X_{\alpha} \text{ and } h\phi X_{\alpha} = -\mu\phi X_{\alpha}.$$

As $\varpi < 1$ and $\varpi \neq 0$ we have $\mu > 0$ and $\mu \neq 1$ where $\mu = \sqrt{1-\varpi}$. For any α by substituting (4.5) into (2.6) we obtain

$$\Pi(X_{\alpha}, X_{\alpha}) = \frac{2}{\mu} (g[\xi, X_{\alpha}], \phi h X_{\alpha})$$

=2g((1+\mu)X_{\alpha}, X_{\alpha}) by (2.2) (iii), (2.4) (ii), Lemmas 4.1 and 4.5.

Therefore as $\mu > 0$ $\Pi(X_{\alpha}, X_{\alpha}) \neq 0$ for any α hence \mathcal{F} is a non-degenerate Legendre foliation. Furthermore as $\mu \neq 1$, $g|_{L} \neq (1/4)\Pi$ thus by (2.7) (i) (ϕ , ξ , η , g) is not the canonical contact metric structure for \mathcal{F} .

Now we let Π be the symmetric, bilinear form on \overline{L} defined by (2.6), thus for any α , substituting (4.5) into (2.6) we obtain

$$\Pi(\phi X_{\alpha}, \phi X_{\alpha}) = -\frac{2}{\mu} g([\xi, \phi X_{\alpha}], hX_{\alpha})$$

=2g((1-\mu)X_{\alpha}, X_{\alpha})
by (2.2) (iii) & (iv), (2.3), (2.4) (ii), Lemmas 4.1 and 4.5.

Therefor as $\mu \neq 1$ $\Pi(\phi X_{\alpha}, \phi X_{\alpha}) \neq 0$ for any α hence $\overline{\mathcal{F}}$ is a non-degenerate Legendre foliation. Furthermore as $\mu > 0$ $g|_{L} \neq (1/4)\Pi$ thus by (2.7) (i) (ϕ, ξ, η, g) is not the canonical contact metric structure for $\overline{\mathcal{F}}$. \Box

In the following theorem we generalise Theorems 4.3 and 4.4.

Theorem 4.6. Let \mathcal{F} be a Legendre foliation on a contact metric manifold (M, ϕ, ξ, η, g) with constant ξ -sectional curvature such that for any $X \in L$ $hX = \mu X$ for some real number μ , then

(i) (M, ϕ , ξ , η , g) has ξ -sectional curvature of $\varpi = 1 - \mu^2$,

(ii) If: $\mu=0$ then (M, ϕ, ξ, η, g) is a K-contact manifold,

 $\mu = -1$ then \mathcal{F} is a flat Legendre foliation,

 $\mu=1$ then \mathfrak{F} is a non-degenerate Legendre foliation and (ϕ, ξ, η, g) is the canonical contact metric structure,

Proof.

- (i) $K(X_{\alpha}, \xi)$ is calculated from Theorem 3.1 using $hX = \mu X$, (2.5) (i) and Lemma 4.1.
- (ii) If $\mu=0$ then $h\equiv 0$ thus (M, ϕ, ξ, η, g) is a K-contact manifold. Suppose $\mu\neq 0$, let $\{X_{\alpha}\}$ be a local orthonormal frame for L with respect

otherwise \mathfrak{F} is a non-degenerate Legendre foliation and (ϕ, ξ, η, g) is not the canonical contact metric structure.

to g, then for any α we have $\Pi(X_{\alpha}, X_{\alpha})=2g((1+\mu)X_{\alpha}, X_{\alpha})$ and the result follows directly from this. \Box

The example in [1] gives a flat Legendre foliation with zero ξ -sectional curvature which satisfies the conditions of Theorem 4.6, with $\mu = -1$, but not those of Theorem 4.3, thus Theorem 4.6 is a generalization of Theorem 4.3.

For a non-degenerate Legendre foliation on the canonical contact metric manifold with constan ξ -sectional curvature we get the following theorem and corollary.

Theorem 4.7. Let \mathcal{F} be a non-degenerate Legendre foliation on the canonical contact metric manifold $(M, \phi^c, \xi, \eta, g^c)$ such that the sectional curvature for non-degenerate plane sections containing ξ is constant. Then either

(i) $(M, \phi^c, \xi, \eta, g^c)$ has constant ξ -sectional curvature of one and if g^c is a Riemannian metric then $(M, \phi^c, \xi, \eta, g^c)$ is a K-contact manifold, or

(ii) $(M, \phi^c, \xi, \eta, g^c)$ has zero ξ -sectional curvature.

Proof. Let $\{X_{\alpha}\}$ be a local orthonormal frame for L with respect to g^{c} . As the non-degenerate plane sections containing ξ have constant sectional curvature, for any α we have,

$$0 = g^{c}(X_{\alpha}, X_{\alpha}) \{ K(X_{\alpha}, \xi) - K(\phi^{c}X_{\alpha}, \xi) \}$$

= $g^{c}(X_{\alpha} - h^{c}X_{\alpha}, X_{\alpha} - h^{c}X_{\alpha}) - g^{c}(X_{\alpha} + 3h^{c}X_{\alpha}, X_{\alpha} - h^{c}X_{\alpha})$ by Theorem 3.3
= $-4g^{c}(h^{c}X_{\alpha}, X_{\alpha} - h^{c}X_{\alpha}).$

Therefore as $h^c: L \to L$ by (2.7) (ii) this implies that $g^c(X_{\alpha}, h^c X_{\alpha}) = g^c(h^c X_{\alpha}, h^c X_{\alpha}) = 0$ or $h^c X_{\alpha} = X_{\alpha}$.

If $g^{c}(X_{\alpha}, h^{c}X_{\alpha}) = g^{c}(h^{c}X_{\alpha}, h^{c}X_{\alpha}) = 0$, by substituting this in Theorem 3.3 we obtain $K(X_{\alpha}, \xi) = K(\phi^{c}X_{\alpha}, \xi) = 1$. Also if g^{c} is a Riemannian metric $g^{c}(h^{c}X_{\alpha}, h^{c}X_{\alpha}) = 0$ if and only if $h^{c} = 0$, that is $(M, \phi^{c}, \xi, \eta, g^{c})$ is a K-contact manifold hence (i).

If $h^c X_{\alpha} = X_{\alpha}$, by substituting this in Theorem 3.3 we obtain $K(X_{\alpha}, \xi) = K(\phi^c X_{\alpha}, \xi) = 0$ hence (ii). \Box

Corollary 4.8. Let \mathfrak{F} be a non-degenerate Legendre foliation on a contact metric manifold (M, ϕ, ξ, η, g) with constant ξ -sectional curvature not equal to one or zero, then (ϕ, ξ, η, g) is not the canonical contact metric structure.

Corollary 4.8 is illustrated by the following example.

Example. Let $M = \mathbb{R}^3 = \{(x, y, z)\}$ and $\eta = (\cos z dx + \sin z dy)/2$, thus (M, η) is a contact manifold with $\xi = 2(\cos z(\partial/\partial x) + \sin z(\partial/\partial y))$. Then define a contact

metric structure (M, ϕ, ξ, η, g) on (M, η) by

 $\phi = \begin{bmatrix} -\sin^2 z & \sin z \cos z & \sin z \\ \sin z \cos z & -\cos^2 z & -\cos z \\ -2\sin z & 2\cos z & 1 \end{bmatrix}$

and g is the Riemannian metric such that $\{X, \phi X, \xi\}$ is a orthonormal frame of TM where $X=2(\partial/\partial z)$.

It is a straightforward calculation to show that (M, ϕ, ξ, η, g) has constant ξ -sectional curvature of -3 and that $L = \text{span}\{X\}$ defines a non-degenerate Legendre foliation \mathcal{F} . Thus by Corollary 4.8 (ϕ, ξ, η, g) is not the canonical contact metric structure for \mathcal{F} .

References

- [1] D.E. Blair, On the non-existence of flat contact metric structures, Tôhoku Math. J., 28 (1976), 373-379.
- [2] ____, Two remarks on contact metric structures, *Tôhoku Math. J.*, 29 (1977), 319-324.
- [3] N. Jayne, Legendre foliations on contact metric manifolds, Ph. D. thesis, Massey University, 1992.
- [4] M.Y. Pang, The structure of Legendre foliations, Trans. Amer. Math. Soc. 302 (1990), 418-455.
- [5] S. Tanno, Ricci curvatures of contact Riemannian manifolds, *Tôhoku Math. J.*, 40 (1988), 441-448.
- [6] K. Yano and M. Kon, Stuctures on manifolds, World Scientific Publishing, 1984.

Centre for Computing and Mathematics UNE-Northern Rivers P.O. Box 157, Lismore New South Wales 2480, Australia