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Abstract. Let {X,: 2= R?} be a strictly stationary real-valued random field
and {N(A): ACR? a Poisson random measure which is independent of X.
Assume that the distribution of X, has a density function f(x). Fix an ob-
servation-domain V(CR?%. Suppose that we are to estimate the value f(x)
using the data observed on V. If the data are given as observations at count-
ing points of N(dz), then the following kernel density estimator is natural:
fr () =(N(V)hyyy) v K((x—X,)/hyv,)N(dz) where h, is a band-width
parameter. In this paper we discuss the central limit theorem and the con-
vergence rate of the bias and the mean square error for fy(x) as the volume

| V| tends to co. In addition, we shall refer to the estimations of joint pro-
bability density functions.

1. Introduction

The marked point process is an important model for a wide variety of
scientific disciplines. For the definition of marked point process the readers
should refer to [1]. The aim of this paper is to estimate density functions
related to a class of marked point processes. Among marked point processes a
typical class can be described as follows:

; 5(Ziy X'i)

where z, are realizations (locations) of the marginal point process on R?¢, d(A)
the Dirac measure at the point A=R?XR?% and X,, random variables with
values in R%0 indexed by locations z;. Consider the case where the random
variables X,, are not independent. If we assume the invariance of joint pro-
bability distributions of {X,,} under translation of locations, then the marked
point process may be represented as randomly sampled data from a random field
X={X,; ze R} with strict stationarity.

Now let f(x) (resp. f(x, y: z, z,)) be the (resp. joint) probability density
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function (pdf) for X, (resp. (X,, X.,), z21#2.)) with respect to the Lebesgue
measure. Our purpose in this paper is to study some properties of kernel density
estimators for the pdf f(x) and joint pdf f(x, y:z, z.) which are formed from
the observations based on a realization of the marked point process under the
condition that the marginal point process is a Poisson one and is independent of
marks (random field X).

Random sampling from a stochastic process (d=1) has been studied by
several authors (for example, Stoyanov [13], Masry [7] and Takahata [14]).
Among them, especially, Masry’s work should be referred. Throughout the
present paper we will treat only the case d,=1 (the random variables X, are
real-valued). The extensions to multidimensional cases are easy. In this paper
we discuss the central limit theorems and the convergence rates of bias and the
mean square errors for estimators of f(x) and f(x, y:z, 2z;). The main tool
for proofs is the martingale theory. In the case d=2 it seems difficult to ex-
tend the results in this paper to non-Poisson cases. The difficulty of extensions
is due to randomness of the band-width parameter iy, (see section 2). Ellis
introduced a kernel density estimator with non-random band-width parameters
and a k-nearest neighbor estimator for a wide class of marked point processes,
but these estimators can be applied only when the intensities of marginal point
processes are constant and, are inconvenient to calculate when the observation-
domain is not regular. We wish to emphasize the simplicity of our estimators.

2. Preliminaries

Let X={X,:z€R?% and N={N(A): A= 8} (8 is the Borel field of R?) be,
respectively, a strictly stationary real-valued random field indexed by ze R? and
a Poisson point process on R¢ with mean measure m(dz), defined on a probability
space (2, &, P). Throughout this paper we assume that X and N are independent
of each other. Let f(x) be the probability density function of the distribution
of X, and f(x, y:v)=f(x, y: 2z, z;) with v=2z,—2, be the joint probability density
function of the two-dimensional distribution of (X,,, X,,) w.r.t. the Lebesgue
measure. For each finite set ACR? denote by H(A) the o-field generated by
the random variables X,, z= A4 and by 4 (A4) the Hilbert space of #(A)-measurable
random variables with second moment. For each finite sets A,, A.CR¢%, let us
denote by D(A,, A,) the usual euclidian distance between A; and A,. When we
discuss the problems related to the central limit theorem and the convergence
rate of the mean square error for estimators of f(x), the following mixing con-
dition for X is assumed:

2.1) o:(r)= su sup |Corr (X, Y)| —=>0 as r 1 oo,

p
Ay Ag: D(Ay, Ag)=T XEH (41).YEI (Ag)

where the cardinal number of A; is two. On the other hand when we discuss
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the problems related to estimators of f(x, y:wv), another mixing condition is
imposed. The mixing coefficient is defined as follows:

(2.2) 0s(r)= sup |Corr(X,Y)|—>0 asrtoo

sup
D(Ay. Ag)=r X4 (A)).YEH (Ag)

where the cardinal number of A,; is four. Clearly p.(r)=< pu(r).

Let K(x) and H(x, y) be probability density functions on R* and R?, respec-
tively, and W(z) a probability density function on R? with a compact support
and h, a band-width parameter with h, |0 and nh,—o. Suppose that we ob-
serve the quantities X, at atoms of N(dz) in a domain VCR?. In considering
the estimation of f(x, y:v) we assume that m(dz)=Adz for a positive constant
A. Now define estimators for f(x,) and f(x,, x,: v).

(I) The estimator of f(x,):

1
)= R ke

(II) The estimator of f(x;, x,:v) (according to Masry [7]):

(2.4) fo(xy, x50 0)

1
ZN(V)hNW)SS Wy (V= (ZZ—Z1))H< hN(V) ’

where w,(z)=W(z/h,)/h%. In these definitions, if N(V)=0 (resp. N(V)<1) then
we define fy(x,)=0 (resp. fy(x;, x;:v)=0) for convenience. In the sequel the
accuracies of fy(x,) and fy(x;, x,: v) as estimators of f(x,)and f(x,, x,: v) shall
be discussed. Throughout this paper the following lemmas related to Poisson
distributions are fundamental. The first two lemmas are well-known. For a
positive number x=R! denote by [x] the integral part of x.

2.3) S K( o “\N(dz),  VCR®.

Xog—

h'N(V)

%2 )N(dz))N(dzy),

Lemma 2.1. For a positive integer k and an observation-domain V< B given,
tf g(2) is a measurable function on R¢, then the distribution of SVg(z)N(dz) under
the condition {N(V)==Fk} is the same as that of 3t~ g(Z;), where {Z;, i=1, ---, k}
is a set of 1.1.d. random variables with dzstrzbutzon P(Z,e Ay=m(A)/m(V) for
Aes(CV).

Lemma 2.2. For a positive integer k and an observation-domain V& B given,
if g(z1, z,) is a measurable function on R%X R?% such that g(z, z)=0 for all zeR¢,
then the distribution of SVSVg(zl, 2)N(dz)N(dz,) under the condition {N(V)=k} is
the same as that of X%.;8(Z:, Z;), where {Z. i=1, ---, k} is a set of i.i.d.
random variables with distribution P(Z, A)=m(A)/m(V) for A= 8(CV)

The following lemma is obtained easily from Theorem 1 in Chap. 8 of [9].
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Lemma 2.3. For a positive number k let n,=[k—~k log k] and n,=
[+~ klog k]. Then as k—oo

VRIS = RN 1 - (log k)/2
(2.5) e (n=on!+n=§2+on! =0( gt )-

Corollary 2.4. For a positive number k let ni=[k—~"k log k] and n,=
[k++klogk]. Then as k—

(2.6) (E Tt )=k

n=ng+1 N !

for any ¢>0.

3. Main Results for f(x)

In what follows we always assume the following conditions.
Al h,|0and nh,— o as n—oo,
A2 h,/hyasea»—]1 as n—oo,

A.3 The mean measure m(dz) is absolutely continuous with respect to the
Lebesgue measure and its Radon-Nikodym derivative is bounded and bounded
away from 0.

A4 K(x) is bounded and symmetric, i.e., K(x)=K(—x), and szK(x)dx<oo.

In all the statements of theorems below we fix a sequence {V,} of observa-
tion-domains (V,= 3 for all n) with |V,|—oo where |V,| denotes the volume
of the domain V.

Theorem 3.1. (Bias) Assume that f(x) is bounded and continuous at x,. Then
@1 Bias fv,(x0)=|E{fra(xe)} — f(xo)| =0(1).

Theorem 3.2. Assume that f(x) has a bounded second derivative. Then for
each x,=R!

(3.2) Bias fr(xe)=1E {fvn(xo)} —f(x0)] =O(hfmwn>])-

Theorem 3.3. (Mean Square Error) Assume that f(x) has a bounded second
derivative and that X satisfies the mixing condition (2.1) with

(3.3) | omzDdz<oo.

Then for each x,=R?
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1
m(Vn)hEm(Vn)]

(3.4) E{(fy(xo)— f(xo))} =0( )+O0htna ).

Remark. By Theorem 3.3 we see that the optimal form of h, is an~/® for
some a>0.

Consider the following set of conditions.
C1l h,=o(rn %) and nh,—o as n— oo,
C.2 X satisfies the mixing condition (2.1).
C.3 (35) [ oizdz<co.
C.4 f(x) has a bounded second derivative.

C.5 For each z, z,&R® (z,+2z,) there exists a joint probability density function
f(x, y:z, z,) of the joint distribution of (X.,, X:) w.r.t. the Lebesgue
measure, and for each ¢>0 there exists an absolute constant M.>0 such
that f(x, y: 2z, z,)SM, for all x, yeR! and z,, z,& R* with |z,—z.|=e.

C.6 For any x, yeR' and given »>0 there exist positive numbers é and M, ,(»)
such that

@.6) | 1f(x+a, y+b10, D= f(x+a)f (9 +b) | dz S May(r)

for all a, b(|a|, |b| <Z0).
C.7 S K(w)=du=0(*) as r— oo,

luizsr .

Theorem 3.4. (Central Limit Theorem) Assume that the conditions (C.1)—

(C.7) are satisfied. Then for a fixed x,&R!
- D

3.7 VNV Dby wp {f v, (£0)— f(x:)} —> N, 0°)

where o"::f(xo)so_o K*u)du.
Theorem 3.5. Assume that the conditions (C.1)—(C.7) are satisfied. Then for
any xo, Yo R (Xo# ¥,o)
'\/N(Vn)hN(Vn) {fv (x)—f(x0)}

and

VNV )by w oy v (30)— F(o)}

are asymptotically independent.

Remark. The condition (C.6) is rather restrictive, but is essential when
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we consider some continuous versions of density estimations based on dependent
sample ; see [6], and [8]. We find a discrete version of the condition
in [3].

4. Proofs of Theorems 3.1-—3.5

We can prove by the same way as [Theorem 3.2, so we prove
only.

Proof of We know
haid k
(4.1) E{fv(x0)}= szoE{fV(xo)lN(V)=k} =™ m(kv;) _

Let % be a positive integer. By and the stationarity of X we have

i SEE(ET)

= E{§ K(X',;;“m%)}

_ 1
By
= 71—8 h,,xo )} ";l((clif))
1
=) K

E{fv(x0)|N(V)=k} =

xxo

) f(x)dx
= S:K(W)f(xo—l—whk)dw

=G+ | K@) fxotwha)—fxo)dw.

Therefore by the smoothness condition for f(x) and the symmetricity of K(x)
there exists a positive constant M such that

| E{fv(x) | N(V)= k}—f(x.,)isMhzs Kww*dw  (k>0).

Put n,=[m(V)—~m(V) log m(V)]. Therefore by and for a

sufficiently large M’ we have

« o k
| E{fv(xo)} —f(x0)] §MS_«K(w)w2dw é‘l h2g—m ") m(kv;)

oo ny- k k
gMS K(w)w”dw{hg lzle_m(v) m(V) +h 2 -m (V) ﬂ}
e i= k1

=nl

gM’{o( m(1V)° )+ %} O(htm 1)
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as m(V)—co for any ¢>0. Thus we have completed the proof of [Theorem 3.1
Proof of [Theorem 3.3. The following lemma is well-known.

Lemma 4.1. For any random variables X and Y defined on a probability
space, define Var[X|Y]=E{X—E(X|Y))?|Y}. Then we have

4.2) Var(X)=E{Var[X|Y ]} +Var(E{X|Y}).
Now we proceed to prove [Theorem 3.3.
MSE (fr(xe))=E{(fv(%0)—f(xe))*}

=E{(fv(x0)—Efv(x0))’} +(Bias fy(x,))’

=IL+1, (say).
Let N=N(V). By Lemma 4.1,

n=E{Var[fy(x0)| N1} +Var(E{fv(xs)|N)})
=I,+1, (say).
Denote by py the probability e-™“m(V)*/k. Then we have
La= 3 Var(fs(xo)| N=k)ps .

Here fi(x,) denotes 1/kh, 3., K(Xz,—%,)/h:) where {Z,:i=1, ---, k} are i.i.d.
random variables distributed over V with P(Z;€dz)=m(dz)/m(V) (dzCV) and
independent of ‘X. Let us denote by N, the event {N=Fk} and by E, the con-

ditional expectation w.r.t. P(-|N,). Then by the definition of E, and stationarity
of X we have

@.3) Ek{K(gﬁﬁ:_’ﬁE)}=st{K(X'}; %) ';((‘ff)) =[" K(EF=) s,

=3 B (K (222 Bk (Z2 2}
= E g (P52 -mx (F5 2}
+ B () - r (BB

x(K(F5 ) B (P2 D)

=Ji+J: (say).
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Jom Bl R (B

- ol e Ry
= 8 o {mreo”_Kiodx+omp)ps

= S e _Krwds+omn)s
=m{f(xo)glx(x)dx+o<h[m<m)}

as m(V)—o by [Corollary 2.4] and the condition A.2. Next consider the term J,.
The cross term is estimated as follows.

() (B k(R - s (B

(Ea) - p(Remm)

<E{o12:—2.))

midzs) _ o ha
mvy =My

for a sufficiently large M. Thus by [Corollary 2.4 we have

<Mh,{ mdz)| plz—2)

L=+ 1sM(E o pt 3

“kh, hkm(V) pk) O( m(V)h[m(V)])

for a sufficiently large M, because [m(V)+m(V)'?log m(V)]~m(V). Lastly we
consider I,=Var[E{fv(x,)|N}]. By (4.3), as m(V)—co,

k=1 j=1

hom BT te S AT K2 e o

= 20T RS2 s — 1)) pac+ (Bias futen)

k=1

=0 i h:p,,)-l— {Bias fv(x0)}*

k=1

=0(htn w1+ {Bias fy(x0)} *=O(htn v
by [Corollary 2.4 and [Theorem 3.2. Thus we have proved

Proof of We use the following central limit theorem
4.2) for martingales (a specialization of Theorem 3.6 in [5]).

Lemma 4.2. For each n=1 let {Sni, Fni, 0Si< Ry} (Sno=0) be a zero-mean,
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square-integrable martingale with differences Xn:. Suppose that Sup,, ; E(S2;)<< .
If

P
4.4) sup | X»i| —>0,
P
(4.5) ‘? Xi —> q?
(4.6) E(s?pr.i) s bounded,
then
9D
4.7 Sar, —> NO, a*).

Recall that we have fixed a sequence {V,} of the observation-domains. Let
m=[m(V )~ vm(V,)log m(V,)] and ny=[m(V,) ++m(V ) log m(V,)]. Denote by
{ka, n=1, 2, -} an arbitrary sequence of positive integers satisfying n,<k,<n,
for all n. We consider the conditional central limit theorem on the event
{N(V,)=Fk,}. Sometimes we denote by N the random variable NV ,) and write
k for k,. On the event {N=£F} we have

vV Nhy {fr (x)—F(x)} =k, {fV(xo)—Ekan(xo)+Eka,,(xo)—f(xO)}

1 . , z — m(dz)
—Vk*TT,EEKn<Xzf>+\/h,,{SV,,K"‘X')mm)}

++kh, {Ewfv,(x0)—f(x0)}
=L+ L+ VERy {Es v (%0)— f(%0)}

where
— X_Zg_xo _ X.—x0\ m(dz)
KaXe)=K(ZE20) - K(S570) 008
and
73 _ g Xe— %o X,—%,
Kn(x,>_K(mhk )—E{K(———hk )
By the condition (C.1) and [Theorem 3.2, we have easily
(4.8) VEhi | Exfy,(£0)— f(%:)| =O(~ BRE)=0(1).
Lemma 4.3. As n—oo,
_ [k = m(dz) | F
“9) L=y, R0 2424 Do,

Lemma 4.4. As n—oo,

kn g)
(4.10) Il:x/kTIhT—tg K (Xz,) —> N(O, ¢*)

1
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where g*= f(x.,)S” K*(x)dx.

Proof of Fix a positive number ¢>0. Then there exist positive
numbers A. and J satisfying Slz|>A,P1(]ZI)dZ<E and m(Uy(z))<e¢ for all zeR*
by the conditions A.3 and where Uj(z) is the ball at center z& R¢ with
radius 6. We may assume that A,>d. For notational simplicity we write £
for k,.

B~z B{(l, Rexomazy)}

(Vn)hk

=— i Bfl, maz],  RuX DR gmdz0)

+B{[, mdz0], | KX )RuX.m(dz)

A,('z)

+E{[, mdz Ri(X. )R (X, Jm(dz0} |

UAB(zl)—Uam)
_ 1
m(V n)hy

In below the capital letter M denotes some absolute constant which is not ne-
necessarily identical in different ocurrences.

{Is1+ Too+Iss} . (say)

1 M
iy | 1S iy M SR ol mede
SMsupm(Us(z,))< Me,
2
1 : M
iy 1S g YO s D)<

By condition (C.6) there exist positive numbers y and M such that

4.12) supS | F(Zota, Xotb: 2, 2)—f(x+a)f(x+b)|m(dz)<M

Usz)®
for all g, b(la |, |6]<7). By this and the condition (C.7) we have

] M
Ve | 8= T T,

X|f(xo+uhy, xo+why: z,2:)—f(xo+uhy)f(xo+why)dudw

him(V a)sup | m(dz)|” [ Keukw)

UAs(z)—Ua(l)

SMhnsupS m(dz,)

UA (2)-=-Us(z)

S I
nms;’; auus{;—'- |w|s: lulzh"—k
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+S.w.=h_r,;§.u,sﬁ%+5,w,=%§l o KOO (0)

k
X | f(xotuhy, xo+why: 2z, z1)
—f(xo+uhp)f(xo+why)| dudw

< M{h,,+h,,m(Vn)(~;—k)_‘ +hkm(vn>(hlk)_s}

hd h3
=0(hatm(V )i +mV )3 ) =o(b),
by che condition (C.1). We have proved Lemma 4.3

Proof of [Lemma 4.4. Here also we write 2 for k,. We shall consider the
conditional central limit theorem w.r.t. the event N,,={N(V,)=Fk}. Let {F,;:
Jj=1, -, k} be the sequence of the g-fields F,; generated by {X, Zai, Zns, +*,
Zn;} where Z,,’s are i.i.d. random variables with P(Z, . edz)=m(dz)/m(V,)
(dzCV,). For convenience we write F,, for the g-field {¢, 2}. Denote by
Sik(n) the sum . Ki(Xz,,) (Sso(n)=0). Then it is easily shown that for each
n {Sein), Fs;; j=0, ---, k} forms a martingale sequence, that is, for each ;<
k—1 E{S;;.(n)|Fr;} =Sss(n) a.s.. This martingale property of S;,(n) plays an
essential role in the proof of Lemma 4.4

Lemma 4.5. As n—oo,

(4.13) B{Ith —> f(x)|”_Kwdu.
Proof.
B = B{(K(F )=, K (P52 )}
=7,1:SLK’(" 2yt e{(f, KT}
=" KWf (ot hyw)du

=iy b0, B{K () - BR (5]
x| k(T pr(Za= 2 a2+ O(h)

=fexo|”_K*wdu+0p|” Kw)ul*du
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+00m(V ) sup | 0.1z, | ym(dz)+00he)
=fe)|” K*@du+0(ha)+0(m(V ).
Lemma 4.6. As n—oo,

410 e alr(Car |, k(Feymen T

P »
— fx)|” Ku)du.

Proof. Define

vt (| X)L

It suffices to show that as n—

@415  T= k%th{[é; Ku(X, Zor—khyfxo)|K¥wdu]} —0.

From the proof of we know

E{K«(X, ZF =haf (x| K wdu-+0(hh+o(—t=)+0(hD),

hi
m(V,)
hence we have

Ts ki% E{[tile"(X’ Zi)z_t‘iE{Kn(X’ Z,-)"’}]z}

+ i (O h)-+o(hD)

= E{(BWax, 20)}+0thntote),
where
WX, Z)=Ku(X, Z;*—E{K.(X, Z:;)*, i=1, -, k.
It remains us to show
(4.16) T’:-—E{(‘:Zl WX, Z,-))z}=o(kzh%).
We know that
E{Wu(X, Z)}=0 and E{W.(X, Z,)*}=0(h:).
Hence for a sufficiently large C

T'=kEWX, Z)'} +k(k—DE{WA(X, Z)W (X, Z2)}



NONPARAMETRIC DENSITY ESTIMATIONS 139

Ch(k—1)
(m(V )

In fact, putting K,(x)=K(x/h,) (rem. k=Fk, depends on n),
4.17) E{Wu(X, Z)Wu(X, Z,5)}

<O(kh)+ mal, pi(1zm(d2)<O(khy).

=E{[K§(le—x°)_<smK"(X'_x")_’:lg—?/% 2

‘EK’z'(XZ‘—x°)+E{(SynKn(Xz—xo) ZE?/?) 2}]

m(dz) \2
m(Va)

_ EK;(X22—x0)+E{(SVnKn(X,—xo)%_%_ 1)

=E{[Ki(Xz,—x0)— EK}(X7,— ) JLKA(Xz,— %0)— EK3(Xz,— %0) ]}

x| K3z 20—(], KalXimx)

—E{[Kn(XZI"xO) —EKi(Xz,—x0)+Ki(Xz,— %0)— EK (X z,— %0)]

e e e (et

+B{[([,, Kk 65 ([, Kot i 5) |}

=0L—l+1)+1,. (say)

Now let us estimate each I,.

s
{1y écm—pr(lzl)m(dZ),
m(dz)
s, 2G5, |, AKX~ x)— EKA (X %0)]

m(dz,) m(dz,)
m(V,) m(Vy,)

X [Kn(le— xO)Kn(Xzz_ xo)"“EKn(le—“ xo)Kn(ng'_ xo)]} l

=C

ez mda),

and similarly

hs

| =C—F=7~- Vo)

— Izl m(da).
Lastly

= b, 50 | B 20K 20 KKy = 20K Koy =50
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—E {Kn(Xz—xo)Kn(le_xo)} E {Kn(Xzz“‘xo)Kn(Xzs—xo)}
xXm(dz)m(dz,)m(dzs)m(dzs)

h
<C s eutizm(dz).

Thus we have proved

It is easy to check that our conditions imply the other conditions in
4.2 except for [(4.4). In order to prove [4.4) it suffices to show that

(4.18) D= kzhz EE{K (Xz)} —> 0.

,;ﬁ[E{w(———"z;;“>}+6E{K2<X21 Regmaey (], (ot e )

+E{({, x( ,};xo) %?) }]

G e A C e

+Sw Ky{(X= x°)f(x)dx] by Jensen’s inequality

IA

0( SZK‘(u)du):o(l),

so we have [(4.19),
Thus by Lemmas 4.2, and 4.6 we have proved Lemma 4.4

Now let us turn to the proof of Denote by @,(x) the normal
distribution function with mean 0 and standard deviation ¢ where 2=

Fx)|”_K*wdu, by Fu(x) the d.t. of v NV Vhw s (o)~ f(xo)} and by F, 4(x)

the conditional distribution function of vVN(V.)hyw ,{fv (%s)—f(x,)} given the
event {N(V,)=Fk}. Then by [Corollary 2.4 for any ¢>0

An=Sl;p [Fn(x)_¢a<x)l

(4.19) < 3 sup | F, (1) = olx) | ™™ m(ka;.)»

= sup SUp | Fr 1 (x)—Po(x) | +0(m(V »)™*) —> 0

by completing the proof.

Proof of By it suffices to show that for x,# y,
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(4.20) Covi{vVNVHhyw, fv (%), VNV )y, frv (v =0().
The following lemma is similar to and easily proved.

Lemma 4.7. Let X, Y and Z be random variables defined on a probability
space. Then

(4.21) Cov(X, Y)=E{Cov(X, Y |Z)}+Cov(E{X|Z}, E{Y |Z})

where Cov (X, Y |Z) denotes the covariance of X and Y w.r.t. the conditional ex-
pectation E(-|Z).

For convenience we assume that x,>y,. As well as the preceding proofs
let us denote by N the random variable N(V,), and by p, the probability
P(N=Fk).

COV{\/N—E;an(xo), \/mfvn(J’o)}
=E{Cov(vNhy fv (x0), VNhy fv (30)IN}

+Cov(E{vV'Nhy fv (£0)IN}, E{~Nhy fv,(y)IN})
=H,+H,. (say)

4.22)

We write K,(Xz,—x) for K(Xz,—x)/hs)—E{K(Xz;—x)/h)}.

ti= 8 1 B 5 KuXa,— 50\ S KXz~ 30)} 21

4.23) =3 L KX — 20K (X z— 30)) D4

k=1 hk

= k—1
+ By E K Xa 50Kz, 30} P
Now we estimate each expectation in the summations.

’E{Kn(le—xo)Kn(le—yo)} |

u‘—xo

=S:°K( - )K( ”;:’°)f(u)du+0(h§)

(4.24)

Xo

k-—-h,,STNK(w)K(w-{—

25 (ot hew)dw+ Ok

=0(h})

by dividing the integral domain into three parts w=0, —(ho—y,)/2h,<w<0 and
W= —(x0—2Y0)/2h, and considering the condition (C.7).

We estimate another expectation. For ¢>0 given take positive numbers d
and A such that
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supm(Us(z))<e and sgpSUA(z)cp,(lz—zl1)m(dzl)<5,
We may assume there exist » and M<co such taht
su pSUa< | f(xo+a, yot+b: 2z, 21)— f(xo+a) f(yo+b) I m(dz, )< M

for all @, b(|a], |b|<r). In below the capital letter M denotes absolute constants.

|E {Kn(le—xo)Kn(Xzz_yo)} I
=[{,, w0 (F5))

(R (KR

Mh,
< —
4.25) < h-sup SUM p:(12—2, | )m(dzy)
Mh2 T/hk
oy supl,  mdzd| " (70 KGOK@) ot uha, yokvhat2,2)
— fot uh ) (ot vh)| dudv+Ohg+ R0y [, olz—zlmz)
0 )] (Do k 4 mV 2 zp UA(Z)pl 1 1
eh, hi eh,
MGy vy Ay
By (4.24) and (4.25) we have
o e(k—1) he(k—1) s e(k—1)
(4.26) HlsMgl{hﬁ 7 T ey H = DR bou.
Since ¢ is arbitrary, by we have
4.27) H,=o0(1) as n— oo,

Lastly we show that H,=o(l) as n—. Since

X—X,

Bfv (s N=k1= 5" K(Z22)

we have

Hy=3 kh {,%SZK(" ) f(x)dx— E fy (50}

k=1

x{ " K(E2)fwds—Efr, 00} pi

(4.28) = 5 em{y- | K(E2) fdx— f(x0)—Bias fr (v}

=1
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< K (52 @i — f(30=Bias fr, (30} b4

= 3 {£hOhD)+O0(hiner p NOBY+O(hmar )}
=00V ) htncr ) =0()

by the condition (C.1), [Theorem 3.2 and [Corollary 2.4, Thus we have completed
and proof.

5. Main Results for fy(x,, x;: v)

Let H(x, y) and W(z) be bouuded probability density functions on R* and R¢,
respectively. In what follows we always assume the following conditions (B.1
-B.4) in addition to A.1 and A.2 in sect. 3.

B.1 The support of W is contained in the unit ball at center O.
B.2 SsHZ(x, y)dxdy< oo

B.3 The Poisson point process N(A) is homogeneous, that is, there exists a
positive constant A such that m(V)=21|V| for all Ve 4.

Remark. The condition B.1 is rather restrictive, but this condition simplifies
several proofs. To weaken the condition B.3 is easy. See Remark in Section 5.

Let fy(x,, xs:v) be the estimator for f(x,, x;: v), defined by (2.4). We shall
discuss asymptotic properties of f,(x,, x,:v) under some regularity conditions
when |V |—oo. Fix a sequence {V,} of observation-domains with V,CV ,,, and
|V n|—oo as n—oo. It is clear that {V,} cannot be chosen arbitrarily. In fact
if V,’s are very thin, then for some vector v we can not estimate f(x;, x,:v)
by fv (x1, x2:v). For example (d=2) consider the case where V,={(x, y);
0<x<1, |y|<n} and v=(0, 2). We assume the following condition.

B.4 For each vector veR? and ¢>0 as n-—co,

Theorem 5.1. Fix a non-zero vector v,. If f(x,y:v) is continuous at {(x,, x5),
vo} and bounded, then as n— oo

(5.2) E{fy (%1, Xa:v)} —> f(%1, X2 Vo).

In what follows we assume the following mixing condition.

(5.3) [ o ox(12dz<o0.
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Theorem 5.2. Fix a non-zero vector v,. If f(x,y:v) is continuous at {(xi, xs),
vo} and bounded, then as n—oo,

E{N(Vn)h?vﬁ’n)[fvn(xh %ot vo)—Efy (%1, x2: v0)1%}
(.4
—> A" f(xy, X, vo)SW"’(z)szSHz(x, ydxdy.

Theorem 5.3. Fix a non-zero vector v,. Suppose that khg*—co as k—oo.
If the function f(x,y:v) is continuous at {(x,, xs), vo} and bounded, then as n— oo,

— 9D
(5.5) VNV YRGS 5 {fv (21, 222 v0)—Efy, (%1, Ze: v0)} —> N, a?)

where ¢*=A"1f(x,, x,: vo)SW”(z)szSH”(x, y)ydxdy.
Let A be the family of subsets A of R¢ with #(A)=4. For A={z,, s, 25, 2.}
ed put L(A)=min{|z,—z;|; 1<i<j<4}.
B.5 For each A= the random field X has a joint probability density function
f(x: A)=F(x1, X3, X3, X4: 21, 24, 25, 2.) (z:€A) of random vector
(Xll! Xla} Xls) Xll)!
and for any >0 there eXists an absolute constant M, such that for any

A={z,, 23, 23, 2} EA With L(A)=e¢
flx:t A)=M,.

‘Theorem 5.4. Fix non-zero vectors v,, vi. Suppose that f(x, y:v) is con-
tinuous at {(x,, x»), vo} and {(xs, x4), v:}, that the condition B.5 is satisfied, that
khi**—oco as k—oo, and that there exists an absolute constant C>0 such that
__Cc
14+ u?+02
Sfor all u, v>0. If {(x,, x3), vo} # {(xs, x,), v;} then the random variables

5.6) S S H(x, y)dxdy<
lz|1>uJiyi>v

6.7 VNV IREE 5 {fv (X1, %22 ve)—E fy (%1, %2 vo)}
and
VNV ARG o {fv (%5, i v)—Efy (%3, X4t v1)}

are asymptotically independent.

6. Proofs of Theorem 5.1—5.4.
In what follows we write H,(x, y) for H(x/hy, y/h).

Proof of [Theorem 5.1. We restrict ourselves on the event {N(V,)=k}
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where k==Fk, is a positive integer such that

(6.1) L2 Val=VAIV,] log A1V, 1S k<[ Vo |+ VA V] log 2| Val]
By the condition B.1 if n is sufficiently large, using the usual argument we have

E{an(xly %20 0o) | N(V )=k}

1 k
= 2kh} E{E,wk(vo—(Zf—Zt))Hk(xl—Xz,, xz—xzj)}

k(k—1
= _-(lk—h;;lE {Wk(vo"(Zz'—'Z‘))H,,(xl—le, xz—Xz2)}
k—1
©n = ngnsvn d21d22u’k(vo—(ZQ—Zl))SSHk(xl_x’ Xe—Y)f(%,y 121, 25)dxdy

= ﬂ%g"n&’n dz,dzzw,.(vo—(22—21))SSH(141, Us)

X f(x14ushy, xo+ushy: z,, zs)du,du,
=f(x1, X2: v0)+0(1).
by B.4 and the assumption of [Theorem 5.1. Thus we have completed the proof.

In advance to prove Theorems 5,2-5.4 we need some preparations to apply
martingale theory. We restrict ourselves on the event {N(V,)=Fk} where &

satisfies (6.1). As in the proof of we may assume that w(2v,)=0.
For notational simplicity write #i(dz) for dz/|V.|. Put

k
Sy= t% Wi(Wo—(Z;—Z)Hy(x1—Xz,;, Xs—X3z))
k
6.3) —E{ Zws@o—(Z,— Z) Hi(5:— Xz, 51— Xz}

k
=tZGk(Ziy Zj: thy XZI)+ Eék(zi, Zj: th’ ij)+Rk ’
<J 1#f
where

Gk(Zi’ Zj: XZ;; XZ])
=wWi(wo—(Z;—Z))Hi(x,— Xz, xz—‘Xz,)

={, won—G—zOH Xz, 50— X2
|, w22 Hii— Koy, 50— Xz pd2)

(6.4) +], {, w2 —X.,, =X A2z



146 H. TAKAHATA
+ wk(vo_(zi_Zj))Hk(xl_XZj; xz_XZ,)

|, s —(Zi— 2 H(5i— Koy, %=Xz )(d2)
~{, W@ —Z)Hix Xz, 1 Xa ()

+SV SV Wi(Wo—(21—22) Hp(x,—X,,, xl—le)m(dzl)m(dzz),
Gu(Zy, Z;: Xz, Xz))

={, win—(@r—ZDHA5~ Xz, 1~ XoW(dz)
(6.5) ], w22 H i~ Xy, v X ()

"2Sv SV wiWo— (Za—2))Hi(x,—X,,, x:—X,,)i(dz,)i(dz,)
and

66 Ri=k(e=D|, | wivo—(r—2)) {H(r:i—X,,, 11=X,)

'—'EH},(x1“"le, xg—‘X,Z)}m(dzl)m(d22).
Lemma 6.1. As n—oo, we have

kahit?

kiht,

6.7) E{R}} —>0.

Proof. In below the capital letter C denotes an absolute constant.

ER =k —1E{[{, |, w0z XHy(x-X,,, =X,

n

—EHy(u—X,,, x—Xu)m(dz)m(dzy | }
(6.8)
= E}%&SV,;SV”SV"SV,, wk(vo—(22—21))10,,(00—(24—23))

X h3ps(D((21, z9), (25, 24)))dz1dz,d25d 2,
< Ck%(k—1)%hi
= | Val®
because w, is a probability density. Thus we have

khd+2
~ing E(RB=0(h®)

by the condition on k&, completing the proof.

foutiznaz,
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Lemma 6.2. As n—oo we have

kahgr

kiht,

(6.9) E{[3Guu20 2,1 Xzp X2)|} —0.

Proof. For notational simplicity we write g.() and g,() for

[, wson—@—z)Hu 1~ Xz, 2= XD(d2)

_ SV SV Wi Wo—(Za—20)) Hy (%1 — Xoy, %o— X, ))(d2)7(d2s)
and

[, wsom(Zi—2DHu(ri= X,y 21— Xzm(d2)

=\, |, wro—(@—2 ) Hi(ri— X, x0— X, m(dz)(d20)
respectively. By independence of Z,’s we have

B{{ 5842, 2,1 Xz Xz | =k (k=10 {Eg20)+ EgiD)+2EL2 . (Dg:(L)]}
(6.10) 17

< Ck(k—1)’h}

- [Val? ’
where C is an absolute constant. Thus we have

kh}‘;i+2 ko . 2 _ d
(6.11) o Bl 26020 2,: Xz, Xa)|}=00h0),

completing the proof of the lemma.
Lemma 6.3. As n—oo,

kahf®

6.12)
> Af(%, % vo)SW”(z)szSHZ(x, y)dxdy

Proof. By the definition of G, we know that for i<y

E{Gb(Zi, Zj:XZi, ij)‘Zj} =0 a.s.
and
E{Gk(Zi, ZJ:XZ,;, ij)’Zj} =0 a.s..

Hence by some elementary calculations we have
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2 1
B[ 56420 2,: Xy Xo)[}= 22 BiGHZ, 222 X, Xa)
k(k—1) 2 . 2 2 1
613~ hif e, %o 00 \W@dz( | Hox, y)dxdy- T
k(k—1)hi
+O(—__|Vn|2 )-
Thus we have
kh;,“'z

6.14) k®h} E{L:EJG,,(Z“ Z;: Xz, Xz;)]z}

~af(, 502 v W@\ [Hx, 9)dxdy+0( |v |
We have proved the lemma.
Proof of Immediate from Lemmas 6.2-6.5.

Proof of We omit some details. A detailed proof can be
carried out in the same way as in [4]. From we may assume
that f(x;, x,:v,)>0. We use the notations in the proof of Let
{k,} be an arbitray sequence of positive integers satisfying the relation [(6.1).
Write % for %k, and put

T, =3i<sGe(Z4, Z;: Xz, Xz)),
(6.15) Sri=2i=2T4. 5, S.1=0,
gk.lza(Zl, Z2’ Ty Zly Xz(zevn)) 2§l§k.

For convenience we set T o={¢, 2}. Then {Si,, Fi..:2=!<k} forms a mar-
tingale sequence, that is, for any [(1<I[<k)

(6.16) E{S,tlFe1-1} =Sk 121 a.s..

Now we proceed to prove [Theorem 5.3. As in the proof of we
shall apply the martingale central limit theorem to the sequence
{St.:}. Thus in view of Lemmas /6.1 and and the argument in the finish of
the proof of it suffices to prove that as n—oo

6.17) st D= E{T4;} — 0,
where si=F{S% .}, and
(6.18) Skt =T —> 1 in probability.

Remark. Remark that
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si=25= E{T%;}
(6.19) ki

hd Ff(xy, Xt vO)SW2(z)szSH2(x y)ydxdy.
Lemma 6.4. As n—oo,
(620) Sknz gE T"n]} —> 0.

Proof. By the definition of G, we have
E(Ti)} =E{(Z<;Ge(Z1, Z;: Xz, Xz))'}
(6.21) =(—DE{GKZ,, Zs: Xz, X2z,)}
+3G—DG—=2E{GKZ,, Z5: Xz, X2)GHZ,, Zs: Xz, X2z,)}.
Hence we have
sit e E{T4} Sconst si* kB’ E{GHZ,, Z,: Xz, Xz,)}

+COI’lSt Sk—‘ksE {Gk(Zl, Z2 : ley XZQ)Gg(ZI’ Za . ley XZg)}
(6.22)

1 1
=0( khg+2)+0( kh%)‘
It remains to show that as n-—co,
(6.23) T=si'E{[ D= Thy— Z5= E{T}} P} —> 0.

We write T, for T4,—E{T%,}.
T=si*E{Shes Th} +257*E} Sircsy Tas T}
=I,+21,. (say)
By we have that as n—co -
(6.25) Li=si* - E{T%) <si* D4-o E{TH} —> 0.

(6.24)

For j,</j, by the definitions of w, and G, we have
E{T4,,T4,) SE(T}, T,

Ji-1 Jj1-1
:E{[tgl G%(Zi, Zjl : XZ{, ijl)+2 % Gk(Zi) Zjl : XZp ijl)
XGk(Zl’ Zjl . XZU ijl)]
x| 3 6Kz, 2,y Xey Xay )42 8 Gu(Z0, 2,y Xz Xay)
= k iy Jo * Zy> ij & k i Ja Zy» ij

(6.26) XGu(Zi, Zsy: Xzyy Xz, |}

149
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=Gi—D, AEDEIGKz, Z1: X, X2)GHz, Z: Koy Xy

+Gi—DG-, |, mdzomday

Va
XE{Gi(zh Zl : sz XZI)G%(Z% ZZ: Xlg, XZQ)}

Ci(i—Dhi | Colii—D(U—D)hi

é h%dlvnlz hgdlvn|2

+

Here we used the Schwarz inequality. Thus using the relation k~A|V,| we
have

e Ry N0 1\
et v e) =0 )=

Thus we have completed the proof of

6.27) T=0(

Proof of We treat with the case (x;, *)#(%s, *,) only. We
can treat with the case v,#v, similarly. In order to prove it
suffices to show that

/ kh}
©28) Tv=EB{| SCxZ: 2,: Xz, Xa) || FOUZs 20 Xay Xz |} =05

where G; denotes the formula corresponding to G, (see with parameters
replaced by (x5, x,). By B.5 and the definitions of G, Gi, using the argument
similar to the proof of we have

TkzigE{Gk(Zb Zj: Xz,, XZ,)G;(Z{, Zj : sz 'XZj)}

_ k(k—1)
2
(6.29) ~k(k—DE{wi(i—(Z:— Z))Hy(%1—Xz,, X2—X3z,)

X W1 —(Ze—Z ) H(x35—Xz,, X:—Zp)}

E{Gk(Zl) ZZ: XZI) Xzz)Gz(Zly Z2 . XZp XZg)}

=k(k—~1)§ SV Wi, —(2a—21)

VaJVa

XE{Hy(x,—X,,, %:— X, ) Hy(x3— X, |, x.—X,,)} M(dz1)fi(d2,).
By the condition we see that
E{Hk(xl"an, xz—Xaz)Hk(xs_le, x4—Xz,)}

(6.30) =SSH,,(x1—x, Xo— W Hy(xs—x, x.—9)f(X, ¥: 21, 25)dxdy
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=SSH(u, VH(u+(x3—x,)/hy, v+(x4—x5)/hp)dudv
=0(ht).
Therefore since w, is a probability density we have
(6.31) Tr=0(k(k—1)ht |V, | =0(khi %),
proving (6.28). Thus we completed the proof of

Remark. I. For d=2 the following estimate is obtained from the proof of
Theorem 5.1..

(6.32) E{fv(x1, Xo: )} — f(x1, Xo: 0)=0(|V[~1/9),

which cannot be improved without some edge correction (c.f. [107]).

II. Several results in Section 5 can be extended to the case where N is a
non-homogeneous Poisson process. Assume that there exists a positive bounded
and continuous function p(z) on R? such that

(6.33) m(dz)=p(2)dz
and
(6.34) p(z)=a for some a>0.

Then an estimator fy(x;, x,:v) of f(x,, x,:v) is given by

1 S S Wy n(v—(2:—21))
NV )hyw, Jvlv p(z1)p(22)

If the sequence {V,} of observation-domains satisfies B.4 and lim,..|V,|"'m(V,)
=a for some positive constant a, then we can prove the results in Section 5
without any other additional assumptions. For example we can prove that as

n—oo

(6.35) E{fv,(x, y: )} — af(x, y:v).

However there is a substantial drawback in estimating joint densities using
Fr(xy, x5:v), because we must have the complete knowledge of intensity p(z) in
advance to estimation.

Hyw(x,—X,,, x3—X,)N(dz:)N(dz,).
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