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Summary. We study stochastic integral equations of under less restric.
tive assumptions. There are given sufficient conditions for the existence,
uniqueness and stability of solutions to these stochastic integral equations.
We use the Banach space of tempered functions which contains the space
D([0, 4+c0)) and Banach fixed point principle.

1. Introduction

Theoretical treatments of problems concerning stochastic differential and
integral equations have nowadays a large literature, cf. [2], [3], [4], [61-[10].
Most of them concern the existence and uniqueness of solutions to the examined
equations.

The aim of this paper is to give a new existence and uniqueness theorem
to stochastic integral equations and to investigate the asymptotic behaviour of
their solutions. Our approach bases on a construction of the real Banach space
of tempered functions which contains the space D([0, 4o0)) of real, right con-
tinuous functions having left hand limits. The results of this paper generalize
one of results given in [11]J. Our proof does not use the concepts of contractor
and we omit the assumptions on L-continuity of stochastic processes.

2. Preliminaries

Let (R, B, v) be a measurable space with the Lebesgue meaure v on (R, B),
where B denotes the Borel g-field of subsets of R. By L,(R, B, v), 1<p<oo,
we denote the set of all y-measurable functions x : R—R, such that the func-
tions |x(-)|? is y-integrable. The norm of x=Ly(R, B, v) is defined by
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Let L([0, +)):=L«([0, +0), B, v) be the space of v-essentially bounded
function on [0, +o0). Assume that p(-)e L([0, 4+0)) is a fixed positive function.
A triple (2, A, P) denotes a complete probability space. By L3(R,, L«(2, A, P), p)
(or shortly .£2) we mean a space of all functions x:=x(¢,-) in R, which are
integrable with respect to Lebesgue measure vy, with values X(#) being random
variables in L,(2, A, P) and the topology generated by

5=, p(t)»-ess sup I 2()]cydul), @1

where v-esstosgp)llx(s)ll 1, is taken with respect to the Lebesgue measure v.
sc[0,

We prove that L2 is a Banach space. The following lemma will be used.

Lemma 2.1 ([1], p. 104). Let {e,, n=1} be a subsequence of positive num-
bers such that n;is,,<oo. Assume that X is a linear normed space. If every
series é}lx,, with x,€% such that | x,|<¢&, converges in X, then X is a complete
melric space.

Lemma 2.2. L% is a Banach space.

Proof. Let x,=.C? be such that ||x,|<2™", n=1. It is obvious that
X 2(s)z,Sv-esssupllxq(s)lz,,  m21,
except of a v-Lebesgue measure zero set Z,. Hence
[2g(s) 4+ - +%-(8)lzy<v-ess suplxg(s)lize+ -+ +v-ess suplx-(s)lz, (2.2)

except of a set having zero Lebesgue measure. By (2.1), (2.2) and the assump-
tion that [x,[[,<27", n=1, we have

”xq+ ‘1‘xr”p§2—(ﬁ1 .
Therefore

r
jz.:qlllelp — 0, as g, r—oo,

which implies that the series le,, converges. Hence, by Lemma 2.1, we con-
n=

clude that 2 is a Banach space.

3. Main results

We deal with the existence, uniqueness and stability of random solutions
to the following stochastic integral equation
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t
X(t; 0)=h(t, X(t; @)+ /¢, 5, X(s; @); 0)ds

t
+ et s, X3 0); wapss 0, 120, (3.1)
where
(i) wef, and 2 is the supporting set of a complete probability measure

space (£2, A, P) with A being the o¢-algebra and P the probability
measure,
(ii) X(t; @) is an unknown random process,
(iii) A(¢, x) is a map from R, xR into R,
(iv) f(t, s, X; w) and g(¢, s, X; w) are maps from R, XR,XRXQ into R,
(v) PB(t; w), where t=R,, is a martingale process.
The first part of the stochastic system [3.I)] is to be understood as an
ordinary Lebesgue integral with probabilistic characterization while the second
part is the Ito-Doob stochastic integral.

With respect to the random process B(¢; w) we shall assume that for each
teR,, a minimal ¢-algebra A,cC A, is defined such that 8(¢; w) is measurable
with respect to A;. In addition, we shall assume that {A4,, t€R,} is an in-
creasing family such that

(i) the random process {8(t; w), A;: tER,} is a real martingale,

(ii) there is a real continuous non-decreasing function F(#) such that for
s<t we have '

E{|B(; 0)—B(s; @) |?} =E{|B(t; @)—B(t; s)|*| Ad =F()—F(s),
P-a.e. (cf. [4]).
Definition 3.1. A process X(¢; ) such that
| X(Dliz, = Li([0, +00))
and satisfying a.s. is said to be a random solution to that equation.

Definition 3.2. A random solution X(¢; w) is said to be asymptotically stable
in mean square sense if

lim () X(0)1z,d)=0.

Theorem 3.1. Suppose that the functions h, f and g in (3.1) satisfy the
following Lipschitz conditions: For X(t;w)e.L? and Y(t; w)e=L?

(i) | h(t, X(¢; @)—h(t, Y(¢; )| <K|X(t; )—Y(t; ®)| Pa.s.,
where K<=[0, 1),
(ii)  1f@ s, X(s;0);0)—f(1, 5, Y(s; 0); 0)]
<a(t s;w)|X(t; w)-Y(;, w) Pa.s.,
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for some nonnegative function a(t, s; w) belonging to L.(2, A, P) with
la(t, s)||=P-ess %up}a(t, s; w)|, and a(t, s; w) is continuous for t<R,,
WE
| (i) g s; X(s; 0)—&(1, s;Y(s; 0); 0)|
Sait, s; 0| X(s; 0)—Y(s; @)| Pa.s.,

for some nonnegative function a,(t, s; ) belonging to L.(R, A, P), and
a,(t, s, w) is continuous for t<R,.
Set

t 1/2 t
M=+ sup (| lautt, 1tdF(©) "+ sup_{ lact, Olds,

teL0, +oo)
and suppose that
(iv) O0<M<1.
Then there exists one and only one solution X< L% to equation (3.1).
Proof. For processes X, Y .£%, define the process GX—GY by
(GXXt; 0)—(GY)(t; w)
=h(t, X(t; w)—h(, Y(; w))

+] s, X3 ;00— 1, 5, Y55 @); @)ds

+| (@t 5, X(s5 @) 0)—g(t, s, V(s; @); 0)dfls; ).

The assumptions concerning B(¢; w) and Xe.£? allow us to give the following
estimate

|, estt, 9x0985)|, <([ e, 91 IIX(S)HL,dF(s))m (3.2)
Write

K®) = (8(t, 9X(s; @); @)—8(t, 5, Y(s; @); )df(s; w).
Now, by (iii) and we obtain

[ 2 -es5 supll K(9)l,du(t)

-]

p(t) v-ess sup HS: 1&(s, s1; X(s150); @)—g(s, $1; Y (s1; @) ; 0)|dB(s:; w)“L2

|
S‘”

IA

0 2cro, t]

p(t) v-ess sup M:al(s, S1; @) X(s1; @)=Y (s:; 0)|dB(s:; co)”L2

= |7 pyv-esssup([ lauts, sol1x@-vo)L,aFs)) "

(]
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ér p(t) v-ess sup v-esssup|| X(sl)—Y(sl)lle(S J ay(s, s)l*d F(sl))md v(t)
0 se[o, t] 0

8,0, 8]

<\, sup_ (| lat, 1°aF©)" pit) v-ess sup | X()~Y (5)lz4d(t)
sero, t]

0 tEL0, +o0) \JO

IA

sup (S: (2, sl)IIZdF(sl))x/zS': p(1)v-ess sup | X(s)—Y ()]l 2,dw(?) (3.3)

T telo, +oo)

Put

Lyi={ (ft, 55 X(s5 0); @)—1(t, 53 ¥ (s @); @))ds.
By the assumption (ii) we get

S: Pt v-ess sup|| L(s)||,dv(?)
égrp(t) ”"iiscf‘z‘]pS:”“(s’ SO X(s0)—Y (sl ,d s:d(t)

< sup [l lds( p)-ess supl X(5)—Y (5)lz,d(t) (3.4)
te[0, +0)J0 ] sco, t]

Now, combining (3.3), and (i) we conclude that

I6X—GYI,= p(t)1-e53 sup (G XXS)—(GY X(5)l,d(0)
<K\ p(t)v-es5 5up | X()=Y (s)l2,da()
+{7 1ty -es8 supl LN ,d00)

+§°° D(t) v-ess sup | K(s)l|z,du(?)
0 sc[0, ]
<M|X—Y|,,

which proves that G is a continuous function. This fact, by the Banach fixed
point principle, completes the proof of [Theorem 3.1.

Remark 3.1. Let h(t, X(t; 0))eD([0, +c0)). By the solution
X(t; w) to equation belongs to D([0, +0)), satisfying

tim | p(0) »-es8 supll X($)],du()=0.

Remark 3.2. If p(#)=1 for t=R, then the random solution to equation [(3.1)
is asymptotically stable in the sense of Definition 3.2
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Now we are going to the stochastic integral equation of the form
X(t; @)=het, X(t; o)+ gt—s, X(t—s; 0); 0)(s; @)ds (3.5)
for t=0, which is equi\‘ralentbto
X(t; w)=h{, X(t; w))-i—S:g(u, X(u, w); w)(t—u; w)du
where ¢(t—u ; w)e L(2, A, P).

Theorem 3.2. Suppose that for X(1; w)e LY and Y (t; w)eLY
(1) le(u, X(u; 0); 0)—gu, Y(u; 0); o))
Sa(u; o) X(u; 0)-Y(u;w)| Pa.s,
where a(u; w)eL.(2, A, P),
(i)  |h@, X(t; 0)—h({, Y(; 0)]

<K|X(t; w)-Y(;w)| P-a.s..
Set

M=K+ sup {"la@llat—wldu,
and suppose that
(iiii) 0<M<1.
Then there exists one and only one solution X< L% to equation (3.5) such that

tim [ (8 -es5 sup | X(9)lz,du(t)=0.

Remark 3.3. If p()=1 for t=R, then the random solution to Equation
is asymptotically stable in the sense that

fim sup JEOlze

<
t—soo u(t) = K’

where K >0, whenever S:Ou(t)dy(t)<oo. Hence, we conclude that exponential
stability in the sense of ([6], [7]) is a particular case of our results.

Acknowledgement. The authors are very grateful to the referee for useful
suggestions which improved the previous version.
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