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Abstract. Let $C(f)$ be the mapping cone of a continuous map $f$ from an in-
finite dimensional complex projective space $CP^{\infty}$ to a three dimensional sphere
$S^{3}$ . For any non-negative integer $k$ , we classify the homotopy types of k-time
loop spaces $\{\Omega^{k}\Sigma^{k}C(f)|f\}$ which have the same n-type for all $n$ .

Introduction

Two spaces $X$ and $Y$ are called to have the same n-type if their Postnikov
n-stages $X_{n}$ and $Y_{n}$ are homotopy equivalent. J. H. C. Whitehead posed a ques-
tion: “If two CW-complexes are of the same n-type for all $n$ , are they neces-
sarily of the same homotopy type ?”

J. F. Adams [1] answered it negatively by constructing two spaces satisfy-
ing the following conditions:

(1) They have the same n-type for all $n$ .
(2) They are not homotopy equivalent.

Since spaces in his example were not of finite type, he posed a problem: “Do
there exist CW-complexes which satisfy the conditions (1), (2) and are H-spaces
of finite type ?”

B. Gray [3] gave two CW-complexes satisfying the above conditions (1), (2)

and the next conditions:
(3) They have finite cells at each dimension.
(4) They are loop spaces.

Spaces in his example were given by the reduced products of the mapping cones
of a constant map and a non-trivial phantom map from $CP^{\infty}$ to $S^{3}$ . Since one
has a retraction and the other has not any retraction, they are distinguished.

In this paper, we give uncountably many $k$-time loop spaces satisfying the
above conditions (1), (2), (3), and classify completely the homotopy types of these
spaces. This is the first result to classify concretely the homotopy types of
loop spaces of the same n-types for all $n$ . Now we state our main theorems.
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Let $\Sigma^{k}CP^{\infty}$ and $S^{n}$ be the k-time suspension of $CP^{\infty}$ and an n-dimensional sphere
respectively.

Theorem 2.1. For $k\geqq 0$ , let $f,$ $g;\Sigma kCP^{\infty}\rightarrow S^{k+3}$ be continuous maps, and
$C(f),$ $C(g)$ mapping cones of $f$ and $g$ respectively. Then $C(f)$ and $C(g)$ are
homotopy equivalent if and only if $f$ and $\pm g$ are homotopic. The spaces $\{C(f)|$

$f;\Sigma^{\iota}CP^{\infty}\rightarrow S^{k+3}\}$ are of finite type and have the same n-type for all $n$ .

Theorem 3.2. For $k\geqq 0$ , let $f,$ $g:\Sigma^{\iota}CP^{\infty}\rightarrow S^{k+3}$ be continuous maps, and
$C(f),$ $C(g)$ mapping cones of $f$ and $g$ respectively. For $0\leqq m\leqq k,$ $\Omega^{m}C(f)$ and
$\Omega^{M}C(g)$ are homotopy equivalent if and only if $f$ and $\pm g$ are homotopic. The
spaces $\{\Omega^{n}\Sigma^{m}C(f)|f;CP^{\infty}\rightarrow S^{s}\}$ are of finite type and have the same n-type for
all $n$ .

From this theorem and the fact that the homotopy set $[\Sigma^{\iota}CP^{\infty}, S^{k+3}]=\hat{Z}/Z$

by Theorem $D$ of [6], we can easily obtain the next theorem.

Theorem 3.3. For each $k\geqq 0$ , there exist, up to homotopy type, uncountably
many k-time loop spaces which satisfy the conditions (1), (2) and (3).

Let SNT(X) be the collection of spaces which have the same n-type for all
$n$ as $X$ . C. A. McGibbon and J. M. Mller [4] proved that $SNT(\Sigma^{\iota}(K(Z, n)S^{n}))$

are uncountable for $k>0,$ $n>1$ , and got some theorems about the cardinality
of SNT(X). Our theorem can be restate that $SNT(\Omega^{k}\Sigma^{k}(\Sigma CP^{\infty}S^{S}))$ is uncoun-
table for any $k\geqq 0$ .

The author would like to thank Professors M. Kamata and J. M. Mller for
useful advioe and Matematisk Institut of Kbenhavns Universitet for the invita-
tion and the assistance.

1. Preliminaries

In this paper, we work in the category of CW-complexes with base points
and base point preserving continuous maps. We use the terminologies and the
notations used in [5], [6].

Let $\hat{Z}$ be the completion of the ring $Z$ of integers and $\hat{Z}/Z$ its quotient
group. Let $a_{n}$ be an integer and $a_{n}$ : $Z\rightarrow Z$ the homomorphism defined by $a_{n}(k)$

$=a_{n}k$ . Hereafter we identify the integer $a_{n}$ and the homomorphism $a_{n}$ . Let
$\{Z, a_{n}\}$ be an inverse system. Now we prepare an algebraic lemma.

Lemma 1.1. Let $\{j_{n}\}$ : $\{Z, a_{n}\}\rightarrow\{Z, b_{n}\}$ be a monomorphism between two
inverse systems where lim1 $\{Z, a_{n}\}=\hat{Z}/Z$ . Then, the image group $j(\hat{Z}/Z)$ is the
O-group or an uncountable group. Moreover, if $j_{n}$ ; $Z\rightarrow Z$ is not $a$ O-map for
every $n>0$ and $\varliminf^{1}\{Z, b_{n}\}=\hat{Z}/Z$ , then $j=1i\leftarrow m^{1}j_{n}$ is an isomorphism.
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Proof. If $j_{n}=0$ for infinitely many integers $n>0$ , then we have that $j(\hat{Z}/Z)$

$=0$ . If $j_{n}=0$ for finitely many integers $n>0$ , then we may assume $j_{n}\neq 0$ for
every $n>0$ . We prove this lemma for a map $\{j_{n}\}$ : $\{Z, a_{n}\}\rightarrow\{Z, b_{n}\}$ such that
$a_{n}\neq 0,$ $b_{n}\neq 0$ . There are the canonical maps $\{f_{n}\}$ : $\{Z, a_{n}\}\rightarrow\{Z, Id_{n}\}$ , $\{g_{n}\}$ :
$\{Z, b_{n}\}\rightarrow\{Z, Id_{n}\}$ where $f_{n}=a_{n-1}\cdots a_{1},$ $g_{n}=b_{n-1}\cdots b_{1}$ for $n>1$ and $f_{1}=Id$ ,
$g_{1}=Id$ . Hence we obtain the next commutative diagram where the horizontal
sequences are exact.

$0\rightarrow\{Z, a_{n}\}\rightarrow\{Z, Id_{n}\}\rightarrow\{Z/f_{n-1}Z, Proj_{n}\}\rightarrow 0$

$\downarrow$ $\downarrow$ $\downarrow$

$0\rightarrow\{Z, b_{n}\}\rightarrow\{Z, Id_{n}\}\rightarrow\{Z/g_{n-1}Z, Proj_{n}\}\rightarrow 0$

From this diagram, we obtain the next diagram by Proposition 2.3 of Chapter
9 in [2].

$0\rightarrow Z\rightarrow\varliminf\{Z/f_{n-1}Z\}\rightarrow\lim^{1}\leftarrow\{Z, a_{n}\}\rightarrow 0$

$\downarrow Id$ $\downarrow\phi$ $\downarrow\psi$

$0\rightarrow Z\rightarrow\lim\leftarrow\{Z/g_{n-1}Z\}\rightarrow\lim_{\leftarrow}^{1}\{Z, b_{n}\}\rightarrow 0$

Since the above $\mu m$-groups have compact topology and $\phi$ is a dense map, $\emptyset$ is
an onto-map. Hence $\psi$ is also an onto-map. Since $Lm^{1}\{Z, a_{n}\}$ is an uncountable
group, we obtain the former part of the lemma. By $l\dot{g}\underline{m}^{1}\{Z, b_{n}\}=\hat{Z}/Z$ , we
have $\mu m\{Z/g_{n-1}Z\}=\hat{Z}$ . Hence $\phi$ is monic by considering on the $p$-adic integer
for each prime number $p$ . Finally, we obtain Ker $\psi=0$ .

Let $j:S^{\iota+2}\rightarrow\Sigma^{k}CP^{\infty}$ be the canonical inclusion. This induces the map of
inverse systems $(j_{n})_{*}:$ $[\Sigma^{k}CP^{n}, S^{k+2}]\rightarrow[\Sigma^{k}CP^{n}, \Sigma^{k}CP^{\infty}]$ and $j_{*}:$ $[\Sigma^{\iota-1}CP^{\infty}, S^{\iota+2}]$

$\rightarrow[\Sigma^{\iota-1}CP^{\infty}, \Sigma^{k}CP^{\infty}]$ . The group $[\Sigma^{\iota-1}CP^{\infty}, S^{k+8}]$ is isomorphic to $\hat{Z}/Z$ and
$[\Sigma^{k}CP^{n}, \Sigma^{k}CP^{\infty}]$ is a finitely generated nilpotent group for $k>0$ .

Proposition 1.2. The canonical inclusion $j:S^{2+k}\rightarrow\Sigma^{k}CP^{\infty}$ induces a mono-
morphism $j_{*}:$ $[\Sigma^{k-1}CP^{\infty}, S^{k+2}]\rightarrow[\Sigma^{k-1}CP^{\infty}, \Sigma^{\iota}CP^{\infty}]$ for $k\geqq 1$ .

Proof. It is sufficient to prove that the map

$\{(j_{n})_{*}\}$ : $\{[\Sigma^{\iota}CP^{n}, S^{\iota+a}]\}\rightarrow\{[\Sigma^{\iota}CP^{n}, \Sigma^{\iota}CP^{\infty}]\}$

induces an into-isomorphism of $\mu m^{1}$-groups for $k\geqq 1$ . Since $[\Sigma^{k}CP^{n}, \Sigma‘‘ CP^{\infty}]\otimes Q$

is equal to $[\Sigma^{\iota}CP_{Q}^{n}, \Sigma^{k}CP_{Q}^{\infty}]=[_{j=1}^{n}(S^{k+8j})_{Q}, _{j=1}^{\infty}(S^{k+8j})_{Q}]$ , there exists a free
generator $g;\Sigma^{k}CP^{n}\rightarrow\Sigma^{k}CP^{\infty}$ where $g_{Q}$ represents

$(inclusion)\cdot(projection);_{j=1}^{n}(S^{b+2j})_{Q}\rightarrow(S^{k+2})_{Q}\rightarrow _{j=1}^{\infty}(S^{k+8j})_{Q}$

up to a finite degree. The free part of $[\Sigma^{k}CP^{n}, S^{k+l}]$ is $Z$ and is mapped into
the free part $G_{n}$ of $[\Sigma^{k}CP^{n}, \Sigma^{k}CP^{\infty}]$ which is generated by the map $g$ . It is
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sufficient to prove that the homological degree of the image of $\kappa_{n}$ ; $G_{n}\rightarrow[\Sigma^{k}S^{2}$ ,
$\Sigma^{\iota}CP^{\infty}]$ is increasing as $n$ is increasing for $k\geqq 1$ . Since this value is evaluated
by the ordinary cohomology $H^{2+k}(\kappa_{n})$ or the K-theory $K(\kappa_{n})$ , we obtain the result
for $k>1$ from the next Lemma 1.3. For $k=1$ , we project $[\Sigma CP^{n}, \Sigma CP^{\infty}]$ to
its abelianized group. Then, we can apply Lemma 1.1 to this case, because the
map $g$ is a generator.

Lemma 1.3. If a map $h:\Sigma^{\iota}CP^{n}\rightarrow\Sigma^{\iota}CP^{\infty}$ satisfies $H^{m}(h)=0$ for $m>k+2$ ,

then the degree $d(n, k)$ of the map $H^{k+2}(h):H^{k+2}(\Sigma^{\iota}CP^{\infty})\rightarrow H^{k+8}(\Sigma^{k}CP^{n})$ satisfies
$\nu_{p}(d(n, k))\geqq{\rm Max}\{\nu_{p}(j):j=1,2, \cdots , n\}$

for all prime number $p$ , where $\nu_{p}(j)$ is the exponent of $p$ in the decomposition of
$j$ to prime factors.

Proof. We may prove this lemma for even $k$ by considering the suspen-
sion. We shall prove only in the case of $k=2$ , because in the other case the
proof is similar. Since the Chern character map is monomorphic, we use K-
theory. We set

$h^{\prime}(B\mu)=\Sigma_{j=1}^{n}a_{j}B\mu^{j}$

where $B$ is the Bott isomorphism and $\eta$ is the canonical line bundle over the
complex projective space and $\mu=\eta-1$ . Clearly $a_{1}$ is equal to the degree of
$H^{4}(h)$ . Since the Chern character map is monomorphic, it holds $h^{\prime}(B\mu^{j})=0$ for
$j>1$ by the assumption. We calculate the next formulas.

$\phi^{t}h^{\prime}(B\mu)=\psi^{g}(\Sigma_{j\approx 1}^{n}a_{f}B\mu^{j})=2B\phi^{t}(\Sigma_{j=1}^{n}a_{f}\mu^{j})$

$=2\Sigma_{f=1}^{n}a_{f}B(2\mu+\mu^{g})^{j}$

$h^{\prime}\phi^{g}(B\mu)=2h^{\prime}B\psi^{g}(\mu)=2h^{\prime}(B\mu^{2}+2B\mu))$

$=4(\Sigma_{j=1}^{n}a_{f}B\mu^{j})$

By $\psi^{2}h^{\prime}=h^{\prime}\psi^{2}$ , we obtain

$T(\mu^{2}+2\mu)=2T(\mu)$

where $T(\mu)=\Sigma_{j=1}^{n}a_{j}\mu^{f}$ . Hence $T(\mu)$ must be $a_{1}\log(1+\mu)=a_{1}\Sigma_{j=1}^{\infty}\{(-1)^{j+1}/j\}\mu^{f}$

mod $\mu^{n+1}$ and $a_{j}=a_{1}(-1)^{j+1}/j$ . Since $a_{f}=a_{1}(-1)^{f+1}/j$ is an integer for $j=$

$1,2,$ $\cdots$ , $n$ . We obtain the result.

2. CW-complexes of the same n-type for all $n$

A map $f:X\rightarrow Y$ is called a phantom map if the restriction map $f|X^{n}$ on
the skeleton $X^{n}$ is homotopic to a constant map for all $n\geqq 0$ . We remark that
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the canonical inclusion $Y\rightarrow\Omega\Sigma Y$ induces the suspension map [X, $Y$ ] $\rightarrow[X, \Omega\Sigma Y]$

$=[\Sigma X, \Sigma Y]$ and $[\Sigma^{k}CP^{\infty}, S^{k+3}]=[\Sigma^{k+1}CP^{\infty}, S^{k+4}]$ by Theorem $D$ of [6] or
Theorem 2.2 of [5].

Theorem 2.1. For $k\geqq 0$ , let $f,$ $g:\Sigma^{k}CP^{\infty}\rightarrow S^{k+3}$ be continuous maps, and
$C(f),$ $C(g)$ mapping cones of $f$ and $g$ respectively. Then $C(f)$ and $C(g)$ are
homotopy equivalent if and only if $f$ and $\pm g$ are homotopic. The spaces $\{C(f)|$

$f;\Sigma^{k}CP^{\infty}\rightarrow S^{k+\S}\}$ are of finite type and have the same n-type for all $n$ .

Proof. By TheoremD of A. Zabrodsky [6], the homotopy set $[\Sigma^{\iota}CP^{\infty}, S^{t+s}]$

is equal to Ext $(H_{k+2}(\Sigma^{k}CP^{\infty} ; Q), \pi_{k+\theta}(S^{k+3}))=Ext(Q, Z)=\hat{Z}/Z$ and all maps
$f;\Sigma^{\iota}CP^{\infty}\rightarrow S^{\iota+}$ are phantom maps. Pairs of homotopy equivalences $\Sigma^{\iota}CP^{\infty}\rightarrow$

$\Sigma^{k}CP^{\infty}$ and $S^{k+3}\rightarrow S^{k+3}$ induce an action on Ext $(H_{k+2}(\Sigma^{\iota}CP^{\infty} ; Q), \pi_{k+S}(S^{k+3}))=$

Ext $(Q, Z)=\hat{Z}/Z$ . In general, algebraically, a finite group Aut $(H_{k+2}(\Sigma^{\iota}CP^{\infty} ; Z))$

$\times Aut(\pi_{k+3}(S^{k+3}))=\{\pm 1\}\times\{\pm 1\}$ acts on uncountable group Ext $(H_{k+2}(\Sigma^{k}CP^{\infty} ; Q)$ ,
$\pi_{k+3}(S^{k+3}))=Ext(Q, Z)=\hat{Z}/Z$ . Hence the cardinality of its equivalence classes
under the action is uncountable.

If $f$ and $\pm g$ are homotopic, we denote $f\sim\pm g,$ $C(f)$ and $C(g)$ are clearly
homotopy equivalent. If there is a homotopy equivalence $\beta:C(f)\rightarrow C(g)$ , we
set $\beta^{*}(V)=aV+b\Sigma^{k+1}U$ and $\beta^{*}(\Sigma^{k+1}U)=cV+d\Sigma^{k+1}U,$ $ad-bc=\pm 1$ where $V$ is
the generator of $H^{k+3}(S^{k+3} ; Z)$ and $\Sigma^{k+1}U$ is the generator of $H^{k+3}(\Sigma^{k+1}CP^{\infty} ; Z)$ .
By using the reduced power operation, we have $b=0$ and $a=\pm 1$ by ad–bc $=$

$\pm 1$ . Hence we have $d=\pm 1$ . Moreover, $\beta$ induces a map $\alpha;S^{k+3}\rightarrow S^{k+3}$ of
degree $\pm 1$ , and $c=0$ follows by the following consideration. There is the fol-
lowing diagram.

$\Sigma^{k}CP^{\infty}\rightarrow^{f}S^{k+3}\rightarrow^{j}C(f)\rightarrow^{p}\Sigma^{k+1}CP^{\infty}\rightarrow^{-\Sigma f}S^{k+4}\rightarrow\Sigma C(f)$

$\downarrow\alpha$ $\downarrow\beta$ $\downarrow\gamma$ $\downarrow\delta$

$\Sigma^{k}CP^{\infty}\rightarrow S^{k+3}g\rightarrow C(g)k\rightarrow\Sigma^{k+1}CP^{\infty}q\rightarrow S^{k+4}-\Sigma g\rightarrow\Sigma C(g)$

The existence of $\alpha$ is proved by the following consideration. When $f\sim g\sim O$,
the statement is clear. We may assume that $f$ is not homotopic to a constant
map. $q\beta jf;\Sigma^{k}CP^{\infty}\rightarrow\Sigma^{k+1}CP^{\infty}$ is homotopic to the constant map by $jf\sim O$ .
Since $q\beta jf$ is homotopic to $sf$ : $\Sigma^{k}CP^{\infty}\rightarrow S^{k+3}\rightarrow\Sigma^{\iota+1}CP^{\infty}$ where $s;S^{k+\$}\rightarrow\Sigma^{\iota+1}CP^{\infty}$

is the map of degree $s$ , the map $s$ is homotopic to the constant map by Proposi-
tion 1.2. Hence $\beta$ induces the above commutative diagram where $\alpha,$ $\beta,$ $\gamma$ and $\delta$

are maps of homotopy equivalences.
By the above argument, we have that $\Sigma\beta$ and $\Sigma g$ are equivalent under the

action of homotopy equivalences on Ext $(H_{k+3}(\Sigma^{k+1}CP^{\infty} ; Q), \pi_{k4}(S^{k+4}))=Ext(Q, Z)$

$=\hat{Z}/Z$ . From this we have $\Sigma f\sim\pm\Sigma g$ and hence $f\sim\pm g$ by the suspension
isomorphism.
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Remark. We shall discuss the similar statements for Proposition 1.2 and
Theorem 2.1 in the case of the non-trivial connected Lie group $G$ in a forth-
coming paper.

3. Main results

In this section, we prove our main theorem. The next lemma is elementary.

Lemma 3.1. If two simply connected spaces $X$ and $]^{\nearrow}ha\ell$) $e$ the same n-type

for all $n$ , their loop spaces $\Omega X$ and $\Omega 1^{\gamma}$ have the same n-type for all $n$ .

Theorem 3.2. For $k\geqq 0$ , let $f,$ $g;\Sigma^{\iota}CP^{\infty}\rightarrow S^{k+3}$ be continuous maps, and
$C(\beta),$ $C(g)$ mapping cones of $f$ and $g$ respectively. For $0\leqq m\leqq k,$ $\Omega^{m}C(\beta)$ and
$\Omega^{m}C(g)$ are homotopy equivalent if and only if $f$ and $\pm g$ are homotopic. The
spaces $\{\Omega^{\iota}\Sigma^{\iota}C(f)|f;CP^{\infty}\rightarrow S^{3}\}$ are of finite type and have the same n-type for
all $n$ .

Proof. It is sufficient to prove the statement for $m=k$ . If $f\sim\pm g,$ $\Omega^{k}C(f)$

and $\Omega^{\iota}C(g)$ are clearly homotopy equivalent. Conversely, if $\Omega^{k}C(f)$ and $\Omega^{\iota}C(g)$

are homotopy equivalent, there is a homotopy equivalence $\rho:\Omega^{k}C(f)\rightarrow\Omega^{k}C(g)$ .
By the suspension isomorphism, we have $C(f)=\Sigma^{k}C(f^{\prime})$ and $C(g)=\Sigma^{k}C(g^{\prime})$

where $f^{\prime},$ $g^{\prime}$ : $CP^{\infty}\rightarrow S^{3}$ . Then, there is a map:

$\phi;\Sigma^{k}C(f^{\prime})\rightarrow\Sigma^{\iota}\Omega^{k}\Sigma^{\iota}C(f^{\prime})\rightarrow\Sigma^{\iota}\Omega^{k}\Sigma^{k}C(g^{\prime})\Sigma k\eta\Sigma k\rho\rightarrow^{\epsilon}\Sigma^{\iota}C(g^{\prime})$

where $\Sigma^{\iota}\eta$ is the canonical inclusion and $\epsilon$ is the evaluation map. Since $\eta$

induces an isomorphism $H_{s}(C(f^{\prime});Z)\rightarrow H_{3}(\Omega^{k}\Sigma^{k}C(f^{\prime});Z)$ by Hurewicz theorem.
Hence $\phi$ induces the isomorphism of $\phi^{*}$ at $k+3$ dimension. As same as proof
of Theorem 2.1, we have $\phi^{*}(V)=\pm V$ and $\phi^{*}(\Sigma^{k+1}U)=\pm\Sigma^{\iota+1}U$ , where $V$ is the
generator of $H^{k+3}(S^{k+3} ; Z)$ and $\Sigma^{\iota+1}U$ is the generator of $H^{i+\theta}(\Sigma^{k+1}CP^{\infty} ; Z)$ .
Moreover, $\phi$ induces a map $S^{k+3}\rightarrow S^{k+3}$ of degree $\pm 1$ . Hence we obtain the
next commutative diagram.

$\Sigma^{\iota}CP^{\infty}\rightarrow^{f}S^{k+3}\rightarrow^{j}C(\beta)\rightarrow^{p}\Sigma^{\iota+1}CP^{\infty}\rightarrow^{-\Sigma f}S^{k+4}\rightarrow$

$\downarrow\pm 1$ $\downarrow\phi$ $\downarrow\gamma$ $\downarrow\pm 1$

$\Sigma^{k}CP^{\infty}\rightarrow S^{k+3}g\rightarrow^{k}C(g)\rightarrow\Sigma^{\iota+1}CP^{\infty}q\rightarrow S^{k+4}-\Sigma g\rightarrow$

Here $\phi$ and $\gamma$ are rational equivalences by Theorem 3.6. Moreover, it holds
$r^{*}(\Sigma^{k+1}U)=\pm\Sigma^{k+1}U$ . Hence 7 induces the isomorphism $[\Sigma^{\iota+1}CP^{\infty}, S^{\iota+4}]=$

$[\Sigma^{\iota+1}CP^{\infty}, S^{\iota+4}]$ by Theorem $D$ of [6]. We have also $\Sigma f\sim\pm\Sigma g$ by $\Sigma f=\Sigma g\gamma$ .
Finally we have $f\sim\pm g$ if $\Omega^{k}C(f)$ and $\Omega^{k}C(g)$ are homotopy equivalent.
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Theorem 3.3. For any $k\geqq 0$, there exist uncountably many CW-complexes
which satisfy the next conditions:

(1) They $ ha\iota$) $e$ finite cells for each dimensions.
(2) They are k-time iterated loop spaces.
(3) They have the same n-type for all $n$ .
(4) They are not homotopy equivalent each other.

Proof. Let $C(f)$ be the mapping cone of $\beta;\Sigma^{k}CP^{\infty}\rightarrow S^{k+S}$ and $X(f)=$

$\Omega^{k}C(f)$ the k-time iterated loop space of $C(f)$ . We choose a representative
map $f$ for each equivalence class of $[\Sigma^{k}CP^{\infty}, S^{k+3}]=\hat{Z}/Z$ under the action $\{\pm 1\}$ .
Then $\{X(f)|f\}$ satisfy the conditions of this theorem by Theorem 3.2.

We show that $\phi$ in the proof of Theeorem 3.2 is a rational equivalence.

Lemma 3.4. Let $h_{1},$ $h_{2},$ $\cdots$ $h_{k}$ and $i_{1},$ $i_{2},$ $\cdots$ $i_{k}$ be natural numbers. Set

$H=(h_{1}, h_{2}, \cdots, h_{k})$ , $I=(i_{1}, i_{2}, \cdots i_{\iota})$ ,

$h=h(H)=h_{1}+h_{2}+\cdots+h_{k}$ , $j=j(H, I)=h_{1}i_{1}+h_{2}i_{2}+\cdots+h_{k}i_{k}$ .
Then,

$\alpha(H, I)=\{h!/(h_{1}!)(h_{2}!)\cdots(h_{k}!)\}\times\{j]/(i_{1}!)^{h^{1}}(\dot{l}_{2}!)^{h_{2}}\cdots(i_{k}!)^{h_{k}}\}$

is an even numbers for $h(H)>1$ .

Proof. At Prst, we remark that $(2i)!/(i!)(i!)$ is an even number for $i>0$ .
If a number $h_{\iota}$ is greater than 1, for example $h_{1}>1$ , we decompose $j!/$

$(i_{1}!)^{\hslash^{1}}(\dot{\iota}_{2}!)^{h_{2}}\cdots(i_{k}!)^{h_{k}}$ such as
$\{j!/(2i_{1})!(i_{1}!)^{h_{1}- 2}(\iota_{2}!)^{h_{2}}\cdots(i_{k}!)^{h_{k}}\}\times\{(2i_{1})]/(i_{1}!)(i_{1} !)\}$ .

Here the first part is a natural number and the second part is an even number.
Hence the result follows. If $h_{1}=h_{2}=$ $=h_{k}=1$ , $h!/(h_{1}$ ! $)$ $(h_{2}!)\cdots(h_{k}$ ! $)$ is an
even number for $h>1$ . Hence, $\alpha(H, I)$ is an even number for $h>1$ .

Proposition 3.5. Let $f:\Sigma^{k}CP^{\infty}\rightarrow\Sigma^{k}CP^{\infty}$ be a map such that $f^{*}(\Sigma^{\iota}U)=$

$\pm\Sigma^{k}$ U. Then, $\beta_{j}$ is an odd number for $j>0$, where $ f^{*}(\Sigma^{k}U^{j})=\beta_{f}\Sigma$
“ $U^{j}$ . Hence

the map $f$ is a rational equivalence.

Proof. We shall prove only for $k=2$ . In the other cases, the proofs are
similar. We put

$f^{\prime}(B\mu)=\Sigma_{f=1}^{\infty}b_{j}B\mu^{j}$

$f^{*}(\Sigma^{f}U^{f})=\beta_{j}\Sigma^{s}U^{j}$

for K-theory and the ordinary cohomology theory respectively, where $b_{f}$ and $\beta_{j}$
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are integers. We have the next formulas,

Ch $f^{\prime}(B\mu)=Ch(\Sigma_{J=1}^{\infty}b_{j}B\mu^{j})$

$=\Sigma_{j=1}^{\infty}b_{j}\{\Sigma^{2}(e^{U}-1)^{j}\}$ ,

$f^{*}Ch(B\mu)=f^{*}(\Sigma^{2}(e^{U}-1))$

$=\beta^{*}(\Sigma^{2}(U+U^{2}/2!+U^{3}/3!+\cdots+))$

$=\Sigma_{j=1}^{\infty}\beta_{j}\{\Sigma^{2}U^{f}/j!\}$ .

By Ch $f^{\prime}(B\mu)=f^{*}Ch(\beta\mu)$ , we have

$\Sigma_{f=1}^{\infty}\beta_{j}U^{f}/j!=\Sigma_{j=1}^{\infty}b_{j}(e^{U}-1)^{j}$ .

By comparing the both sides, we have $\beta_{j}=\Sigma b_{h}\alpha(H, I)$ where the summation
takes for every $h,$ $H$ and $I$ such that $h=h(H),$ $j=j(H, I)$ . Specially, we have
$\beta_{1}=b_{1}=\pm 1$ . Since $\alpha(H, I)$ is an even number for $h>1,$ $\beta_{f}$ is odd number for
$j>0$ . Hence $f$ is a rational equivalence.

By using this result, we have the next theorem.

Theorem 3.6. Let $\phi:C(f)\rightarrow C(g)$ be a map satisfying $\phi^{*}(\Sigma^{k+1}U)=\pm\Sigma^{k+1}U$

and $\phi^{*}(V)=\pm V$ , where $V$ and $\Sigma^{\iota+1}U$ are the generators of $H^{k+3}(S^{k+3} ; Z)$ and
$H^{k+3}(\Sigma^{k+1}CP^{\infty} ; Z)$ respectively. Then $\phi$ is a rational equivalence.

Remark. We shall discuss a generalization of Theorem 3.2 in the case of
Lie groups $G$ , and the case $ k=\infty$ in forthcoming papers.
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