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Summary. The Horvitz-Thompson strategy (HT strategy) can be generalized
by redefining the so-called inclusion probabilities so that both strategies of
with-replacement sampling and without-replacement sampling are represented
in the same forms of their estimators and variance formulas. Using the above
result we can find a feasible procedure which improves a given strategy of
with-replacement sampling to a better strategy of without-replacement sampl-
ing under suitable conditions.

Besides necessary and sufficient conditions for the existing of a sampling
design are shown which induces the first-order or second-order inclusion pro-
babilities given in advance in case of without-replacement sampling design.

1. Introduction

Let us consider a finite population $U$ consisting of $N$ units which are iden-
tified with the index set $\{$ 1, 2, $\cdots$ , $N\}$ . For each unit $i$ the real-valued variate
$y_{i}$ is labeled, and each subset $s=(i_{1}, i_{2}, \cdots , i_{n})$ of the population $U$ is called
“sample” and the number of units in $s$ “sample size”. The set $S$ of all possible
$2^{N}$ samples is called “sample space”, and any probability distribution $p(s)$ over
$S$ is called “sampling design”.

Our main concern is to estimate the population total $y=y_{1}+y_{2}+\cdots+y_{N}$

by the linear unbiased estimator $t(s)$ with its variance as small as possible under
some suitable sampling design $p(s)$ . A pair $(p, t)$ of sampling design $p(s)$ and
estimator $t(s)$ is called “strategy”.

In case of without-replacement sampling it is well-known that the so-called
Horvitz-Thompson estimator (HT estimator) defined by

(1.1) $t(s)=\sum_{\ell\in 1}\frac{y_{i}}{\pi_{\ell}}$ ,

is unbiased for the population total $y$ and its variance $V_{p}(t)$ is given by

(1.2) $V_{p}(t)=\sum_{\ell\approx 1}^{N}\pi_{\ell}(1-\pi_{\ell})(\frac{y_{\ell}}{\pi_{\ell}})^{2}+\sum_{\ell\neq j}^{N}(\pi_{ij}-\pi_{\ell}\pi_{j})\frac{y_{i}y_{j}}{\pi_{i}\pi_{f}}$ ,
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where $\pi_{i}$ and $\pi_{\ell f}$ denote the first-order and second-order inclusion probabilities
respectively, i.e.,

(1.3)
$\pi_{\ell}=\sum_{i\ni\ell}p(s)$ ,

and

(1.4)
$\pi_{\ell f}=\sum_{\ni\ell.j}p(s)$ .

In case of fixed sample size $n$ ($FS(n)$ in short) $V_{p}(t)$ given by (1.2) can be
rewritten into the so-called ”Yates-Grundy form“ as

(1.5) $V_{p}(t)=\sum_{\ell<J}^{N}(\pi_{i}\pi_{f}-\pi_{if})(\frac{y_{i}}{\pi_{i}}-\frac{y_{j}}{\pi_{f}})^{2}$

It is easily shown that the relations

(1.6) $\sum_{\ell=1}^{N}\pi_{i}=n$ ,

and

(1.7) $\sum_{f=1}^{N}\pi_{if}=n\pi_{i}$ , $(1\leqq i\leqq N)$

hold in any $FS(n)$ design, where $\pi_{ii}=\pi_{i}$ . $(1\leqq i\leqq N)$

Those results shown above and some optimalities (admissibilities) or mini-
maxities of various strategies have been studied by many reserchers as shown
in references $[1]\sim[10]$ .

In this paper we generalize the HT estimator (or strategy) by redefining
inclusion probabilities so that the generalized HT estimator (GHT estimator)
and its variance formula can be represented in the same form in both cases of
with-replacement sampling and without-replacement sampling.

Then we show in case of $FS(n)$ design that a given strategy of with-replace-
ment sampling could be improved to some strategy of without-replacement sam-
pling under suitable conditions as shown in Lemma 1 and Theorem.

In addition we show the necessary and sufficient conditions for existing of a
sampling design $p(s)$ which induces the first-order inclusion probabilities $\pi_{\ell^{\prime}}s$ or
the second-order inclusion probabilities $\pi_{ij}’ s$ given in advance (see Lemma 2 and
Lemma 3), and of course those conditions must be considered firstly in advance
of proving Theorem.

2. Generalized HT (GHT) estimator

Let $\nu_{i}$ be the frequency of the $i$ th element of $U$ appeared in a sample $ s(1\leqq$

$i\leqq N)$ , and $\tilde{\pi}_{i},\tilde{\pi}_{if}$ be expectations of $\nu_{i}$ and $\nu_{i}\nu_{j}$ respectively, i.e.,

(2.1) $\tilde{\pi}_{i}=E_{p}\{\nu_{i}\}$ ,
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and
(2.2) $\tilde{\pi}_{if}=E_{p}\{\nu_{\ell}\nu_{f}\}$

for $1\leqq i,$ $j\leqq N$. Note that $\tilde{\pi}_{\ell}$ and $\tilde{\pi}_{ij}$ are identical with the first-order and
second-order inclusion probabilities $\pi_{\ell}$ and $\pi_{ij}$ respectively in the case of without-
replacement sampling.

Now let us define generalized HT (GHT) estimator $i(s)$ by

(2.3) $i(s)=\sum_{\ell-1}^{N}\nu_{i^{\frac{y_{\ell}}{\tilde{\pi}_{i}}}}$ .

Then it is easily seen that $t(s)$ is a linear and unbiased estimator of the popula-
tion total $y$ and its variance $V_{p}(\tilde{t})$ is given by

(2.4) $V_{p}(\tilde{t})=\sum_{\ell.f=1}^{N}(\tilde{\pi}_{\ell f}-\tilde{\pi}_{\ell}\tilde{\pi}_{f})\frac{y_{\ell}}{\tilde{\pi}_{i}}\frac{y_{j}}{\tilde{\pi}_{j}}$ .

In case of $FS(n),$ $V_{p}(t)$ above can be rewritten into the Yates-Grundy form

(2.5) $V_{p}(\tilde{t})=\sum_{\ell\triangleleft}^{N}(\tilde{\pi}_{\ell}\tilde{\pi}_{j}-\tilde{\pi}_{\ell j})(\frac{y_{i}}{\tilde{\pi}_{i}}-\frac{y_{j}}{\tilde{\pi}_{j}})^{2}$ ,

which is a similar form as in (1.5).

Note that the following relations among $\tilde{\pi}_{i}$ and $\tilde{\pi}_{\ell f}$ hold for any $FS(n)$ design,

(2.6) $\sum_{\ell=1}^{N}\tilde{\pi}_{i}=n$ ,

and

(2.7) $\sum_{j\Leftrightarrow 1}^{N}\tilde{\pi}_{ij}=n\tilde{\pi}_{\ell}$ , $(1\leqq i\leqq N)$ ,

since $\Sigma_{\ell\Rightarrow 1}^{N}\nu_{i}=n$ holds in case of $FS(n)$ design.
Note that the GHT estimator reduces to the usual HT estimator in case

of without-replacement sampling design since $\tilde{\pi}_{\ell}$ and $\tilde{\pi}_{\ell j}$ are nothing but the
first-order and second-order inclusion probabilities.

Example1. (HH-strategy)

Hansen-Hurwitz strategy (HH strategy) is defined as in the following:

(2.8) $t_{HH}(s)=\sum_{\ell=1}^{N}\nu_{i^{\frac{y_{i}}{np_{i}}}}$ ,

where $p_{i}\geqq 0,$ $\Sigma_{\ell=1}^{N}p_{i}=1$ and $(\nu_{1}, \nu_{2}, \cdots \nu_{N})$ represents a random vector disributed
according to the multinomial distrubution MUL $(n;p_{1}, p_{2}, \cdots p_{N})$ .

Then it is easily seen that the following relations

(2.9) $\tilde{\pi}_{i}=E_{p}\{\nu_{i}\}=np_{i\prime}$

(2.10) $\tilde{\pi}_{\ell f}=E_{p}\{\nu_{\ell}\nu_{j}\}=n(n-1)p_{\ell}p_{j}$ ,

(2.11) $\tilde{\pi}_{\ell\ell}=E_{p}\{\nu_{\ell}^{f}\}=n(n-1)p_{\ell}^{2}+np_{i}$
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hold for $1\leqq i\leqq N,$ $1\leqq i<j\leqq N$.

3. A procedure for improving a strategy of with-replacement
sampling design

Let us consider a with-replacement sampling design $\tilde{p}(s)$ of fixed sample
size $n$ from a finite population $U$ of size $N$, and let $\{\tilde{\pi}_{\ell}\},$ $\{\tilde{\pi}_{if}\}$ be expectations
of $\nu_{i}$ and $\nu_{\ell}\nu_{j}$ respectively as defined by (2.1) and (2.2).

Let us put $b_{i}=\tilde{\pi}_{ii}-\tilde{\pi}_{i}=E_{\beta}\{\nu_{\ell}(\nu_{\ell}-1)\}>0$ for $1\leqq i\leqq N$, and suPpose that the
following condition (3.1) is satisfied:

(3.1) $b_{1}+b_{2}+\cdots+b_{N}\geqq 2b_{m}$
$(b_{m}=\max_{1\leq\ell\leq N}b_{i})$ .

Then, using Lemma 1, we can find $a_{if}’ s$ such that the relations a $j=a_{fi}\geqq 0$ ,
$a_{ii}=0$ and $\Sigma_{f=1}^{N}a_{ij}=b_{i}$ holds for $1\leqq i,$ $j\leqq N$.

Defining $\pi_{i}^{*}$ and $\pi_{ij}^{*}$ such that $\pi_{\ell}^{*}=\pi_{ii}^{*}=\tilde{\pi}_{i}$ for $1\leqq i\leqq N$ and $\pi_{if}^{*}=\tilde{\pi}_{\ell j}+a_{\ell j}$

for $1\leqq i<$ ] $\leqq N$, then $\pi_{i}^{*}$ and $\pi_{i;}^{*}$ satisfy the following conditions:

(3.2) $\pi_{i}^{*}=\tilde{\pi}_{\ell}$ , $\pi_{ij}^{*}\geqq\tilde{\pi}_{if}$ for $1\leqq i<j\leqq N$ ,

and

(3.3) $\pi_{kl}^{*}>\tilde{\pi}_{k\ell}$ , for some $(k, 1)1\leqq k<l\leqq N$ .
If there exists a design $p^{*}(s)$ of without-replacement sampling having $\pi_{\ell}^{*}$ and
$\pi_{\ell j}^{*}$ as the first-order and second-order inclusion probabilities respectively, it is
easily seen that HT estimator $t^{*}=\Sigma_{i\in}$. $y_{i}/\pi_{\ell}^{*}$ has the smaller variance $V_{p},(t^{*})$

than the variance $V_{\beta}(\tilde{t})$ of estimator $t$ given in (2.4). Because $V_{p*}(t^{*})$ and $V_{\beta}(f)$

are expressed in the Yates-Grundy forms as (1.5) and (2.5), $i$ . $e.$ ,

(3.4) $V_{p*}(t)=\sum_{\ell<J}^{N}(\pi f\pi_{j}^{*}-\pi_{\ell j}^{*})(\frac{y_{i}}{\pi\$}-\frac{y_{j}}{\pi_{j}^{*}})^{2}$ ,

and

(3.5) $V(\tilde{t})=\sum_{i<J}^{N}(\tilde{\pi}\tilde{\pi}_{j}-\tilde{\pi}_{if})(\frac{y_{\ell}}{\tilde{\pi}_{i}}-\frac{y_{j}}{\tilde{\pi}_{j}})^{2}$

respectively where $\pi_{\ell}^{*}=\tilde{\pi}_{i},$ $\pi_{if}^{*}\geqq\tilde{\pi}_{\ell j}$ for $1\leqq i<j\leqq N$ and $\pi_{\iota\iota}^{*}>\tilde{\pi}_{\iota l}$ for some $(k, l)$

from (3.2) and (3.3).

Now the conditions for existing of $\{\pi_{i}^{*}\},$ $\{\pi_{if}^{*}\}$ and $p^{*}(s)$ stated above are
examined in the following way.

First let us consider the existence of design $p^{*}(s)$ which induces $\{\pi_{\ell}^{*}\}$ or
$\{\pi_{\ell j}^{*}\}$ as the first-order or second-order inclusion probabilities respectively.

Let $p=(P(s_{1}), p(s_{2}),$ $\cdots$ , $p(s_{M}))^{t}$ be a vector of probability distribution of
design $p(s),$ $\pi_{1}^{*}=(\pi_{1}^{*}, \pi_{2}^{*}, \cdots \pi_{N}^{*})^{t}$ and $C=[c_{\ell f}]$ be $N\times M$ matrix with com-
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ponents $c_{\ell j}$ defined by

(3.6) $c_{\ell k}=\{$ $01$ $otherwiseifs_{k}\ni\dot{l}$

,
$(_{1\leqq k\leqq M=\left(\begin{array}{l}N\\n\end{array}\right)}1\leqq i\leqq N)$

.

Then the following relation between $p$ and $\pi_{1}^{*}$ must hold

(3.7) $Cp=\pi_{1}^{*}$ ,

where $\pi_{1}^{*}$ is the given vector above and rank $(C)=N$ for $n<N$ as shown in
Lemma 2 below.

Then we can see the condition for the existing of design $P^{*}(s)$ with the
first-order inclusion probabilities $\{\pi_{i}^{*}\}$ is that the equation (3.7) has a non-nega-
tive solution $p=p^{*},$ $i$ . $e.,$ $P^{*}(s)\geqq 0$ for any $s$ .

Note that a necessary and sufficient conditions for existing of non-negative
solusion $p=p^{*}$ can be explicitly obtained only after solving equation (3.7).

Similary we can show that a necessary and sufficient condition for existing
of $p^{*}(s)$ with the second-order inclusion probabilities $\{\pi_{\ell f}^{*}\}$ can be obtained if
the following equation (3.8) has non-negative solution $p^{*}=(P^{*}(s_{1}), \cdots , P^{*}(s_{K}))^{t}$ ,

$i.e.,$ $P^{*}(s_{i})\geqq 0$ for $1\leqq k\leqq M=\left(\begin{array}{l}N\\n\end{array}\right)$ :

(3.8) $Dp=\pi_{2}^{*}$ ,

where $p=(P(s_{1}), \cdots , p(s_{H}))^{t},$ $\pi_{2}^{*}=(\pi_{12}^{*}, \pi_{1\theta}^{*}, \cdots , \pi_{N-1.N}^{*})^{t}$ and $D=[d_{(\ell j)i}]$ is $\left(\begin{array}{l}N\\2\end{array}\right)\times$

$\left(\begin{array}{l}N\\n\end{array}\right)$ matrix where $d_{(ij)k}$ defined by

(3.9) $d_{(ij)k}=\left\{\begin{array}{ll}1 & if s_{k}\ni i, j (ith and jth elements of U)\\0 & otherwise,\end{array}\right.$

for $1\leqq k\leqq\left(\begin{array}{l}N\\n\end{array}\right)$ and $1\leqq i\leqq j\leqq N$.
It is shown in Lemma 3 below that rank $(D)=\min\{\left(\begin{array}{l}N\\2\end{array}\right),$ $\left(\begin{array}{l}N\\n\end{array}\right)\}$ . Note that

the equation (3.8) reduces to (3.7) by multiplying a suitable matrix $H$ to the
both sides of (3.8) from the left, if the following conditions (3.10) are satisfied.

(3.10) $\sum_{f\Rightarrow 1}^{N}\pi_{tf}^{*}=n\pi_{\dot{t}}^{*}$ , $\pi f_{\ell}=\pi_{1}^{*}$ for $1\leqq i\leqq j\leqq N$ .

Therefore if the equation (3.7) has a unique solution $p=p^{*}$ , then the equation
(3.8) has the same solution $p=p^{*}$ . In conclusion we state the following theorem.

Theorem. Let $\{\tilde{\pi}_{i}\},$ $\{\tilde{\pi}_{\ell f}\}$ be the first-order, second-order inclusion prOba-
bilities resPectively induced from a given with-replacement sampling design $\beta(s)$ ,
and suPpose that $0<\tilde{\pi}_{\ell}<1$ without loss of generality.
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If $b_{\mathfrak{i}}=\tilde{\pi}_{i\ell}-\tilde{\pi}_{\ell}(1\leqq i\leqq N)$ satisfy the condition (3.1), then we can find $\{\pi_{\ell}^{*}\}$ and
$\{\pi f_{j}\}$ satisfying the conditions (3.2) and (3.3).

Further $lf$ the equation (3.8) has a non-negative solution $p=p^{*}$ for $\pi_{2}^{*}=$

$(\pi_{12}^{*}, \pi_{1S}^{*}, \cdots , \pi_{N-1.N}^{*})^{\ell}$ , then we can take $p^{*}(s)$ for a design of withont-replacement
sampling which induces $\pi_{\ell}^{*}$ and $\pi_{ij}^{*}$ as the first-order and second-order inclusion
probabilities $resPectively$ .

Thus if the conditions above are all salisfied, then a given strategy of with-
replacement samPling $(\tilde{p}, i)$ can be $imProved$ to a strategy of without-replacement
$samPl_{\dot{i}}ng(p*, t^{*}),$ $i.e.$ ,

$V_{p*}(t^{*})<V_{\beta}(\tilde{t})$ .
Remark. This theorem shows that we can find a feasible procedure to in-

prove a given strategy of with-replacement sampling to a better strategy of
without-replacement sampling under suitable conditions as above though it
may not be best or admissible.

4. Lemmas

Lemma 1. Let $b_{1},$ $b_{2},$ $\cdots$ , $b_{N}$ be given non-negative numbers satisfying the
condition $0\leqq b_{1}\leqq b_{2}\leqq\ldots\leqq b_{N}$ .

Then the necessary and sufficient condition for existing $ojN\times N$ matrix $A=$

$[a_{\ell j}]$ such that

(4.1) $a_{\ell j}=a_{ji}\geqq 0$ , $a_{\ell\ell}=0$ , for $1\leqq i\leqq j\leqq N$,

and

(4.2) $\sum_{f=1}^{N}a_{\ell j}=b_{\ell}$ for $1\leqq i\leqq N$,

is

(4.3) $\sum_{\ell=1}^{N-1}b_{\ell}\geqq b_{N}$ .

Proof. It is clear that the condition (4.3) is necessary.
To prove the sufficiency of (4.3) we shall construct an $N\times N$ matrix $A$

satisfying the conditions (4.1) and (4.2) in the following way.
Let us define $N\times N$ matrices $E_{i},$ $F_{\ell}$ such that

$E_{1}=\frac{1}{N-1}[.011$ $ 01.\cdot 1..\cdot$

1

$0111]$ ,
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$E_{2}=\frac{1}{N-2}\left\{\begin{array}{lllllllll}0 \ddots & 0 & & & & & 0 & \cdots & 0\\0 & 0 \ddots & & & & & 1 & \cdots & 1\\\vdots & & 0 \ddots & & & 1 & & & \vdots\\\vdots \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \vdots\\\vdots \cdots & \cdots & \cdots & \cdots & \cdots & \vdots \cdots & \cdots & \cdots & \vdots\\\vdots & & & & & \vdots \ddots & \cdots & \cdots & \vdots\\\vdots & & & & & \vdots & \ddots & & 1\\0 & & & & & 1 & \cdots & 1 & 0\end{array}\right\},$ $\cdots$

$E_{N-1}=\left\{\begin{array}{llllllll}\ddots & & 0 & 0 & & 0 & \cdots & 0\\ & \ddots & 0 & 0 & & 0 & \cdots & 0\\\cdots & \cdots & \cdots \ddots & \cdots & \cdots & \cdots & \cdots & \vdots\\\cdots & \cdots & \vdots \cdots & \cdots \ddots & \cdots & \cdots & \cdots & \vdots\\ & & \vdots & \cdots & \cdots \ddots & \cdots & \cdots & \vdots\\ & & \vdots & & & \ddots & 0 & 0\\ & & \vdots & & & 0 & 0 & 1\\ & & 0 & 0 & \cdots & 0 & 1 & 0\end{array}\right\}$

and

$F_{1}=[]$ , $F_{2}=[],$ $\cdots$

$F_{N-1}=[0000$ $0000\ldots 0$ $0001$ $0000_{1}1$

Further define $N\times N$ matrices $E$ and $F$ such that

(4.4) $E=b_{1}E_{1}+(b_{2}-b_{1})E_{2}+\cdots+(b_{N-1}-b_{N-2})E_{N-1}$ ,

and

(4.5) $F=b_{1}F_{1}+(b_{2}-b_{1})F_{2}+\cdots+(b_{N-1}-b_{N-S})F_{N-1}$ .
Then it is easily seen that $E$ and $F$ are symmetric $N\times N$ matrices satisfying the
conditions

$E$ . $($ 1, $\cdots$ , $1)^{t}=(b_{1}, b_{2}, \cdots , b_{N-1}, b_{N-1})^{t}$

and

$F\cdot(1, \cdots 1)^{t}=(b_{1}, b_{2}, \cdots b_{N-1},\sum_{\ell-1}^{N-1}b_{i})^{t}$ ,

Since $b_{N-1}\leqq b_{N}\leqq\Sigma_{\ell\Leftarrow 1}^{N-1}b_{i}$ by (4.3), there exists a non-negative number $\lambda(0\leqq\lambda\leqq 1)$

satistying the relation
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(4.6) $\lambda b_{N-1}+(1-\lambda)\sum_{\iota=1}^{N-1}b_{\ell}=b_{N}$ .

Then the $N\times N$ matrix $A=[a_{ij}]$ satisfying (4.1) and (4.2) can be obtained by
putting $A=\lambda E+(1-\lambda)F$. Note that $\lambda$ is determined from (4.6) such that

(4.7) $b=(\sum_{\ell=1}^{N-1}b_{i}-b_{N})/\sum_{\ell=1}^{N-2}b_{i}$ .

Lemma 2. Let $C$ be $N\times M$ matrix, the $(i, j)$ element $c_{\ell j}$ of whch is defined
by (3.6). Then for any $n$ and $N(n<N)$ , the rank of $C$ is equal to $N,$ $i.e.$ ,

(4.8) rank $(C)=N$, where $M=\left(\begin{array}{l}N\\n\end{array}\right)$ .

Proof. For any fixed $n$ and $N=n+1$ , it is clear that $M=n+1$ and $(n+1)$

$\times(n+1)$ matrix represented by

$C=[101$ $0111^{\cdot}$

$ 1.\cdot$

.

$0111]$ ,

and that rank $(C)=n+1=N$.
Further let us show (4.8) holds for $n$ and $N+1$ under the assumption that

(4.8) holds for any $n$ and $N$.
For convenience sake let us put suffix $N$ to $C$ such as $C_{N}$ in case of

$N$. Then it is easily seen that $C_{N+1}=\left\{\begin{array}{ll}C_{N} & G\\0^{t} & 1^{t}\end{array}\right\}$ , where $0=(0,0, \cdots , 0)^{t}$ and

$1=($1, 1, $\cdots$ , $1)^{t}$ are $\left(\begin{array}{l}N\\n\end{array}\right)$ and $\left(\begin{array}{l}N\\n-1\end{array}\right)$ dimensional vectors respectively and $G$ is

an $N\times\left(\begin{array}{l}N\\n-1\end{array}\right)$ matrix, and that rank $(C_{N+1})=rank(C_{N})+1=N+1$ . Therefore

(4.8) holds for any $n$ and $N(n<N)$ by induction.

Lemma 3. Let $D$ be a matrix $\left(\begin{array}{l}N\\2\end{array}\right)\times\left(\begin{array}{l}N\\n\end{array}\right)$ , the $(i, j)$ element of which is de-

fined by (3.9). Then it holds that

(4.9) rank $(D)=\min\{\left(\begin{array}{l}N\\2\end{array}\right),$ $\left(\begin{array}{l}N\\n\end{array}\right)\}$

for any $n$ and $N(2\leqq n\leqq N)$ .
Proof. In case $N=3$ and $n=2$ the matrix $D$ is represented as $3\times 3$ unit

matrix and so (4.9) holds.
Let us assume (4.9) holds for any $n$ and $N$ in case $\left(\begin{array}{l}N\\2\end{array}\right)\leqq\left(\begin{array}{l}N\\n\end{array}\right)$ , and show



GENERALIZATION OF HT STRATETGY 171

that (4.9) holds for $n$ and $N+1$ . For convenience sake let us put suffix $N$ and
$n$ to $D$ as $D_{n}^{N}$ in case of $n$ and $N$. Then it is easily seen that $D_{n}^{N+1}$ can be
represented as

$D_{n}^{N+1}=\left\{\begin{array}{lll}D_{n}^{N} & R & \\O & C & N\end{array}\right\}$ ,

where $0$ is $N\times\left(\begin{array}{l}N\\n\end{array}\right)$ zero matrix, $R$ some suitable $\left(\begin{array}{l}N\\2\end{array}\right)\times\left(\begin{array}{l}N\\n-1\end{array}\right)$ matrix and
$C_{N}$ is $N\times\left(\begin{array}{l}N\\n-1\end{array}\right)$ matrix as shown in Lemma 2 of rank $N$. Then it is easily

seen that rank $(D_{n}^{N+1})=\left(\begin{array}{l}N\\2\end{array}\right)+N=\left(\begin{array}{l}N+1\\2\end{array}\right)$ .
In case $\left(\begin{array}{l}N\\2\end{array}\right)>\left(\begin{array}{l}N\\n\end{array}\right)$ for $n=N-1$ , it is easily proved that rank $(D)=\left(\begin{array}{l}N\\N-1\end{array}\right)$

$=N$.

5. Examples

Example 1. In case of $N=4$ and $n=3,4\times 4$ matrix $C$ in (3.7) is given by

(5.1) $C=\left\{\begin{array}{llll}l & 1 & 1 & 0\\1 & 1 & 0 & 1\\1 & 0 & 1 & 1\\0 & 1 & 1 & 1\end{array}\right\}$ .

Then the equation (3.7) is represented by

(5.2) $\left\{\begin{array}{llll}1 & 1 & 1 & 0\\1 & 1 & 0 & 1\\1 & 0 & 1 & 1\\0 & 1 & 1 & l\end{array}\right\}\left\{\begin{array}{l}p_{1}\\p_{2}\\p_{s}\\p_{4}\end{array}\right\}=\left\{\begin{array}{l}\pi_{1}^{*}\\\pi_{2}^{*}\\\pi_{s}^{*}\\\pi_{4}^{*}\end{array}\right\}$ ,

which has the unique solution

(5.3) $\left\{\begin{array}{l}p_{1}\\p_{2}\\p_{s}\\p_{4}\end{array}\right\}=\frac{1}{3}\left\{\begin{array}{l}\pi_{1}^{*}+\pi_{2}^{*}+\pi_{3}^{*}-2\pi_{4}^{*}\\\pi_{1}^{*}+\pi_{2}^{*}+\pi_{4}^{*}-2\pi_{s}^{*}\\\pi_{1}^{*}+\pi_{s}^{*}+\pi_{4}^{*}-2\pi_{2}^{*}\\\pi_{2}^{*}+\pi_{3}^{*}+\pi_{4}^{*}-2\pi_{1}^{*}\end{array}\right\}$ .

Therefore the necessary and sufficient conditions for existing of non-negative
solution $p=p^{*}$ is given by

(5.4) $\pi_{1}^{*}+\pi_{2}^{*}+\pi^{*}\geqq 2\pi^{*}$ , or $\pi_{4}^{*}\leqq 1$ ,

assuming that $0<\pi_{1}^{*}\leqq\pi_{2}^{*}\leqq\pi_{3}^{*}\leqq\pi_{4}^{*}$ .

Example 2. In case of $N=4$ and $n=2$ , let us improve an HH strategy to
get a better HT strategy. Consider an HH strategy such as $p_{1}=0.1,$ $p_{2}=0.25$ ,
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$p_{\theta}=0.3,$ $p_{4}=0.35$ , and then $\tilde{\pi}_{1}=0.2,\tilde{\pi}_{2}=0.5,\tilde{\pi}_{8}=0.6,\tilde{\pi}_{4}=0.7$ . By the definition
of $b_{i}=E_{\beta}\{\nu_{i}(\nu_{i}-1)\}=n(n-1)P_{i}^{2}$ , we get $b_{1}=0.02,$ $b_{2}=0.125,$ $b_{\theta}=0.18,$ $b_{4}=0.245$

and so $b_{1}+b_{2}+b_{S}=0.325>b_{4}$ .
Therefore we can get a matrix $A=\lambda E+(1-\lambda)F$ as shown in the proof of

Lemma 2 such that

$E=\left\{\begin{array}{llll}0 & 0.00667 & 0.00667 & 0.00667\\0.00667 & 0 & 0.05917 & 0.05917\\0.00667 & 0.05917 & 0 & 0.11417\\0.00667 & 0.05917 & 0.1l417 & 0\end{array}\right\}$ ,

$F=\left\{\begin{array}{llll}0 & 0 & 0 & 0.02\\0 & 0 & 0 & 0.125\\0 & 0 & 0 & 0.180\\0.02 & 0.125 & 0.180 & 0\end{array}\right\}$ ,

$\lambda=0$ . 5517, $1-\lambda=0.4483$ ,

$A=\left\{\begin{array}{llll}0 & 0.00368 & 0.00368 & 0.01264\\0.00368 & 0 & 0.03264 & 0.08868\\0.00368 & 0.03264 & 0 & 0.14368\\0.01264 & 0.0\mathfrak{U}8 & 0.14368 & 0\end{array}\right\}$ ,

$[\pi_{\ell f}^{*}]=\left\{\begin{array}{llll}0.22000 & 0.05368 & 0.06368 & 0.08264\\0.05368 & 0.62500 & 0.18264 & 0.26368\\0.06368 & 0.18264 & 0.78000 & 0.35368\\0.08264 & 0.26368 & 0.35368 & 0.94500\end{array}\right\}$ .

Since $D$ is the unit matrix in this case, we get $p^{*}=\pi_{2}^{*}$ . Further we can get
an HT strategy $(P^{*}, t^{*})$ better than the original HH strategy $(\tilde{p},\tilde{t})$ given above.
In case $y_{1}=1,$ $y_{2}=2,$ $y_{3}=3$ , and $y_{4}=4$ , we get $V_{p*}(t^{*})=0.4803<V_{\beta}(\tilde{t})=0.5714$ .
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