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Summary. This paper deals with a classification of the semisymmetric contact
metric manifolds, and the contact manifolds satisfying $R(\xi, X)\cdot S=0$ , where
$S$ is the Ricci tensor, under the condition that the characteristic vector field
$\xi$ belongs to the $(k, \mu)$ -nullity distribution.

1. Introduction

It is well known that there exist contact Riemannian manifolds $[M^{2n+1}$ ,
$(\varphi, \xi, \eta, g)]$ for which the curvature tensor $R$ in the direction of the charac-
teristic vector field $\xi$ satisfies $R_{XY}\xi=0$ , for any tangent vector fields $X,$ $Y$ of
$M^{sn+1}$ . The tangent sphere bundle of a flat Riemannian manifold, for example,
admits such a structure [2]. Applying a D-homothetic deformation [13] on
$M^{2n+1}$ with $R_{XY}\xi=0$ , we find a new class of contact metric manifolds satisfying
the relation

$R(X, Y)\xi=k(\eta(Y)X-\eta(X)Y)+\mu(\eta(Y)hX-\eta(X)hY);k,$ $\mu\in R$ (1.1)

where $2h$ is the Lie derivative of $\varphi$ with respect ot $\xi$ . An interesting property
of this class is that the type of (1.1) is invariant under a D-homothetic deforma-
tion. The purpose of this paper is the classification of the contact Rieman-
nian manifolds satisfying either

i) $R(\xi, X)\cdot R=0$ or ii) $R(\xi, X)\cdot S=0$ , (1.2)

under the condition that the characteristic vector field $\xi$ belongs to the $(k, \mu)-$

nullity distribution $i.e$ . under the condition (1.1). This paper is organized as
follows: In the second section we give some defintions and known results.
In the third section we consider semisymmetric contact metric manifolds
$[M^{2n+1}, (\varphi, \xi, \eta, g)]$ with characteristic vector field belonging to the $(k, \mu)-$
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nullity distribution (see section two for definitions). The main result we prove
is included in Theorem 3.4 and it is an improvement of Perrone’s recent result
Theorem 3.1 [9] and Takahashi’s result, Theorem 3 [11]. If $S$ is the Ricci
tensor of $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ then the condition (1.2i) implies the condition
$(1.2ii)$ . So, it is meaningful to undertake the study of manifolds satisfying
$(1.2ii)$ . The two conditions (1.2i) and $(1.2ii)$ are equivalent if dim $M=3$ . In the
fourth paragraph we consider a contact Riemannian manifold $M^{tn+1}$ satisfying
the conditions (1.1), $(1.2ii)$ and $2n+1>3$ and prove that such a manifold is
either locally isometric to the product $E^{n+1}(0)\times S^{n}(4)$ , or to an Einstein-Sasakian,
or to an $\eta$-Einstein and it is a generalization of Perrone’s Theorem 4.1 [9].

2. Preliminaries and known results

Let $M$ be a $(2n+1)$-dimensional contact manifolds with contact form $\eta i.e$ .
$\eta\wedge(d\eta)^{n}\neq 0$ . It is well known that a contact manifold admits a vector field $\xi$ ,
called the characteristic vector field, such that $\eta(\xi)=1$ and $d\eta(\xi, X)=0$ for every
$X\in\chi(M)$ . Moreover, $M$ admits a Riemannian metric $g$ and a tensor field $\varphi$ of
type $(1, 1)$ such that

$\varphi^{2}=-I+\eta\otimes\xi,$ $g(X, \xi)=\eta(X),$ $g(X, \varphi Y)=d\eta(X, Y)$ (2.1)

We then say that $(\varphi, \xi, \eta, g)$ is a contact metric structure. As a consequence
of the relations (2.1) one has

$g(\varphi X, \varphi Y)=g(X, Y)-\eta(X)\eta(Y)$ , $\varphi\xi=0$ , $\eta\varphi=0$ (2.2)

Denoting by $X$ and $R$ Lie differentiation and the curvature tensor respectively,
we define the operators 1 and $h$ by

$ lX=R(X, \xi)\xi$ , $hX=\frac{1}{2}(\mathcal{L}_{\xi}\varphi)X$ (2.3)

The $(1, 1)$ tensors $h$ and 1 are self-adjoint and satisfy

$h\xi=0$ , $1\xi=0$ , tr $h=trh\varphi=0$ , $h\varphi=-\varphi h$ (2.4)

Since now $h$ anticommutes with $\varphi$ , if $X$ is an eigenvector of $h$ corresponding
to the eigenvalue $\lambda$ , then $\varphi X$ is also an eigenvector of $h$ corresponding to the
eigenvalue $-\lambda$ . If $\nabla$ is the Riemannian connection of $g$ , then

i) $\nabla_{X}\xi=-\varphi X-\varphi hX$ , ii) $\nabla_{\xi}\varphi=0$ , iii) $\varphi l\varphi-l=2(h^{2}+\varphi^{2})$ (2.5)

A contact metric manifold for which $\xi$ is a Killing vector field is called K-
contact manifold. It is well known that a contact manifold is K-contact if and
only if $h=0$ . Moreover on a K-contact manifold it is valid $ R(X, \xi)\xi=X-\eta(X)\xi$ .
A contact metric manifold is said to be a Sasakian manifold if
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$(\nabla_{X}\varphi)Y=g(X, Y)\xi-\eta(Y)X$ (2.6)

in which case

i) $\nabla_{X}\xi=-\varphi X$, ii) $R(X, Y)\xi=\eta(Y)X-\eta(X)Y$ (2.7)

Note that a Sasakian manifold is K-contact, but the converse holds only if
dim $M=3$ .

A contact manifold is said to be $\eta$ -Einstein if

$ Q=aId+b\eta\otimes\xi$ (2.8)

where $Q$ is the Ricci operator and $a,$
$b$ are smooth functions on $M^{2n+1}$ .

The sectional curvature $K(\xi, X)$ of a plane section spanned by $\xi$ and a
vector $X$ orthogonal to $\xi$ is called a $\xi$-sectional curvature while the sectional cur-
vature $K(X, \varphi X)$ is called a $\varphi$-sectional curvature.

The $(k, \mu)$-Nullity distribution of a contact metric manifold $[M^{2n+1},$ $(\varphi,$ $\xi$,
$\eta,$ $g$)] for the pair $(k, \mu)\in R^{2}$ , is a distribution

$N(k, \mu):P\rightarrow N_{p}(k, \mu)=\{Z\in T_{p}M|R(X, Y)Z=k[g(Y, Z)X-g(X, Z)Y]$

$+\mu[g(Y, Z)hX-g(X, Z)hY]\}$ .
So, if the characteristic vector field $\xi$ belongs to the $(k, \mu)$-nullity distribution
we have:

$R(X, Y)\xi=k(\eta(Y)X-\eta(X)Y)+\mu(\eta(Y)hX-\eta(X)hY)$ (2.9)

Finally if a Riemannian manifold $(M, g)$ is locally symmetric, then its curvature
tensor $R$ satisfies

$R(X, Y)\cdot R=0$ (2.10)

for all tangent vectors $X,$ $Y$ where the endomorphism $R(X, Y)$ operates on $R$

as a derivation of the tensor algebra at each point of $M$. Any Riemannian
manifold satisfying (2.10) is called semi-symmetric space.

In the next paragraphs we will use the following Theorem of Blair:

Theorem 2.1 [2]. Let $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ be a contact metric manifold
with $R(X, Y)\xi=0$ for all vector fields $X$, Y. Then $M^{2n+1}$ is locally the product
of a flat $(n+1)$-dimensional manifold and an n-dimensional manifold of positive
constant curvature equal to 4.

If $S$ is the Ricci tensor of a Riemannian manifold $(M, g)$ , then the condition
(2.10) implies in particular

$R(X, Y)\cdot S=0$ , (2.11)

for any tangent vectors $X,$ $Y$ where the endomorphsim $R$ acts on $S$ as a
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derivation. The Ricci operator $Q$ is the symmetric endomorphism on the
tangent space given by

$g(QX, Y)=S(X, Y)$ . (2.12)

Another result ([5]) which we will use later is the following

Lemma 2.1. In any contact metric manifold $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ with $\xi$

belonging to the $(k, \mu)$-nullity distribution the Ricci $oPeratorQ$ is given by

$QX=[2(n-1)-n\mu]X+[2(n-1)+\mu]hX+[2(1-n)+n(2k+\mu)]\eta(X)\xi,$ $n\geqq 1$

(2.13)

for any $X\in\chi(M)$ .

3. Semisymmetric contact Riemannian manifolds and $(k, \mu)$-nullity
distribution

Assume that $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ be a semisymmetric contact Riemannian
manifold with $\xi$ belonging to the $(k, \mu)$-nullity distribution. Then (2.9) and
(2.10) hold. Moreover, (2.9) implies that

$R(\xi, X)Y=k(g(X, Y)\xi-\eta(Y)X)+\mu(g(hX, Y)\xi-\eta(Y)hX)$ (3.1)

In the following we will use the next result of Takahashi [11].

Theorem 3.1. A Sasakian manifold satisfying $R(X, Y)\cdot R=0$ for all tangent
vector $X,$ $Y$ is of constant curvature 1.

On the other hand D. Blair, T. Koufogiorgos and the author treated the
condition of $(k, \mu)$-nullity distribution on a contact manifold and got the follow-
ing theorem.

Theorem 3.2 [5]. Let $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ be a contact manifold with $\xi$

belonging to the $(k, \mu)$-nullity distribution. If $k<1$ then for any $X$ orthogonal
to $\xi$ ;

1) The $\xi$-sectional curvature $K(X, \xi)$ is given by

$K(X, \xi)=k+\mu g(hX, X)=\left\{\begin{array}{l}k+\lambda\mu, if X\in D(\lambda)\\k-\lambda\mu, if X\in D(-\lambda)\end{array}\right.$

2) The sectional curvature of a Plane section {X, $Y$ } normal to $\xi$ is given by

$K(X, Y)=\left\{\begin{array}{ll}i) & 2(1+\lambda)-\mu, if X, Y\in D(\lambda),\\ii) & -(k+\mu)(g(X, \varphi Y))^{2} for any unit vectors X\in D(\lambda), Y\in D(-\lambda),\\iii) & 2(1-\lambda)-\mu, if X, Y\in D(-\lambda), n>1.\end{array}\right.$
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We state and prove now the following theorem.

Theorem 3.3. Let $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ be a semisymmetric contact metric
manifold with $\xi$ belonging to the $(k, \mu)$-nullity distribution. Then for any $X,$ $Y$

$\in\chi(M)$ we have:

$\{kg(X, R_{XY}Y)+\mu g(hX, R_{XY}Y)-[kg(X, X)+\mu g(hX, X)][kg(Y, Y)$

$+\mu g(hY, Y)]+[kg(X, Y)+\mu(g(hX, Y)]^{2}]\}\xi$

$-\{k\eta(R_{XY}Y)+2k\eta(Y)[kg(X, Y)+\mu g(hX, Y)]\}X$

$-\{\mu\eta(R_{XY}Y)+2\mu\eta(Y)[kg(X, Y)+\mu g(hX, Y)]\}hX$

$+\{k\eta(Y)[kg(X, X)+\mu g(hX, X)]+k\eta(X)[kg(X, Y)+\mu g(hX, Y)]\}Y$

$+\{\mu\eta(Y)[kg(X, X)+\mu g(hX, X)]+\mu\eta(X)[kg(X, Y)+\mu g(hX, Y)]\}hY$

$+k\eta(X)R_{XY}Y+\mu\eta(X)R_{\hslash X.Y}Y+\mu\eta(Y)R_{X.\hslash X}Y$

$+\mu\eta(Y)R_{XY}hX+k\eta(Y)R_{XY}X=0$ (3.2)

Proof. Since the manifold $M$ is semisymmetric we will have $R(X, Y)\cdot R=0$

or $(R(\xi, X)\cdot R)(X, Y)Y=0$ for any $X,$ $Y\in\chi(M)$ and $\xi$ being the characteristic
vector field. This last equation may also be written equivalently as:

$R(\xi, X)R(X, Y)Y-R(R_{\xi X}X, Y)Y-R(X, R_{\xi X}Y)Y$

$-R(X, Y)R_{\xi X}Y=0$ (3.3)

Using equation (3.1) one easily gets:

$ R(\xi, X)R(X, Y)Y=[kg(X, R_{XY}Y)-\vdash\mu g(hX, R_{XY}Y)]\xi$

$-k\eta(R_{XY}Y)X-\mu\eta(R_{XY}Y)hX$ (1)

Using also, the equation (3.1) we get

$ R(R_{\xi X}X, Y)Y=[kg(X, X)+\mu g(hX, X)][kg(Y, Y)+\mu g(hY, Y)]\xi$

$-k\eta(Y)[kg(X, X)+\mu g(hX, X)]Y-\mu\eta(Y)[kg(X, X)$

$+\mu g(hX, X)]hY-k\eta(X)R_{XY}Y-\mu\eta(X)R_{hX.Y}Y$ , (2)

$R(X, R_{\xi X}Y)Y=-[kg(X, Y)+\mu g(hX, Y)]^{g}\xi+k\eta(Y)[kg(X, Y)$

$+\mu g(hX, Y)]X+\mu\eta(Y)[kg(X, Y)+\mu g(hX, Y)]hX-\mu\eta(Y)R_{X.hX}Y(3)$

and

$R(X, Y)R_{\xi X}Y=k\eta(Y)[kg(X, Y)+\mu g(hX, Y)]X+\mu\eta(Y)[kg(X, Y)$

$+\mu g(hX, Y)]hX-k\eta(X)[kg(X, Y)+\mu g(hX, Y)]Y-\mu\eta(X)[kg(X, Y)$

$+\mu g(hX, Y)]hY-k\eta(Y)R_{XY}X-\mu\eta(Y)R_{XY}hX$ (4)
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If we now substitute the relations (1), (2), (3) and (4) to (3.3) we get the required
result.

From the above theorem we have the following corollary.

Corollary 3.1. For any unit vector fields $X,$ $Y\in\chi(M)$ such that $\eta(X)=\eta(Y)$

$=0$ and $g(X, Y)=0$ , where $M$ is a semisymmetric contact manifold and $\xi$ belongs
to the $(k, \mu)$-nullity distribution, we have:

$\{[kg(X, R_{XY}Y)+\mu g(hX, R_{XY}Y)]-[k+\mu g(hX, X)][k+\mu g(hY, Y)]$

$+\mu g^{g}(hX, Y)\}\xi-kg(\xi, R_{XY}Y)X-\mu g(\xi, R_{XY}Y)hX=0$ (3.4)

Proof. This is an immediate consequence of (3.2).

Next, we state and prove the main result.

Theorem 3.4. Let $[M^{8n+1}, (\varphi, \xi, \eta, g)]$ be a semisymmetric contact mertic
manifold with $\xi$ belonging to the $(k, \mu)$-nullity distribution. Then

a) If dim $M>3,$ $M^{tn+1}$ is either
(i) A Sasakian manifold of constant sectional curvature 1, $or$

(ii) Locally isometric to the prOduct of a flat $(n+1)$-dimensional Euclidean
manifold and an n-dimensional manifold of constant curvature 4.

b) If dim $M=3,$ $M^{s}$ is either
1) A Sasakian manifold of constant sectional curvature $+1$ , or
2) Locally isometric either to

i) $A$ flat manifold $(\mu=0, \lambda=1)$ , or to
ii) $SU(2),$ $(\mu=0,0\leqq\lambda<1)$

Proof. a) (i). If $k=1$ then $\lambda=0$ and hence $h=0$ . Therefore the manifold
is K-contact. Moreover, the equation (2.9) is reduced to

$R(X, Y)\xi=\eta(Y)X-\eta(X)Y$

and therefore, the semi-symmetric manifold $M^{tn+1}$ is a Sasakian manifold. Apply-
ing now Theorem 3.1 [11], we conclude that $M^{2n+1}$ is of constant curvature $+1$ .

a) (ii). It is known, Tanno [5], that if $k<1$ then $M^{g_{n+1}}$ admits three
mutually orthogonal and integrable distributions $D(O),$ $D(\lambda)$ and $D(-\lambda)$ defined
by the eigenspaces of $h$ , where $\lambda=\sqrt{1-k}$

Suppose that $X,$ $Y$ are orthonormal vectors of the distribution $D(\lambda)$ . Then
from Theorem 3.2 we have

$ K(X, Y)=2(1+\lambda)-\mu$ . (1)

On the other hand, applying the equation (3.4) with $hX=\lambda X,$ $hY=\lambda Y$ we get

$[(k+\lambda\mu)K(X, Y)-(k+\lambda\mu)^{g}]\xi-(k+\lambda\mu)g(\xi, R_{XY}Y)X=0$ (2)
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Taking the inner products with $\xi$ we get

i) $ K(X, Y)=k+\lambda\mu$ , or ii) $ k=-\lambda\mu$ (3)

Comparing the equations (1) and (3i) we get

$\mu=1+\lambda$ (4)

SuPpose now that $X,$ $Y\in D(-\lambda)$ and $g(X, Y)=0$, then from Theorem 3.2 we
have

$ K(X, Y)=2(1-\lambda)-\mu$ (5)

On the other hand, applying the relation (3.4), for $hX=-\lambda X,$ $hY=-\lambda Y$ we get

$[(k-\lambda\mu)K(X, Y)-(k-\lambda\mu)^{2}]\xi-(k-\lambda\mu)g(\xi, R_{XY}Y)X=0$ .
Taking the inner product with $\xi$ we get

i) $ K(X, Y)=k-\lambda\mu$ , or ii) $ k=\lambda\mu$ (6)

Comparing now the relations (5) and (6i) we have

i) $\mu=1-\lambda$ , or ii) $\lambda=1$ (7)

Suppose now that $X\in D(\lambda),$ $Y\in D(-\lambda)$ . Then using Theorem 3.2 we have

$K(X, Y)=-(k+\mu)[g(X, \varphi Y)]^{g}$ (8)

On the other hand equation (3.4), for $hX=\lambda X,$ $hY=-\lambda Y$, is reduced to

$[(k+\lambda\mu)K(X, Y)-(k-\lambda\mu)(k+\lambda\mu)]\xi-(k+\lambda\mu)g(\xi, R_{XY}Y)X=0$

from which taking the inner products with $\xi$ we have

i) $ K(X, Y)=k-\lambda\mu$ or $ k=-\lambda\mu$ (9)

while if $X\in D(-\lambda)$ and $Y\in D(\lambda)$ we similarly prove that

ii) $ K(X, Y)=k+\lambda\mu$ or $ k=\lambda\mu$ (10)

By the combination now of the equations $(3ii),$ (4)
$,$

$(6ii),$ (7)
$,$

(9) and (10) we
establish the following five systems among the unknowns $k,$ $\lambda$ and $\mu$ , the re-
mainder being inconsistent (give a contradiction).

1. $\{\mu=1+\lambda, \mu=1-\lambda, \lambda=0\}$ 2. $\{k=-\lambda\mu, \mu=1-\lambda, \mu=0, \lambda>0\}$

3. $\{k=-\lambda\mu, \lambda=1, \mu=0\}$ 4. $\{k=\lambda\mu, k=-\lambda\mu, \mu=0, \lambda>0\}$

5. $\{\mu=1+\lambda, k=\lambda\mu, k\neq 0\}$

From the first system we get easily $\mu=1$ and since $\lambda^{t}=1-k$ we have $k=1$ ,
which is a cotradiction, since we required that $k<1$ . The systems now 2, 3
and 4 have as the only solution $k=0,$ $\lambda=1,$ $\mu=0$ . Hence $R_{XY}\xi=0$ for any $X$,
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$Y\in\chi(M)$ . Therefore, applying Theorem 2.1, we conclude that the manifold is
locally isometric to the product $E^{n+1}(0)\times S^{n}(4)$ . The last system gives $k=3/4$ ,
$\lambda=1/2,$ $\mu=3/2$ which are not acceptable since from (9) and (10) we get a con-
tradiction from (8). Thus the proof of a) (ii) is also complete.

b) Suppose now that dim $M=3$ . Then from the combination of the equa-
tions (9) and (10) we get four systems with respect to the $k,$ $\lambda,$

$\mu$ and the
sectional curvature $K(X, Y)$ , from which we have the following possibilities:

1) $\lambda=0,$ $\mu\neq 0$ , which leads to $M^{3}$ being a Sasakian manifold of constant
sectional curvature $+1$ ,

2) $ k=\lambda\mu$ or $ k=-\lambda\mu$ and $K(X, Y)=0$ , and therefore $M^{3}$ is a flat manifold,
and

3) $\lambda\geqq 0,$ $\mu=0,$ $K(X, Y)=k$ .
It is now, well known [5] that, if $M$ is contact metric manifold for which $\xi$

belogns to the $(k, \mu)$-nullity distribution then

$ Q\varphi-\varphi Q=2[2(n-1)+\mu]h\varphi$ (3.5)

where $Q$ is the Ricci operator. For $n=1,$ $\mu=0$ we easily get $Q\varphi=\varphi Q$ , therefore
[4], $M^{3}$ has to be either

i) A flat manifold $(\mu=0, \lambda=1)$ , or
ii) $SL(2, R)(\mu=0, \lambda>1)$ , or
iii) $SU(2)(\mu=0,0\leqq\lambda<1)$ .

It remains now to be examined which of those manifolds are semisymmetric.
First, any flat manifold is locally symmetric and hence semisymmetric.

Next, we will exhibit the contact metric structure on these Lie groups, such
that (2.9) to be satisfied. Consider the general Lie algebra structure on these
manifolds [7]:

$[e_{2}, e_{3}]=c_{1}e_{1}$ , $[e_{8}, e_{1}]=c_{2}e_{2}$ , $[e_{1}, e_{2}]=c_{3}e_{3}$ (3.6)

Let $\{\omega_{\ell}\}$ be the dual l-forms of the vector fields $\{e_{i}\}$ . Then using (3.6) we
have $d\omega_{1}(e_{2}, es)=-d\omega_{1}(e_{S}, e_{2})=-c_{1}/2\neq 0$ and $d\omega_{1}(e_{i}, e_{j})=0$ for $(i, j)\neq(2,3)$ ,
$(3, 2)$ . It is easy to check that $\omega_{1}$ is a contact form and $e_{1}$ is the characteristic
vector field. Defining a Riemannian metric $g$ by $g(e_{i}, e_{j})=\delta_{\ell j}$ , then $\varphi$ has the
same matrix as $d\omega_{1}$ , with respect to the basis $\{e_{i}\}$ , since $d\omega_{1}(e_{i}, e_{j})=g(e_{i}, \varphi e_{j})$ .
Moreover, in order $g$ to be an associated metric we must have $\varphi^{2}=-id+\omega_{1}\otimes e_{1}$ .
So, $(\varphi, e_{1}, \omega_{1}, g)$ is a contact metric structure if we get $c_{1}=2$ . The unique
Riemannian connection $\nabla$ corresponding to $g$ is given by

$2g(\nabla_{X}Y, Z)=Xg(Y, Z)+Yg(Z, X)-Zg(X, Y)-g(X, [Y, Z])$

$-g(Y, [X, Z])+g(Z, [X, Y])$

So, using (3.6) and $c_{1}=2$ we have
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$\nabla_{e_{1}}e_{1}=\nabla_{e_{2}}e_{2}=\nabla_{e_{3}}e_{3}=0$ , $\nabla_{e_{2}}e_{1}=\frac{1}{2}(c_{2}-c_{3}-2)e_{3}$ , $\nabla_{e_{1}}e_{2}=\frac{1}{2}(c_{2}+c_{3}-2)e_{3}$ ,

$\nabla_{e_{3}}e_{2}=\frac{1}{2}(c_{3}-c_{2}-2)e_{1}$ , $\nabla_{e_{2}}e_{3}=\frac{1}{2}(c_{s}-c_{2}+2)e_{1}$ , $\nabla_{\epsilon_{8}}e_{1}=\frac{1}{2}(2+c_{2}-c_{3})e_{2}$ ,

$\nabla_{\epsilon_{1}}e_{s}=\frac{1}{2}(2-c_{2}-c,)e_{2}$ (3.7)

The $\{e_{\ell}\}$ are eigenvectors of $h$ with corresponding eigenvalues $\{0, \lambda, -\lambda\}$ where
$\lambda$ is given by

$\lambda=\frac{c,-c_{2}}{2}$ (3.8)

Moreover, by direct computations,

$R(e_{1}, e_{2})e_{1}=-\nu e_{2}$ , $R(e_{1}, e_{2})e_{2}=\nu e_{1}$ , $R(e_{1}, e_{S})e_{1}=-\tau e_{3}$ ,

$R(e_{1}, e_{2})e_{S}=R(e_{2}, e_{3})e_{1}=R(e,, e_{1})e_{f}=0$ , (3.9)

$R(e_{2}, e,)e_{S}=\rho e_{2}$ , $R(e_{2}, e_{s})e_{g}=-\rho e_{3}$ , $R(e_{1}, e,)e,=\tau e_{1}$ ,

where:

$\nu=\frac{1}{4}[(2-c_{2}+c_{8})(2-c_{2}-c_{s})+2c_{s}(2+c_{2}-c_{s})]$

$\rho=\frac{1}{4}[(2+c_{2}-c_{3})(c_{2}-c,-2)+4(c_{g}+c,-2)]$ (3.10)

$\tau=\frac{1}{4}[(c_{g}+c_{s}-2)(c_{3}-c_{2}-2)+2c_{2}(2-c_{2}+c_{s})]$

Using now the equations (3.9) we have:

i) $(R_{e_{1}e_{8}}\cdot R)(e_{2}, e,)e_{s}=\nu(\rho-\tau)e_{1}$ , ii) $(R_{e_{1}e_{2}}\cdot R)(e_{3}, e_{2})e_{2}=0$ ,

iii) $(R_{e_{g}e_{3}}\cdot R)(e_{3}, e_{1})e_{1}=\rho(\tau-\nu)e_{2}$ , iv) $(R_{e_{2}e},\cdot R)(e_{1}, e_{3})e_{S}=0$ , (3.11)

v) $(R_{e_{S}e_{1}}\cdot R)(e_{1}, e_{2})e_{2}=\tau(\nu-\rho)e_{3}$ , vi) $(R_{3^{e}1}\cdot R)(e_{2}, e_{1})e_{1}=0$ ,

where we use both the notations $R(X, Y)$ and $R_{XY}$ . In fact, we prove one of
those, say the first:

$(R_{\epsilon_{1}e_{2}}\cdot R)(e_{2}, e_{3})e_{3}$

$=R_{c_{1}e_{g}}R(e_{2}, e_{s})e_{3}-R(R_{e_{1}e_{8}}e_{2}, e_{3})e_{S}-R(e_{2}, R_{e_{1}e_{f}}e_{3})e_{3}-R(e_{2}, e_{S})R_{e_{1}\epsilon_{S}}e_{3}$

$=R_{e_{1}e_{Z}}\rho e_{2}-R(\nu e_{1}, e_{s})e,-R(e_{3},0)e_{3}$

$=\rho\nu e_{1}-\nu\cdot\tau e_{1}=\nu(\rho-\tau)e_{1}$ .
The proofs of the remainder are similar, so we omit these. Therefore, in
order for the manifold to be semisymmetric, it is necessary and sufficient
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$\nu(\rho-\tau)=0$ , $\rho(\tau-\nu)=0$ , $\tau(\nu-\rho)=0$ (3.12)

This system of equations is equivalent to the following five systems:

1. $\{\nu=0, \rho=0, \tau=0\}$ , 2. $\{\nu=\rho=0\}$ , 3. $\{\tau=\nu=0\}$ ,

4. $\{\tau=\rho=0\}$ , 5. $\{\tau=\nu=\rho\}$ .
This system now is equivalent to the following systems

i) $v=\rho=\tau=0$ , ii) $\tau=\nu=\rho$ ,

since each of the sytems 2, 3 and 4 has as solution set either $\{c_{2}=2, c_{3}=0\}$ or
$\{c_{s}=2, c_{2}=0\}$ and therefore the third unknown from (3.10) equals zero as well.
Hence, the solutions of the system (i) are $\{c_{2}=2, c_{3}=0\}$ or $\{c_{2}=0, c_{s}=2\}$ . The
second equation (ii), is equivalent to the following equations

$\{(c_{2}-2)(c_{2}-c_{S}+2)=0, (c_{2}-c_{3})(c_{2}+c_{3}-2)=0, (c_{3}-2)(c_{3}-c_{2}+2)=0\}$

It is now easy to find out that the solutions of this system are $c_{2}=c_{3}=2$ or
$c_{2}=0,$ $c_{3}=2$ or $c_{2}=2,$ $c_{3}=0$ . Therefore, the solution sets of the system (3.12)

are
i) $c_{g}=c_{3}=2>0$ , ii) $c_{2}=0,$ $c_{s}=2$ , iii) $c_{2}=2,$ $c_{s}=0$ .

If the first case holds then according to [4] we conclude that $M^{3}$ is locally
isometric to the three sphere $SU(2)$ . If the second case holds then according
to the classification Theorem 3 of [5], $M^{3}$ must be the group $E(2)$ of the right
motions of the Euclidean 2-space. But this case must be excluded since it
requires $\mu\neq 0$ , while we have $\mu=0$ . If the third case occurs then, according
to the equation (3.8) we get $\lambda=-1$ which is impossible, since $\lambda\geqq 0$ , and the
proof of the Theorem is complete.

4. Contact Riemannian manifolds with $R(\xi, X)\cdot S=0$ and
$\xi\in(k, \mu)$-nullity distribution

Let $[M^{tn+1}, (\varphi, \xi, \eta, g)]$ be a contact Riemannian manifold of dimension
$2n+1>3$ . Tanno [13] proved that if $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ is an Einstein mani-
fold and $\xi$ belongs to the k-nullity distribution, then $M$ is a Sasakian manifold.
Perrone [9] generalizing this result proved that if $M$ is a contact Riemannian
manifold with $R(X, \xi)\cdot S=0$ , where $S$ is the Ricci tensor, and $\xi$ belongs to the
k-nullity distribution, where $k$ is some function on $M$, then $M$ is either an
Einstein-Sasakian manifold or the product $E^{n+1}(0)\times S^{n}(4)$ . In this section we ex-
tend the latest Perrone’s result substituting the k-nullity distribution with the
$(k, \mu)$-nullity distribution. More precisely we have the following theorem.

Theorem 4.1. Let $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ be a contact Riemannian manifold



CONTACT RIEMANNIAN MANIFOLDS 159

such that
i) $R(\xi, X)\cdot S=0$ , where $S$ is the Ricci tensor, and
ii) $R(X, Y)\xi=k(\eta(Y)X-\eta(X)Y)+\mu(\eta(Y)hX-\eta(X)hY),$ $\forall(k, \mu)\in R^{2}$ .

Then the manifold is either
(i) locally isometric to $E^{n+1}(0)\times S^{n}(4)$ , or
(ii) an Einstein-Sasakian manifold, $or$

(iii) an $\eta$ -Einstein manifold if $k^{2}+\mu^{2}(k-1)\neq 0$ .

Proof. (i) If $k=0,$ $\mu=0$ then we have $R_{XY}\xi=0$ for any tangent vector
fields $X,$ $Y$ and hence [2], the manifold is locally isometric to $E^{n+1}(0)\times S^{n}(4)$ .

(ii) Let $k\neq 0$ , then from the first hypothesis we have:

$0=(R(\xi, X)\cdot S)(Y, Z)=R(\xi, X)S(Y, Z)-S(R(\xi, X)Y,$ $Z$) $-S(Y, R(\xi, X)Z)$ ,

from which
$S(R(\xi, X)Y,$ $Z$) $=-S(Y, R(\xi, X)Z)$ , $\forall x,$ $Y,$ $Z\in\chi(M)$ (4.1)

From this equation, setting $ Z=\xi$ we get

$S(R(\xi, X)Y,$ $\xi$) $=-S(Y, R(\xi, X)\xi)$ (4.2)

Using now equation (2.13) we get

$S(X, Y)=g(QX, Y)=[2(n-1)-n\mu]g(X, Y)+[2(n-1)+\mu]g(hX, Y)$

$+[2(1-n)+n(2k+\mu)]\eta(X)\eta(Y)$ (4.3)
from which

$S(X, \xi)=2nk\eta(X)$ , $\forall x\in\chi(M)$ (4.4)

Equation now (4.2) by means of (4.4) and $ lX=R(X, \xi)\xi$ , gives

$S(lX, Y)=2nkg(lX, Y)$ , $\forall x,$ $Y\in\chi(M)$ . (4.5)

But using the second hypothesis

$lX=R(X, \xi)\xi=k(X-\eta(X)\xi)+\mu hX$ (4.6)

and equation (4.5) is reduced to

$\mu S(hX, Y)+kS(X, Y)=2nk^{2}g(X, Y)+2nk\mu g(hX, Y)$ (4.7)

If $\mu=0$ then since $k\neq 0$ , we get that the manifold is Einstein and using the
Theorem 5.2 of [13], we conclude that $M$ is a Sasakian manifold.

(iii) Suppose now that $k\neq 0,$ $\mu\neq 0$ . Then, using the equation (4.3) and
$h^{2}=(k-1)\varphi^{g},$ $k\leqq 1[5]$ , we have

$S(hX, Y)=[2(n-1)-n\mu]g(hX, Y)-(k-1)[2(n-1)+\mu]g(X, Y)$

$+(k-1)[2(n-1)+\mu]\eta(X)\eta(Y)$ (4.8)
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Therefore, equation (4.7) by means of this expression gives:

$\{2nk\mu-k[2(n-1)+\mu]-\mu[2(n-1)-n\mu]\}g(hX, Y)$

$=\{k[2(n-1)-n\mu]-\mu(k-1)[2(n-1)+\mu]-2nk^{2}\}g(X, Y)$

$+\{k[2(1-n)+n(2k+\mu)]+\mu(k-1)[2(n-1)+\mu]\}\eta(X)\eta(Y)$ (4.9)

From this equation now we can get $g(hX, Y)$ in terms of $g(X, Y)$ and $\eta(X)\eta(Y)$ ,
since $k^{2}+\mu^{2}(k-1)\neq 0$ . In fact, we have

$g(hX, Y)=Ag(X, Y)+B(\eta X)\eta(Y)$ (4.10)

where

$A=^{k[2(n-1)-n\mu]}\ovalbox{\tt\small REJECT}^{-\mu(k-1)[2(n-1)+\mu]-2nk^{2}}2nk\mu-k[2(n-1)+\mu]-\mu[2(n-1)-n\mu]$

$B=_{2nk\mu-k[2(n-1)+\mu]-\mu[2(n-1)-n\mu]}^{k[2(1-n)+n(2k+\mu)]+\mu(k-1)[2(n-1)+\mu]}\ovalbox{\tt\small REJECT}$

(4.11)

So, by the equation (4.3) by means of (4.10) and (4.11) takes the form

$S(X, Y)=\{2(n-1)-\mu n+A[2(n-1)+\mu]\}g(X, Y)$

$+\{B[2(1-n)+\mu]+[2(1-n)+n(2k+\mu)]\}\eta(X)\eta(Y)$ (4.12)

from which, we conclude easily that the Ricci operator $Q$ is of the form (2.8)
and therefore $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ is an $\eta$ -Einstein manifold and the proof is
complete.

If the Ricci tensor $S$ is parallel, then the condition $R(\xi, X)S=0$ is satisfied.
Hence, we have the following corollary of the above theorem:

Corollary 4.1. If $[M^{2n+1}, (\varphi, \xi, \eta, g)]$ is a contact Riemannian manifold, the
Ricci tensor of which is parallel and $\xi$ belongs to the $(k, \mu)$-nullity distribution,
then $M$ is either

(i) locally isometric to the product $E^{n+1}(0)\times S^{n}(4)$ , or
(ii) an Einstein-Sasakian manifold, $or$

(iii) an $\eta$ -Einstein manifold.
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