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Abstract. In this paper a law of the iterated logarithm is obtained for partial
sums of a stationary linear process generated by martingale differences.

1. Introduction and result

Let (2, 9, P) be a probability space with an ergodic one-to-one bimeasurable
measure preserving transformation 7. Let &, be a sub-g-field of & such that
F,=T"'F,, and write F,=T*F,. Let H, denote the Hilbert subspace of Ly(£,
F, P) comprising those functions measurable with respect to ., and let G,=
Hy©H,-,. Let ¢,=G,, then for each integer k, ¢, = ¢,oT*=G,, and hence
E(ex|Fr-1)=0 a.s.. Thus {e;, F,, —co<k<oo} forms a (strictly) stationary
ergodic martingale difference sequence with finite variance ¢?=FE&¢2.

Define a stationary ergodic linear process {X;, —oco<k<oco} by

Xk=2§°=_ooajek-j, Z‘,?"=_wa§<oo .
Then its spectral density is
f)=@2r)"'0*| Zf-waet?’|?, —x<i<nm.

In this paper, we will only be concerned with large values of ¢ whenever
logt and log logt are involved. Hence, in order to avoid cumbersome expres-
sions, we adopt the convention that logt=1 for 0<t<e and log logt=1 for
0<t=ec.

It is our object here to give the following iterated logarithm result.

Theorem. Suppose that E|&,|?*°<co for some 6>0, and that there exists a
constant K such that for all n=1,

(c-D) Sijizalas] <K (log n)=¢+0,
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Then
lim SUPp-e 2 %=1 X¢/(2n log log n)'/2=(2x f(0))"/* a.s.

2. Proof

For simplicity of notation put r=244, and also put §=(2+49)/d. Note first
that the condition (c-1) contains the condition

(c-2) Sisical 71 lasl K n(log n)-¢

for all n=1 and some constant K;. To see this, let g(x)=K@x*(log x)~ <0+
for x=e. For exn,

Swg(x)dx=K(log n)-°.
For xze’+!,
g(x)<KOx t{(log x)-¢ —@(log x)~9+1},

and hence for e/*'<n,<n,
S" xg(x)dx<K@n(log n)-? .
o

(c-2) then follows, since |a;|=0(g(|s!1)).
We next prove the following lemma.

Lemma. Under the condition (c-1), f(R) is continuous al A=0 with
max szl f(A)—f(0)| <B(log 25")~*

for all 0<A,<x and some constant B.

Proof of Lemmal Let 7;=[|4]"!']+1. We have for 0<|A| <A,
2na™? fF(A—FO0)]

=] DFe-wasett | —(DF--way)’?]
= [(ZF=-0 @5 €08 27)*+ (2= @ 8iN 47)* — (LT @)’
L1 (XFe-ma (1408 2))N(BF=-= as(1—c0s 7)) | +(X7=-w assin 25)*
2 -l @y (D=l @51 (1 =08 27)+ 2T - | @;] | sin 47])
237wl 1A Zisicyy | 71 sl +321g125; | @4])
<B(1a1j2+D(log j2)=*  (by (c-1) and (c-2)
<6B,(log || )~?<6B,(log ;)7
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where B, is a constant not depending on A. Here we used the elementary
facts that |sin x| <1, 1+cos x<2, |sinx|<|x| and 1—cos x<|x]|.

Proof of Theoreml. Let Y ,=(2%--«aj)e;, and let T,=32.,Y,; for n=1.
Then, since {Y,} is a stationary ergodic martingale difference sequence, it
follows from a law of the iterated logarithm for martingales due to Stout
that

lim supy-« T ,/@2n log log n)'/2=2x f(0))*/? a.s.

Thus it suffices to show that
limy.eU,/(n log log n)!/?2=0 a.s.,

where U,=S,—T, and S,=37., X,.

It is known that if f(1) is continuous at A=0, then n'EUZ—0 as n—oo
(see pp. 134-135). We shall show that the condition (c-1) gives adequate
bounds on EUZ. Since ET2=2xf(0)n,

EU =E(S,—T,)*=ES;—ES,T,+ET:
S|ES:—2xf(0)n|+2|ES.Tn—2xf(O)n|. (D)
Applying the lemma to the proof of Theorem 18.2.1 of [3], we obtain that
|ESZ—2nf(0)n| <2xn max2isn-14] fF(A—F(0)] +0(n'"?)
<C,n(log n)-*¢ (2)
for all n=1 and some constant C,. Next notice that
ESiT»=2%1 2t EXY =21 51<a (n— | JDEY o X))
=(DF=-w a0 Dipi<n (n—1jDa;
=27 f ()N — 0 (D Fmw @) (N1 j12n A+ 2Zii<nl Flas) .

Hence, under the condition (c-1) (and hence under the condition (c-2)), there is
a constant C, for which

|ES2T o —27f(0)n| £ 0% ZFecw as| (0D ijiznl asl +Zii<al 71 1ayl)
< C,n(log n)~* (3)
for all n=1. Combining the estimates (1), (2) and (3), we get
EU:(<Csyn (log n)-? (4)

for all n=1, where C,=C,+2C,.
Now we set for n=1,

Un=2’t‘-1 Zi=27=-°° Arj€;,
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where Z,; = X,;—'Yi, Apj = 2?_:1"_1 ai—2?=_ma,~ if 1§]§n and Anj— 2?—:1‘1_; a;
otherwise. Then it follows from (4) that

3w a2;=0*EUL< Cso~*n(log n)~? (5)

for all n=>1. By Burkholder’s and Hoélder’s inequalities, there exists a constant
C. depending only on 7 such that

E|32p anses| TS CiE(Zjp ange))™?
=C.E(ZLpl ans| P/ ans| /T €D
SCE{(Zkp anp) "' 24y Gyl &7}
SCZF=-an) PE|&|".
Hence by the Fatou lemma and (5), there is a constant C; such that
E|U,|"<Csn"'*(log n)~7%/* (6)
for all n=1. Using this together with Markov’s inequality we have for £>0,

P(|Un| >en®)<Cse~"(log n)~701 (7)
for all n=1.
Let a=1/6, and let n,=[exp k%] for k=1. Then 3, (log n;) "%2< o,
since arf/2=r/2>1, and hence by (7),

2=t P Ug | >enp/t)<oo
for each £>0. Hence by the Borel-Cantelli lemma,

ng'?U,, —>0 a.s. as k—>oo.
Let
My=maxX, <asngy, | Un—Un,!/(n, log log n,)'?, k=1,

For each k=1,
|Unl/(nlog log n)'*< |Un,|/(nn log log ny)'/*+ M,
=g P Un, |+ M

for all n,<n<n,,,. Thus it suffices to show that M,—0 a.s. as k—oo to
complete the proof.
Now, the sequence {Z,} is stationary. Hence from (6),

E| DM Z,|T<Cen"/?

holds for all integers »=0 and n=1. By Serfling’s maximal identity ([4],
B), there exists a constant C, such that

Emax,smsalUa|)SCen™/?
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for all n=1. Noting that (n,,.,—n)/n.<(a+0(1))k~ "% we have
EMi=E(MaXismsny,,-n, | Unl")/(n: log log ng)7/2,
S Co(nps1—ny)"/2/(ny log log n,)" /2
SCk~ 07T %(log k)~T/2
=C,k (log k)~ "/*

for all =1 and some constant C,. i, EM]<c, since r/2>1, and hence
M,;—0 a.s. as desired.

3. Remarks

(i) The conclusion of the theorem continues to hold in the absence of
El& %<0 for 6>0 if

(c-3) =1 {(ZBT=n @)’ +(ZFmn a-)% <o,

see [2]. The condition (c-1) does not contain the condition (c-3). For example,
a,=(—1)77* for j=1. Nevertheless, the condition (c-1) covers a wide class
of coefficients a’s being out of the condition (c-3). Examples are a,,~Cj-?
as j— oo for some 1<i<3/2, and a,;~Cjs-(log j)-* as j—oo for some A=
2(14+-0)/0.

(ii) Both of the results in this paper and of Heyde stated above remain
valid even when T is not ergodic. In this case the a; and f(4) can be defined
as J-measurable random variables, where J={A=g|T'A=A}. The proofs
are based on the decomposition of non-ergodic invariant measures into ergodic
components, see [6] and references therein.
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