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Abstract. A quaternionic version of Schur’s theorem on space forms is proved
as a corollary of the construction of semi-symplectic triple system on each
tangent space, which is well-defined because the Riemannian curvature tensor
is invariant by the action of Sp(1).

Introduction

Besse gave a survey on a quaternion-K#hler manifold in an elementary
way as an example of Einstein manifolds. This paper was made under the
influence of this book, in which Salamon and Bérard Bergery’s twistor con-
struction was reviewed by an elementary way. On the other hand, Ishihara
gave an elementary proof of Berger’s result: A locally quaternion-Kéhler
manifold is Einstein. A quaternionic symmetric space M of rank one which is
isometric to a quaternionic projective space HP,, a quaternionic hyperbolic space
HH, or a quaternionic Euclidean space H” (n=1) with the standard metric (abbrev.
a quaternionic space form) has constant Q-sectional curvature p(p), i.e. each Q-
section H(X) has a Q-sectional curvature p(X) and p(X) is constant p(p) for all
tangent vectors X=T,M at p=M (See Definition 3.7). Conversely, Ishihara
proved, by tensor calculus, that a locally quaternion-K&dhler manifold M with
non-zero scalar curvature having constant @-sectional curvature p(p) at all pe M
is locally isometric to a quaternionic space form. But the condition that p(X)
is constant p(p) for all tangent vectors X at p&M is not necessary. It is
sufficient to assume that M has Q-sectional curvatures p(X) at all pcM. Since
the Riemannian curvature tensor is invariant by the action of Sp(1) (cf. Lemmad
2.1), it is equivalent to Alekseevskii [1]’s condition: The sectional curvature
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K(X, AX) does not depend on the choice of A=Sp(l) for each X&T M at all
p=M. In this paper, the following theorem is proved, which is considered as
a generalization of Schur’s theorem for HP,=S*, HH,=H*, H'=R* to quater-
nionic space forms.

Main Theorem. A locally quaternion-Kdhler manifold M of dimension
dn=4 having Q-sectional curvatures p(X) at all points has the Riemannian uni-
versal covering space which is isometrically immersed into a quaternionic space
form of 4An-dimension. In particular, M has a constant Q-sectional curvature p,
i.e.

oX)=p(p)=p, a constant on the tangent bundle TM.

In the case of p(X)x0, M is a quaternion-Kdhler manifold. If moreover M is
camplete and p(X)>0, then M is isometric to HP,.

The first half part of the above theorem is known by Alekseevkii
describing the decomposition of the space of curvature-like tensors by the re-
stricted holonomy group S p(n)Sp(1) only with a sketched proof (cf. Besse [4; p.
405, (.9]7). This paper gives a direct proof to the above theorem by construct-
ing a semi-symplectic triple system with respect to the Riemannian curvature
tensor on each tangent space T,M, which is a generalization of Yamaguti-
Asano’s construction of complex simple Lie algebras of rank =2 or Freudenthal’s
construction of E; (cf. [2], [3], [14], [I7]). It is appeared that the condition
of having Q-sectional curvatures p(X) is equivalent to the vanishing condition
of the g¢-polynomial on the corresponding semi-symplectic triple systems (cf.
[Lemma 3.8). This paper also reviews some basic results on the geometry of
locally quaternion-Kdhler manifolds and locally symmetric spaces.

In §1, we give the definition of a locally quaternion-K#dhler manifold and
examine its linear holonomy group. It is observed that an irreducible locally
quaternion-Kdhler manifold M of dimension =8 is also quaternion-Kéhler, if
it is not locally isometric to a Grassmann manifold SO,.,/S(0,X0,) or its non-
compact dual (cf. [Theorem 1.4). In particular, such M is orientable. Then a
Berger’s theorem [4; Theorem 14.43] on the characterization on a quaternionic
projective space by sectional curvatures is relaxed on the assumption of orient-
ability. In §2, a semi-symplectic triple system on each tangent space of 2
locally quaternion-Kédhler manifold is constructed by the Riemannian curvature
tensor and the quaternionic structure. It is well-defined, because the Riemannian
curvature tensor is invariant by the action of Sp1) (cf. Lemma 2.1), which is
proved by means of Salamon and Bérard Bergery’s pseudo-Kdhlerian twistor
construction [10, 4] and O’Neill’s formula on a semi-Riemannian submer-
sion. In §3, it is observed (cf. [Theorem 3.2) that a de Rham irreducible locally
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quaternion-Kdhler manifold is locally-symmetric if and only if the corresponding
semi-symplectic triple systems at all points are symplectic triple systems, by
means of a theorem of Szabd on Riemannian semi-symmetric spaces and
Cartan-Ambrose-Hicks theorem (cf. Lemma 3.3). As a corollary, the above
theorem is reduced to a theorem of Asano [17; Theorem 1.6] on the character-
ization of a symplectic triple system of type Cn...

The author is grateful to Prof. H. Asano, Prof. T. Takahashi, Prof. M.
Itoh, Prof. H. Tasaki and Prof. M. Takeuchi for valuable communications.

1. Locally quaternion-Kihler manifolds

Let H:=RIPRiPRjPRk=R* be the real algebra of quaternion with the
Hamilton’s triple i, j, k and the standard inner product g. The conjugation p
of peH is defined as minus of the orthogonal reflection of p with respect to
the pure imaginary part H,:= Ri®ORjDRk. The real numbers R:= Rl and
the complex numbers C:= RIDRi are naturally embeded in H. Then g is
the real part of the quaternionic inner product h(p,, p.):= p.p.. The conjuga-
tion and g, h are c: =C<§>l linearly extended on the complex quaternions H°: =

C(%)H. For K=R, C, or H (resp. H°), the real (resp. c-) vector space of nX
m—K-matrices is denoted as K (n, m). Put K*:=K(n, 1), K(n): =K(n, n). For

X1
xi———[ : }EK" (=1, 2), denote
Xnt

g(xy, xz):=i$1 g(x41, x42) and  h(x,, x2) :=§4: h(X41, X42).
Then

1.0) h(x1, x3)=g(x,, xo)—ig(x,, Xs0)—jg(x1, %:J)—kg(x,, x:k).

Denote the identity matrix 1=1, in K(n) and the general linear matrix
group GL(n, K):={A€K (n); AB=BA=1, for some BEK (n)}. For F=R or
¢, and a F-module V, denote

glp(V):={¢p: V-V ; F-morphism}
and

GLp(V):={acglp(V); there is f=glp(V) such that a-f=B-a=1y}.

For a Lie subgroup G of GLg(V), denote the identity connected component of
G as G°. Then GL(n, K)XGL(m, K) is naturally immersed in G Lz(K (n, m)) as

tenm P GL(n, K)XGL(m, K) —> G Lg(K(n, m))

where
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txcn.my(4, B) X=AXB"! for XeK(n, m).

The symplectic group in H(n), the complex symplectic group in H¢(n), the sym-
plectic group of H™ and the complex symplectic group of (H®)* are defined as
follows :

Sp(n):={AcH(n):‘AA=1,}, Spn):={AcHn);'AA=1,},
Spn:={acsGLrHn); h(ax, ay)=h(x, y) (x, yeH")},
S’ :={a=GL(H(n)); h(ax, ay)=h(x, y) (x, yE(H))}.
Then Sp,=cga(Sp(n)X {1}) and Sp,°=tcge;n(Sp(n)° X {1}). Denote also
Sp.:=cgn({1} XSp(1)), Sp:i°:= ccaern({1} XSPA)),
Ii=1tga(1, 0), J:=1¢gn(1, j) and K:=¢ga(l, k). The orthogonal group on H"
and the special orthogonal group H™ is defined as
Oun:={ac=GLrH"); glax, ay)=g(x, y) (x, yEH")},
SOun:= 0:uN\SLe((H™)
SLc((H™)) :={asGLc((H")); det a=1}.

Then Sp,Sp,=tgn(Sp(n)XSp(1))cSO.rn<0,, is R-irreducible on H™ and also
c-irreducible on (H™)*. On the other hand, Sp, is R-irreducible on H" but c-
reducible on (H™)".

Example 1.1. (1) For U(n):={A<=C(n); tAA=1,} =Sp(n) and SU(n):=
{A€U(n); det A=1}, the linear group

UnSU, := tcen, oy(U(n)XSU(2))
is R-linearly equivariant to the linear group

UaSp,:= can(Un)XSp(1))
by
kn:C(n,2) — H"; (X4, X4) —> (X41+x42])

because of the equivariant isomorphism

Ad(k2): UnxSUs —> UnxSpis; (4, [ 7 )])—> (4, atbi).

2) Put O(n):={AcR(n); AA=1,}, SOn):={A€O0(n); det A=1} and
SOn)Sp(l):={AgqeGL(n, H); A=S0O(n), q=Sp()} =Sp(n). Then SO,S0,:=
tren, 6(SO(n) X SO4)) is R-linearly equivariant to (SO ,Sp,)Sp, := tg2((SO(n)S p(1))
xSp(l)) by

hn: R(n, 4) —> H"; (41, X135, Xis, X14) —> (Kot Xl X 5j+x04k),
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because of AT'(emi(SP()XSPUNhi1=tra, (1 XSO@)).

Lemma 1.2. (1) Let G be a Lie subgroup of Oun such that Sp,Sp.cG.
Then G=Sp.Sp:, SOsn 0r Oyn.

(2) The normalizer of Sp, in O.n is SpaSp..

(3) The normalizer of Spn in O.pn 1S SPaSP;.

Proof. (1) (cf. Gray [6]) Since Sp,Sp, is transitive on the unit sphere
S4»-1 and c-irreducible on (H")°, so is G°. Since G°cSO.,, G° is semisimple
and compact. Thus the only possibility for G° is a compact connected R-
irreducible linear group of cohomogeneity one on R**, which is linearly equi-
valent to Sp.Sp., SO.n, Spin,, Sping, Usn, SPUi(: = tga(Sp(n)XUQAQ), SUsa,
or Sp, (cf. [16; Theorem 4.8]). By dimension, Sp, and Sp,U, (resp. Spin,)
cannot contain Sp,Sp, (resp. Sp,Sp,). We rule out (U,, and) SU.,, because
of the c-reducibility on (H")°. Finally, the inclusion Sp,Sp,cSpin, is impos-
sible since the minimal dimensional representation of Sp.Sp, is of degree 8>
degree 7 of the vector representation of Spin, (cf. [16]). We conclude that
G'=Sp,Sp, or SO.,. If G'=S0,,, then G=SO0,, or O,,. Assume G°=Sp,Sp..
Then G normalizes Sp,Sp,. If n=1, then G*=Sp,Sp,=S0,, hence G=SO, or
O.. Assume n=2. To complete the proof, it suffices to show that Sp,Sp, is
its own normalizer in O,,. Let A=0,., normalize Sp,Sp,. Since Sp,Sp. has
no outer automorphism for n>=2, there exists B&Sp,Sp, such that A-B™" is
in the centralizer of Sp,Sp.. Since Sp,Sp, is c-irreducible on (H")°, by
Schur’s lemma, AeB~'=+1&Sp,Sp, on H*. Thus A€Sp,Sp,. This completes
the proof.

(2) (resp. (3)) Let G be the normalizer of Sp, (resp. Sp,) in O... Then
Sp.Sp.cG<O0,,. By (1), G=Sp,Sp,, SO, or O,,. If n=2, then SO, and
O., are simple Lie groups and that Sp, (resp. Sp,) is their proper subgroup.
Thus the central simple SO,, and O,, cannot be the normalizer. Hence, the
normalizer of Sp, (resp. Sp,) in O,, is Sp,Sp,. If n=1, then Sp,Sp,=SO0O,
and the conjugation —=0,\SO, changes the right Sp, and the left Sp,. Thus
the normalizer of Sp, or Sp, in O, equals to SO,=Sp,Sp,. Q.E.D.

Throughout this paper, M denotes a connected smooth manifold of dimension
4n with a Riemannian metric g. The holonomy group of (M, g) at a point
pEM is denoted by 4ol, with the linear Lie algebra 4ol,. By definition,
(M**, g) is called a quaternion-Kdhler (resp. hyperkdhlerian) manifold, if there
exists a point peM and a linear isometry ¢, : H*—T M such that ¢} o/, :=
7' (Holp)ey=Sp.Sp, (resp. Sp,). A Riemannian manifold is called a locally
quaternion-Kdahler (resp. locally hyperkihlerian) manifold, if the Riemannian
universal covering manifold is quaternion-K&hler (resp. hyperkéhlerian).
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Proposition 1.3. The restricted holonomy group Hol) of an irreducible
locally quaternion-Kdhler manifold of dimension =8 is orthogonal linearly equi-
variant to one of the below :

SPn, SPaSP1, UnSpy, SO,S0, .
(BASU)SP,, (AsS ps)Sp1, (AsSU)Sp,, Ss..Sp, or E.Sp,,

where 3A4,SU, (=Sp,) is the image of the representation of SU, on the space
S*C* of all complex symmetric 3-forms on C?, ASUg (=Spy) is the image of
the representation of SUg on the space A*C*® of all complex alternating 3-forms
on C% ASps (=Sp,) is the image of the representation on a 14-dimensional C-
subspace C' in A*C®, Ss,, (=Spie) is the image of the half-spin representation
of Spiny,, and E, (=S p.g) is the image of the 56-dimensional irreducible C-repre-
sentation of the connected and simply connected compact simple Lie group E, of
type E,.

Proof. By the classification of the restricted holonomy group of an irre-
ducible Riemannian manifold (cf. [4; 10.90-95, 10.66, 14.47]), it is orthogonal
linearly equivariant to Sp, (cf. [16]) or the restricted holonomy group of a
quaternionic symmetric space of compact type. The latter is known as above
(e. g. [18] for the detail). Q.E.D.

The oriented Grassmann manifold SO,.,/(SO,XS0,) and its non-compact
dual are simply-connected and quaternion-Kéhler. On the other hand, the Grass-
mann manifold S0,.,/S(0,X0,) is not globally quaternion-Kéhler, because a
compact quaternion-Kidhler manifold with positive scalar curvature is simply
connected (cf. [10], [4; 14.83]).

Theorem 1.4. A de Rham irreducible locally quaternion-Kdahier manifold M
of dimension =8 is quaternion-Kdhler and orientable, except when M is locally
isometric to a Grassmann manifold SO,../S(0,X0,) or its noncompact dual.

Proof. Assume that M is not Ricci flat (Then M is automatically irredu-
cible by [4; 14.45(b)]). By [4; Lemma 14.46] and [Proposition 1.3, there exists
a linear isometry ¢, : H*—>T ,M at one point p=M such that ¢} Ho/3=Sp,.Sp,,
U.Sp,, E.Sp,, Spin,;Sp,, (4:SUeSp:, (AsSps)Sp, or (34,Sp,)Sp,. Then ¢} 4ol,
normalizes Sp, being the only normal 3-dimensional subgroup whose representa-
tion on the tangent space T,M is R-linearly equivalent to n-direct sum of the
4-dimensional R-irreducible representation. Hence ¢} 40l,=Sp,Sp, by
1.2(2). Assume that M is Ricci-flat. Then M is locally hyperkihlerian and
¢y Hol)=Sp, by [Proposition 1.3 and [4; Lemma 14.40] (cf. Proposition 1.3).
Hence ¢} 4ol, is contained in the normalizer of Sp,. So ¢ Hol,=Sp,Sp, by
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Lemma 1.2(3). Since S$.Sp.=SO0,,, M is orientable. Q.E.D.

Then the Berger’s result [4; Theorem 14.43] can be relaxed as follows:

Theorem 1.5. A complete locally quaternion-Kihler manifold of dimension
=8 with positive sectional curvature is isometric to a quaternionic projectice
space.

Proof. Since the Riemannian manifold with positive sectional curvature is
irreducible, the restricted holonomy group is Sp,Sp, by [Proposition 1.3, By
[Theorem 1.4, the manifold is orientable. By Myers theorem, it is compact (cf.
Salamon [11; p. 103, [. 24]). By Berger [4; Theorem 14.43], a compact
orientable locally quaternion-Kidhler manifold of dimension =8 with positive
sectionaal curvature is isometric to a quaternionic projective space. Q.E.D.

Remark 1.6. For even n=2m=2, any de Rham irreducible, locally quater-
nion-Kdhler manifold of dimension 4n=8m (=8), is orientable.

Proof. For a semisimple compact connected Lie subgroup G of SO,, in
GL.((H™®), we denote the linear Lie algebra of G as L, the Dynkin diagram
of G as D, the normalizer and the centralizer of G in O,, as N and C,
respectively. Then we have that

N/CcAut (G)cAut (L)=Int (L) Aut (D) (semi-direct product),

where the action of Int (L) on G is induced by the adjoint action of G. Let
C be the centralizer of G in GL((H"F). If there exists a subset A in
GL.((H™)) whose conjugate action preserves G and represents all elements of
Aut(G), then

a.7 Nc(AC)N O -

- If moreover there exists a subset E of GL.((H")) whose conjugate action pre-
serves D and represents all elements of Aut(D), then

1.8 Nc(GEC)NO., .

By [Theorem 1.4, it is sufficient to prove the case when the restricted holonomy
group is SO,S0,. Then the holonomy group is contained in the normalizer N
of G:=S50,80, in O,,. We show that

NcSOqn
for the case of n=2m, a even number =2. If n+#2, then

(1.9 C={al;A€c} and C={x1}<SOi,.
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Assume n+#2,4. Then Aut(G)=Aut(S0,)X Aut(S0O,)=the conjugate action
A’ of A:=0,0,, where O, :=tpmn, ({1} XO@)cSO@n) for even n and O, :=
trn, 00(n)X {1})cS0O,,. Hence, a Riemannian manifold M** of even n=6 with
the restricted holonomy group SO,SO0, is orientable.

When n=4, then Aut(G)=Aut(SO4)SO@)cAut(su,Psu,Psu,Psuy)=
Int(L)S,, where S,=the permutation group of our su,’s. Since (SO4)SO®4),
(R*H)9)=(SU, X SU; X SU; X SU,, C*RC*RQC*RC?), S, is realized as the group
of all permutations of these four subspaces C®. The elements b;,:=
diag (—1, 1, 1, 1)1, bs,:=1diag (—1, 1, 1, 1), and b,s ,, :=the transpose on R** of
0.0,=S0;, give the permutation of first two C?, the permutation of the last
two C? and the permutation between the first two C? and the last two C?,
respectively. They generate a subgroup B of SO,, which gives a subgroup
B’ of S; with 8 elements. Then N>GBC and the conjugate action gives an
inclusion N/GBCcS,/B’, which consists of prime-3 elements. If N=GBC,
then NcSO,.. If N+GBC, then there is f&N\GBC, whose conjugate action
f'eS~\B’ on G generates S,/B’. Hence B/\Uf’B’ generates S,. In particular,
any element of S, comes from some f=NcO,, as f’. Hence, for any two
C* there is feN which translates them to the first two C2. Since the per-
mutation of the first two C? is given by b,,S0,s"\N, a permutation of any
two C* is given by f~'b,f=S0O,sN\N. Since S, is generated by permutations
of any two C?, S, is given by the conjugate action of some EcSO,,\N. By
(.9 N=SO.s.

When n=2, C=S0,-1. Because of Aut(G)=Aut(S0,;)XAut(S0,)=Zx0,/
{1} where Z=(the set of n-power actions of integers n), N'=N/C={=+1}
X0,/{+1}=0,/CXx0,/{£1}. So N=0,0,=50,. Q.E.D.

2. Semi-symplectic triple systems

By Yamaguti-Asano [14], Asano [2], [3], and Yasukura [I7], there is a
one-to-one functor a from the category 4 of all complex simple symplectic
triple systems up to isomorphism to the category C of all complex simple Lie
algebras of rank =2 up to isomorphism, as a generalization of the Freudenthal’s
construction of a complex simple Lie algebra of the exceptional type E;. On
the other hand, by Wolf [19], there is a one-to-one functor b from C to the
category A of all quaternionic symmetric spaces of compact type up to homo-
thety (cf. [4; 14E, D], [13]). By Tasaki [13], the morphisms of 8 are Lie
algebra homomorphisms of index 1. Then there is a one-to-one functor ¢ from
A to @ (cf. [18]). In this section, using the twistor construction of Salamon
[10; Theorem 6.1] and Bérard Bergery [4; 14.80, 14.86], a complex semi-sym-
plectic triple system c¢,(M) is constructed for each locally quaternion-Kihler
manifold M of dimension =8 with a base point p by the Riemannian curvature
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tensor R,.

Let (M, g) be a locally quaternion-Kdhler manifold of dimension 4n=8.
Since M is connected, at each point p=M, there is a linear isometry tp: H*—
T, M such that ¢% Hol3(M)=Sp,Sp,. Put Sp(1)=Sp(1),=¢}"'Sp, with the linear
Lie algebra sp(1)=sp(1),, and their intersection Z,:=Sp)Nsp(L)={asSp();
a’=—1 on T,M} (=CP, i.e. the complex projective line) which is normalized
by Hol3(M). In general, a 4 ol3(M)-normalized set, e.g. Z,, is not unique,
if M is locally isometric to a Grassmann manifold SO,+./S(O.X0,), its non-
compact dual, or a de Rham reducible hyperkdhlerian manifold. Denote also
Sp(n)=Sp(n),=ck'Sp, with the linear Lie algebra sp(n)=sp(n),, which com-
mutes with the Hamilton’s triple I:=c5"I), J:='()), K= (K)EZ,.
Let D, R, be the covariant derivative of the Levi-Civita connection and the
Riemannian curvature tensor at p of (M, g), respectively.

Lemma 2.1. If a=SpQ) and Acsp(), then, for X, Y, Z&T M, one has
the following equations:

a(Ry(X, Y)Z)=Ry(aX, aY)(aZ),

ARH(X, Y)Z)=R,(AX, Y)Z+R,(X, AY)Z+R,(X, Y)AZ .

Proof. The second equation follows from first equation. We show the
first equation for all a=Z,. Then the first equation for a=Sp(1) follows be-
cause Z, generates the group Sp(l). Since 8p(l) is normalized by hol,, there
exists alternating 2-forms «, 8, ¥ on T,M such that

(a) [R,(X, Y), IT=r(X, Y)J—BX, V)K,
(b) [R,(X, Y), J1=—1rX, I+aX, Y)K,
(©) [Rp(X,Y), K]1=BX, V)I-a(X, Y)],

for any vectors X, YT ,M. Applying (c) to a vector field Z and evaluate the
result with JZ by g, we get

(d) aX, V)| Z|*=g(Rpy(X, Y)Z, IZ)+g(R,(X, Y)]Z, KZ),
whose computations induce for the Ricci tensor r(X, Y) that
(e) na(X, IV)+BX, JY)+rX, KY)=r(X,Y).

If dim M=4n=8, then the same computations for 8 and 7 induce that

2
n—+2

aX, V)= r(dX,Y),
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2
n+2

2
7(X, Y)= aro EX, 1),

BX, Y)= r(JX, Y),

and r(X, YV)=sg,(X, Y) for some s&R, the scalar curvature of M (cf. [7], [4;
14.40]). In the case of s=0:[R,(X,Y), I1=[R,(X, V), J1=[R,(X, Y), K]=0.
Hence, for any a=Z,, [R,X,Y),a]=0. Then ERp(aX, aY)Z, W) =
&Ry(Z, W)aX, aY)=g(@(Ry(Z, W)X), aY)=g(R(Z, W)X,Y)=g(R,(X,Y)Z,W).
So that R,(aX, aY)=R,(X,Y). Hence, a(R,(X, Y)Z)=R,(aX, aY)aZ.

In the case of s>0 (resp. s<0): Let U be a simply connected neighborhood
of p. Then, Hol,(U)=Hol3(M) normalizes Z,. Define the twistor space Zy as
a parallel subbundle of End(TU) by parallel translations of Z,. By [4; 14.68,
14.71, 14.80, 14.86b], Zy admits an almost complex structure / and a J-invariant
semi-Riemannian metric § such that

(0) the natural projection z: Zy—U is a semi-Riemannian submersion (see
[9; p. 212] for the definition),

(1) Dj=0 for the Levi-Civita connection D of (Zy, &),

(2) the vertical projection <V of n satisfies <V J=JcV, and

Q) dra(JzX)=z(dn(X)) for all X=T ;Zy.

Let )?, V,ZeTZy,. By ), ﬁgo]:]oﬁg, so the curvature transformation
R(X, ¥) of D also commutes with J. Hence, R(X, J¥)=RKX, ¥) and
JREX, 1W2=RyX, Jj")(JZ). Put RX, ¥):=R&KX )X, ¥). Then J pre-
serves I?()?, )7):
RyX, jhH=RX 7).

For any horizontal vector fields )?, Y on Zy, by the condition (2),

1 Y ~ Y~ N 1 5~

7 VX, J¥D=vD:JN=v(JD¥)=J D V)= 5 J(V(X, ?1).

Hence,
aJ X, J)¥h=—wv(X 7).

Put KX, Y):=g(RX,Y)X,Y) for X, YeTM. By the O’Neill’s formula (cf.
[9; p. 213], [4; 9.24, (9.29¢)]):

RE, )=KdxZ, dx¥)— 3 (&, P1, (K, 7D,
and the condition (3), one has that
K(z(dxX), 2(dx?)=K(dn(J;X), dn(Jz¥)=K (d=X, dz?)

at each z€Z,;. Then the proof of the first equation is completed. Q.E.D.
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Using this lemma, one can define an algebraic system ¢,(M) on a subspace
of the complexification T{M:= C(%T,,M at each p= M where T°,M is identified

with (H°)" by the complex linear extension ¢, of ¢,. Then ¢“,*(Hol,") S SPa°Sp:C.
Denote Sp(1)’=8Sp(1)°,=(c,*")*Sp,* and Sp(n)°=Spn)°p=(c,*")*Sp,° with the
linear Lie algebras sp(1)°=sp(1)°, and sp(n(°=sp(n)°,, respectively

Definition 2.2. Fix a base point p=M. Denote R, g the C-multilinear
extension of R, g, on TSM, respectively. Fix a C-basis H, E,, E_ of
sp(1)° such as

(2.2.1) (H, E.]J=+2E,, [E,, E.]J=H and H!=1 on T{M,
For example,

2.1 Hi=—il, E.:=2GJ+K), E_i=5G/—K).

Denote TiM:={xeT{,M; Hx=+x}. For x, y, z&T}M, a C-trilinear product
[xyz] and a skew-symmetric C-bilinear form <{x, y> are defined as follows:

2.2.2) L(x, )1=5 {R(x, E-)+ Ry, B0 (Espn)),
2.2.3) [xyz]:= L(x, Yz (€TiM),
(2.2.4) R(x, y)=1:2{x, y>E. (=8p(1)).

Then, denote ¢,(M):= (T3M, [xyz], <x, ).

Theorem 2.3. (1) c¢,(M) is well-defined for a locally quaternion-Kdhler
manifold (M, g) with a base point p=M and a linear isometry ¢, : H*—>T M
such that 3(Holp)=Sp.Sp, of dimensioon 4n=8 and any scalar curvature s

2) e, (M)=(T3M, [xyz], <x, ¥>) is a semi-symplectic triple system :

(ST.0) <[xyz], w>+<z, [xyw1>=0,
ST.1) [xyzl=[yxz],
(ST.2) [xyz]—[xzyl=<x, 2>y—<x, y>z+2<y, 2>x .

(3) If s+0, then <,)> is non-degenerate and c,(M) is simple. If s=0, then
{,> is vanishing and (THM, [xyz]) is a symmetric triple system: [xyz]l=[yxz]
=[xzy].

To prove the theorem, we prepare the following proposition :

Proposition 2.4, Let x, yeT}iM. Then
(24.1) E (T7M)=E (TiM)=0.
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24.2) E.E.=1 onTiM, E_E.=1 on TzM.
24.3) E_(TitM)=TzM, E.(T;M)=T}M.

24.4) g(TiM, TiM)=g(T7M, TzM)=0.

(2.4.5) g(x, E_y) is a Sp(n)-invariant symplectic form.
(2.4.6) R(TiM, T;M)cCE.csp(1)’, R(TzM, Ty;M)cCE_csp(1)’°.

2.4.7) L(TiM, TiM)csp(n) .

(24.8)  L(x, y)=—<x, >H+R(y, E_x)=<x, y)H+R(x, E_y).
2.4.9) R(E_x, E_y)=—2x, yOE_.

(2.4.10)  There is a constant A= C such that {x, y>=A4g(x, E_y).

Proof. 0) For x&TiM, HE.x=([H, E;]+E:H)x=(F2+1)E;x=FE.x.
So that E_(T}M)cTzM and E.(T;M)cTiM. 1) For x&TiM, HE.x=
([H, E.]4+E.H)x=(£2+1)E.x=+3E.x. Since H*=1 on T\ M, E.x=0. 2)
follows from 1) and E.E_=H+E_E.. 3) follows from 0) and 2). Since H is
skew-symmetric with respect to g, (4) follows. (5) Since E_ is skew-sym-
metric with respect to g, g(x, E_y) is skew-symmetric. Since g is non-degen-
erate on T5M, g(x, E_y) is non-degenerate on T3 M by 3) and 4). Since Sp(n)
commutes with E_ and preserves g, g(x, E_y) is Sp(n)-invariant. 6) For x, y
eTi:M, [H, R(x, y)]= R(Hx, y)+R(x, Hy) = £2R(x, y) € [8p(1), hol] c8p(1)
by Lemma 2.1. Hence R(x, y)€CE.. By 2) and Lemma 2.1, for x, yeT}M,
[H, L(x, y)]J=[E., L(x, y)]=0. Then 7) follows from the definition of Sp(n)°
and the equation [1.0) in §1. 8) By Lemma 2.1, —2<{x, y>)H=[E_, R(x, y)]=
R(E_x, y)+R(x, E_y)=R(x, E_y)—R(y, E_x). Since 2L(x, y)=R(x, E_y)+
R(y, E_x), we have that

2L(x,y)—2{x, y>H=2R(x,E_y) and —2L(x, y)—2<{x, y>)H=—2R(y, E_x).

9) By Def. 2.2 and Lemma 2.1, R(E_x, E_y)=1/2[E_, [E_, R(x, )]1=—2<{x, y>E _.
(10) By 6), for u, veT;M and asSp(n), a-R(u, v)=R(u, v)ea on T M. So
that g(R(au, av)z, w) = g(R(z, w)au, av)=g(a(R(z, w)u), av)= g(R(z, w)u, v)=
g(R(u, v)z, w) for z, weT3M. Hence R(au, av)=R(u, v) on T,M, i.e. {au,av)
=<u, v). Since Sp(n) is C-irreducible on T35 M, we get the result by 5). Q.E.D.

Proof of Theorem 2.3. (1) For x, y, 2&T{M, H[xyz]=1/2{(R(Hx,E_y)
+R(Hy, E_x)+R(x, HE_y)+ R(y, HE _x))z+(R(x, E_y)+ R(y, E_x))(Hz)} =[x yz]
by and (2.4.3). Hence, [xyz]€T}iM. By (2.4.6), <x, y)> is also
well-defined. If H’, E, EL is another basis of sp(1)° satisfying [2.2.1), then
the C-linear transformation ¢ on sp(1)° such that p(H)=H’, ¢(E.)=FE%, ¢(E.)
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=FE., is an automorphism of sp(1)°. Since all automorphisms of sp(1)¢ are
inner, there is a=Sp(1)° such that a-Xea '=¢(X) for all Xesp(1)*. Put
TYM:={XeT,M: HHX=X}. Then a(T;M)=T3} M. Since a=Sp(1)° preserves
R (by [Lemma 2.1), [(ax)(ay)(@z)]’=a[xyz] and {ax, ayd’'=<x, y)> for all x,y,z
eTiM.

(2) (ST.2): By (2.4.8), [xyz]=—<x, y>z+R(y, E_-x)z. Hence

[xyz]—[x2y]=—<x, y>2+R(y, E_x)z+<x, 2>y —R(z, E_x)y
=—<x, y>z+<{x,2>y—R(z, y)E_x (by the Bianchi identity)
=—Lx, yz+<x, 2>y—2{z, Y E.E_x

=<x, 2>y—<x, yz+2{y, 2>x (by (2.4.2)).

(ST.1): Obvious from the definition of [xyz].

(ST.0): By (2.4.5), (2.4.7), (2.4.10) and [2.2.3), it is obtained.

"(3) Assume A=01in (2.4.10). Let x, yeT3jM. Then R(x, y)=0. By (2.4.9),
R(E_x, E_y)=0. By (2.4.8), R(x, E_y)=L(x, y)esp(n). By (2.4.3), {Z:R(x¢, y,)|
xi, ¥1€TSM} csp(n)°. Denote r the C-conjugation on T45M with respect to
T,M. Then spn)={Acsp(n)¥=sp(n)Pisp(n); tAr=A}. And tR(x, y)r=
R(rx, ry) for x, yeT4M, since R(T,M, T,M)T,McT,M and the mapping
(x, ¥, 2>—>R(x, y)z is C-trilinear. Hence, {3;R(X;, Y| X, Y. €T ,M}csp(n).
Then s=0 (cf. Proof of [Lemma 2.1). Take the contraposition of the above:
If s+0, then 4#0 and <x, y) is non-degenerate. In this case, we show that
(TH+M, [xyz], <x, y)) is simple (cf. [14; Theorem 2], [17], and Remark 2.6 (1)
below): Put VU:={xTiM:<{(x,y>=0 for all yeT;M}. By the assumption,
U=0. Let @ be any C-subspace of T3M such that [T{;MTi;M B]+[TiM
B TiM]+[8B TitMT}M]c 3B i.e. B is a tri-ideal of cp,(M). Putting 28
in (ST. 2), we have that <{x, 2>y+2<y, z)x=@. Changing x and y, we have
that <y, 2>x+2<{x, 2>y 8. Then Ky, 2>x=93, ie. TiM, $)TtMc3a. If
B+T,M, then <T}M, 8>=0, i.e. 8cU=0. So that ¢,(M) has no non-trivial
tri-ideal, i.e. ¢,(M) is simple. In this case, [T3M TiM T3 M]+ {0} since
dim¢T5M=2. Assume :=0. By the proof of Lemma 2.1, R(X, Y)Esp(n) for
X, YeT,M. Hence, <{x, yE.=R(x, y)esp(n)Nsp(l)=0 for x, yeT}iM, i.e.
{x, y>=0. By (ST.1) and (ST.2), [xyz]=[yxz]=[xzy]. Q.E.D.

For a semi-symplectic triple system with the vanishing skew-symmetric
form, there are some remarks:

Remark 2.5. (1) If V is a vector space over C, not necessary of even
dimension, with the tri-linear product [xyz]=0 and the skew-symmetric form
<z, y>=0, then (V, [xyz], {x, yD>) satisfies (ST.0), 1), and 2). So that not all of
semi-symplectic triple systems are obtained as ¢,(M) from a locally quaternion-
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Kihler manifold M, because the dimension of M is even.

2) If (V, {xyz}, <,)") is a simple Freudenthal triple system (see for
the definition and the classification), then another triple system (V, [xyz], {x, ¥))
on the same V defined by [xyz]={xyz} and <{x, y)>=0 is a simple semi-sym-
plectic triple system, whose skew-symmetric form is vanishing and degenerate.
The author does not know whether there is a hyperkdhlerian manifold M
whose semi-symplectic triple system ¢,(M) is isomorphic to the above.

Then, should be modified as follows.

Remark 2.6. (1) In the assumption of [17; Proposition 1.2, Theorem 1.6,
Theorem 2.6], it should be assumed that the skew-symmetric from <{x, y) is
not identically zero. Then they are proved as [14; Theorem 2, Theorem 4].
If <x, y>=0, then counter examples are constructed from complex simple Freu-
denthal triple systems as Remark 2.5 (2). _

(2) (Due to Prof. H. Asano) [17; Proposition 2.3, (4)] should be modified as

@) [, G_1]=8_,, [G), G.]=8,, and [2-,, G,]=0.
And the proof should also be modified as follows.

(4) It is easily verified that
¢ :=[¢_, ¢.)ha_,Bl[4-,, ¢,1P3G.,6B[4,, ¢,] is an ideal of g.

(3) [17; Proposition 2.3, (2)] should be modified as follows:

(2) Any Cartan subalgebra 4 of ¢, is a Cartan subalgebra of ¢
containing K.
Due to [8; Proof of Lemma 1], the proof should also be modified :

(2) 4 is a maximal nilpotent subalgebra of &, which coincides
with its normalizer in &,. Since [K, #]=0, Ke4. Since ad K|g,=1lg, 4
is a maximal nilpotent subalgebra of ¢ which coincides with its normalizer in &.

3. Locally quaternionic space forms

The following condition is necessary for a Riemannian manifold to be
locally symmetric.

Definition 3.1 (Szabé [12]). A Riemannian manifold (M, g) is called semi-
symetric if, for all x, vy, u, veT4{M, the Riemannian curvature tensor R satisfies
that

LT.3) [R(x, y), R(u, v)]=R(R(x, y)u, v)+R(u, R(x, y)v).

i.e. T9M with the tri-linear product (x, y, z2)—R(x, ¥)z is a Lie triple system
over C. '

The above condition is also sufficient for a de Rham irreducible quaternion-
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Kédhler manifold to be locally symmetric by Szabé [12; Prop. 5.2].

Theorem 3.2. (1) For alocally quaternion-Kdihler manifold (M, g) of dimen-
sion 4n=8, the following three conditions are equivalent :
(i) (M, g) is semi-symmetric,
(ii) For each point p= M, there exists a linear isometry ¢p: H*—~T ,M such that
(5(Holp) =S PSP, and the corresponding semi-symplectic triple sysiem ¢,(M) satsfies

(ST.3) [xy[wvw]]l=[[xyulvw]+[ulxyv]w]+{uv[xyw]l],

i.e. cp(M) is a symplectic triple system over C.
(iiiy For each point p=M and any linear isometry ¢: H*—T M such that
e5(Holy)=SPpaSp: and the corresponding semi-symplectic triple system c,(M) is a
symplectic triple system over C.

(2) In this case, if moreover (M, g)is de Rham irreducible or compact, then
(M, g) is locally symmetric.

Proof. (1) (iii)—(ii): Trivial. (ii)—(): By (2.4.6), R(x, y), R(E_x, E-y)e
sp(1) for x, yeT$iM. By Lemma 2.1, (LT. 3) is always satisfied for (x, y)e(TiM
XTiM)J(T7MXT7M). Assume (ii). Let x, y, u, veTiM. Then (ST.3) is
equivalent to

ST.3)  [L(x, 3), L(u, v)]=L(L(x, y)u, v)+L(u, L(x, y)v),
i.e. [L(x, y), Rlu, E_.v)+R{, E_u)]
=R(L(x, y)u, E_v)+R(u, E_L(x, y)v)+R(L(x, y)v, E_u)+ R(v, E_L(x, y)u).
On the other hand, Lemma 2.1, (2.4.7) and (ST.0) induce
[L(x,y), R(u, E.v)—R(, E_u)]=[L(x,y), [E-, R(x, v)]]=[L(x.y), 8p,(1)*]1=0
and R(L(x,y)u, E_v)+R(u, E-L(x,y)v)—R(L(x,yv, E-u)—R(v, E-L(x, y)u)
=LE_, R(L(x,y)u, v)]+[E-, R(u, L(x,y)v)]
=—2{C(L(x,9)u, v)+<u, L(x,y)v>} H=0.
Summing up the above three equations,
[L(x, ), R(u, E_v)]=R(L(x, y)u, E_v)+R(u, E_L(x, y))
=R(L(x, y)u, E_v)+R(u, L(x, y)E_v).
By (2.4.8), we have that
[R(x, E_y), R(u, E_v)]=R(R(x, E_y)u, E_v)+R(u, R(x, E_y)E_v),
i.e. (LT.3) is satisfied for (x, y), (u, v)ETIMXT; M.
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By (ST.0),
[(L(x, ), R(u, v)]=R(L(x, y)u, v)+R(u, L(x, y)v)=0
and
[L(x,y), R(E-u, E_v)]=R(L(x, y(E_u, E_a)+ R(E_u, L(x, y)E_v)=0.
By (2,4,8), we have that '
[R(x, E.y), R(u, v)]J=R(R(x, E_y)u, v)+R(u, R(x, E_y)),
[R(x,E_y), R(E_u, E_v)]=R(R(x,E_y)E_u, E_v)+ R(E_u, R(x, E_y)E _v),

i.e. (LT.3) is satisfied for (x, y) € TsMXT;M, (u, v) € (TIMXTM)I(T ;M
XTzM).
Hence (LT.3) is satisfied for all x, y, u, veT{M.

(i)—(iii): Assume (i). By (2.4.7), we have [L(x, y), E.-]=0 and

4[L(x, 3), L(u, v)]=[R(x. E-y)+R(y, E-x), R(u, E_v)+R(v, E_u)]
=2{R(L(x,y)u, E_v)+R(u, L(x,y)E_v)+R(L(x,y)v, E_u)+R(v, L(x,y)E_u)}
=2{R(L(%,y)u, E-v)+R(u, E-L(x,)v)+ R(L(x,y)v, E-u)+R(v, E_-L(x,y)u)}
=4{L(L(x, y)u, v)+ L(u, L(x, y)v)}.

(2) By Szab6 [12; Proposition 5.2], a de Rham irreducible semi-symmetric
Riemannian manifold with the restricted holonomy group 4o.(3#S0@n), U@2n)
is locally symmetric. By Lichnerowicz [15; p. 22, Theorem 6.1], a compact
semi-symmetric Riemannian manifold with the parallel Ricci tensor is locally-
symmetric. Hence (2) is obtained by (1)@). Q.E.D.

To study an equivalence problem of a locally symmetric locally quaternion-
Ké&hler manifold, Ambrose’s theorem is reviewed in the below (Lemma 3.3). Let
(M, g) and (M, 3) be connected Riemannian manifolds of the same dimension.
A broken geodesic is a continuous curve 7: [0, (]—-M such that 7|[t;, t;+.] iS
a smooth geodesic for 0=t,<t,< -+ <t,<tp+;=[ Set ;y=r|[0,t,], and define v,
as the initial velocity vector of the smooth curve (7| [t;, t:.,])®)=€XDrc o (E—2:)vs).
Assume that M is complete. For a linear isometry I:T,M—T;M at peM,
peM and a broken geodesic 7 : [0, []—M such that 7(0)= p, we define a broken
geodesic 7: [0, []—M such that 7(0)=5 and a linear isometry I,: TyqyM—T5,M
as follows: Set ,7(t)=exp;wt@(w,) (t<[0, t,]). Assume ,7 has already been
defined on [0, t,J. Set ;,F|[0, td=F and (iiF|lt;, tin DO)=€XPyept(Pysele
P, '(vy)) where P. denotes the parallel translation along a curve ¢. Then
define 7(t)=,.,7¢) for t=[0, (], and I;==P;-I-P,~'. Remark that M is not
assumed to be complete in the above definition.
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Lemma 3.3. (1) Let (M, g) and (M, @) be the same dimensional connected
Riemannian manifold with the Riemannian curvature tensors R and R, respec-
tively. Assume M is simply connected and M is complete. Suppose that there
exists peM, pM and a linear isometry I: TyM—T3M such that

(%) L(RX, Y)Z)=R(IX), LY )NI(Z) X,Y, ZET M)

for any broken geodesic y starting from p of M. Then there is an isometric
immersion @ : M—M such that

@ PaW)=FW), (i) Pwrc>r=1Ir.

2) If moreover M is complete, then @ is a covering map.

Proof. A map @: M—M defined by (i) is well-defined (cf. [5; Proof (1),
(2), (3) of Theorem 1.36]). Let g=M be arbitrary. Since M is connected, it
is also path-connected and there is a broken geodesic 7: [0, /[]—M such that
7(0)=p and r()=q. Because of (I;).=I,u. for any geodesic ¢ starting from 7(/),
(I;)c satisfies (x) and ¢=expjq,°I;°eXpyy~' is an isometry between normal
neighborhoods B.(7()) and B,(F()). By the definition of @, o=@ |B.(p), Psxru>

=1, and @ is an isometric immersion, i.e. (1). (2) because of [5; Lemma 1.32].
Q.E.D.

In Cheeger-Ebin [5; Proof (1), (2), (3) of Theorem 1.36], it is not necessary
that 7o, 71 in (1), 7i(tiss), T1ltis1), Toltivn), Totd) in (2), and f‘j+1(t‘t+$)l flj+1(tf+l))
Ts(tiv1), Tsy(t) in (3) are contained in the corresponding normal coordinate neigh-
borhoods for p=expzeI-exp,'|B.(p) in (1) being an isometric immersion (cf.
[5; Lemma 1.35]). So one can omit the argument of [5; p. 40, (. 7-/ 10].
Hence the proof of [5; Theorem 1.36] becomes more simple.

Definition 3.4. For a semi-symplectic triple triple system (V, [xyz], {x, ¥>)
over C, we define a polynormal ¢ of homogeneous degree 4 as

q(x)=<{[xxx], x> for x€V .

We give examples of M such that the ¢-polynomial for c,(M) is vanished
at each peM:

Example 3.5 (Symplectic triple systems of Quaternionic space forms).

(1) Let M be a 4n-dimensional Euclidean space H™ with the standard metric
g(x, ¥), on which i, j, k€ H act on the right. Then (H"; g;1i, j, k) defines a
hyperkdhler manifold (cf. [4; 14.10]). Since the Riemannian curvature tensor
R is zero, ¢,(H") is isomorphic to (C**, [xyz]=0, <{x, y>=0). Hence, ¢=0.

(2) Let M be a quaternionic projective space HP,=Sp,.+1/(SpaXSp:) or a
quaternionic hyperbolic space HH,=Sp3../(Sp.XSp,) with the standard metric.
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The complexified tangent space TSM at the origin o is identified with

0 x, 0 . x,
"“tyz 0 txy 0
0 v, 0 v
ty, 0 —tx, 0

U:= {(xy, X3, Y1, Y2)= ; fxy, fx,eCM

' : 0o 1,
in $pp+1(C):={XEglin+(C); ‘X Jp+1+Jn+1 X=0} where jn+l:=[_1 . 61]
Put

a 0 ¢ 0
0 40 Cl. [a ¢ A C
W= b 0 —a 0}’ [b _a]ESPI(C), [B _:A]ESPn(C) ,

0 B 0 —t4

1 )

0 0
"0 0
h:= ’ e, .= ,
0 .
0
L 0)

e_:=te,eWcspp.(C)=UPW. Then H=ad (h), E,=ad (e,), E_=ad(e.) on
TSM. So that TEM={(x,, x5, 0, 00T M} = {x :=(x,, x,); txeC*} with <{x, y)
=—x:y,+x,°y, and [xyz]=<x, 2>y+<y, 2>x. Hence, ¢=0.

If the scalar curvature is non-zero, then the converse is true up to local
isometry :

Theorem 3.6. (1) Let M be a locally quaternion-Kihler manifold of dimen-
sion 4n=8 with non-zero scalar curvature. Suppose that there is a family
t: M—=Frame (M) ; p—r¢p : H*—T y M of linear isometries such that ¢ (Hol3)=S p,.Sp,
and that the q-polynomial for ¢,(M) is vanished. Then there is an isometric im-
mersion @ from the Riemannian universal covering manifold M of M into a 4n-
dimensional quaternionic projective space HP, or a An-dimensional quaternionic
hyperbolic space HH,.

(2) If moreover M is complete, then @ : M—HP, or HH, isa covering map.

Proof. Since the scalar curvature of M is non-zero, <x, ¥> of c,(M) is
non-degenerate by (3). Due to Asano [17; Theorem 1.6], ¢,(M)
is isomorphic to a simple symplectic triple system of type C,., in Example

3.5(2) by polarizations of the equation ¢(x)=0 (cf. Remark 2.6 (1)). By
3.2, M is locally symmetric. Assume that the scalar curvature of M is positive
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(resp. negative). On HP, (resp. HH,), by homothety, take the standard metric
g such that the scalar curvature is same as M’s. Denote T,:= T HP, (resp.
T HH,). Let f:T3M—T} be an isomorphism between symplectic triple sys-
tems. Putting f(E_x)=E_(fx) (x&T}M), f can be extended to an isomorphism
f:TSM—TS such as f(Ry(x, »)2)=Ro(fx, fy)fz) (x, y, z&T3M) because of
(2.4.8) and [17; 1.4. Def.]. Since they are Einstein with the same scalar cur-
vature, go(fx, fy)=g,(x, ) (x, yT,M). Since Sp(n)° acts transitively on the
space

{(xy, =+, x)EH™)); h(xy, x;)="%:x;=04;}

of all quaternion-unitary basis of the right H°-module (H*)*, it is appeared that
the linear holonomy action of Sp(n)° is transitive on the set 4 of all Sp(1)-
invariant real 4n-dimensional subspaces of 75 on which g, is positive definite,
by the equation in §1. By the definition of f, any a=Sp(1) and f are
commutative. Then f(T,M) is an element of %. So there exists S&Sp(n)
such that B(f(T,M))=T,=J4. Since Sp(n)° preseves R, and go, [:= Bof : T, M
—T, satisfies that I(R,(X, Y)Z)=R,IX, IY)IZ) and g,(X, Y)=gX, IY)
X,Y, ZeT ,M). Since M and HP, (resp. HH,) are symmetric, the result
follows from Cartan-Ambrose-Hicks theorem (cf. Lemma 3.3). Q.E.D.

Let M be a locally quaternion-Kidhler manifold of dimension =4 with a
family ¢ : M—Frame (M) : p—¢p : H*—T ,M of linear isometries such that ¢§(4o(3)
<Sp.Sp.. A Q-section at a point pcM is defined as a four dimensional Sp(1)-
invariant subspace of T,M. Then each Q-section at p has a form H(X):=
RXPRIXPRJXPRKX for some non-zero X&T,M. Note that H(X)NH(X,)
={0} if H(X,)+H(X,;). And that

(%) T,M =:UIH(X ;) (a disjoint union of Q-sections)

Definition 3.7 (cf. Ishihara [7], Alekseevskii [1], Lemma 2.1).
(0) A Q-section H(X) is called to have a Q-sectional curvature p(X), if the
sectional curvature of M is a constant p(X) on H(X), i.e.

Z:(Rp(X, aX)X, aX)=g,(X, X)®p(X) for all acZ,.

(1) For peM, (M, p) is called to have Q-sectional curvatures p(X) at peM
, if all Q-sections H(X) at the point p=M have Q-sectional curvatures p(X).

(2) M is called to have constant Q-sectional curvature p(p) at peM, if M
has the same Q-sectional curvatures p(X) for all Q-sections H(X) at the point
peM:

p(X)=p(p).
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(3) M is called to have a constant Q-sectional curvature p, if M has con-
stant Q-sectional curvature p(p) at all p M which is constant p of peM:

p(p)=p.

By the condition (x), it is not trivial in Definition 3.7 that the condition
(1) induces the condition (2). On the other hand, the main theorem claims that
the conditions (1), (2) for all p M, and (3) in Definition 3.7 are all equivalent.

Proof of Main Theorem. Suppose that dim M=4. Then the conditions (1)
and (2) in Definition 3.7 are equivalent to that the sectional curvature depends
~only on the point, i.e. that M is a Riemannian manifold of constant sectional
curvature. By Schur’s theorem, M has a constant (Q-) sectional curvature p
and the assertion holds by Cartan-Ambrose-Hicks theorem (cf. Lemma 3.3).

Assume that dim M=8: In this case, we first show the following lemma,
which compares Q-sectional curvature and ¢-polynomial. Put

KX,Y,Z W):=g(RX,Y)Z, W) and K(X,Y):=KX,Y, X, Y).

Lemma 3.8. (1) The following three conditions are equivalent :
(i) M has a constant Q-sectional curvature p.
(ii) M has Q-sectional curvatures p(X).
(ii) K(x, E_-x)=0 for all x€T}M at each p=M.

(2) If the scalar curvature s+0, then they are also equivalent to
(iv) o(x)=0 for xT}M at each p=M.

Proof of the Lemma: (i)—(ii): trivial by the definition. (i)—(ii): Let M
has @Q-sectional curvatures p(X) at pM. Then
(@ pX)=K(X, JX)=K(X, KX).
which equals also to (1/2)K (X, (K+/J)X) since |(K+ /)X |*=2|X|% So
b KX, JX, X, KX)=0.
In (d), putting (X, Y, Z2)—(X, IX, X), we get

7_2;57'()(, XN X|"=KX, IX\)+K(X, IX, |]X, KX).

By the assumption (ii), the mapping: X—K (X, IX) is Sp(1)-invariant. Hence,
the mapping: X—K (X, IX, JX, KX) is also Sp(l)-invariant. For a=Sp(),
KX, IX, JX, KX)=K (aX, IaX, JaX, KaX)=g(a*R(aX, IaX)]JaX, a'*KaX)=
KX, a'laX, a'JaX, a*KaX). Since there is a=Sp(1) such that a~*(J, J, K)a
=(J, K, I) (resp. (K, I, ]J)), we get

© KX, IX, JX, KX)=K(X, JX, KX, IX)=K (X, KX, IX, JX).
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Suppose that H=—il, E.=(1/2)GJ+K), E.=(1/2)¢iJ—K). Then the C-con-
jugation 7 on TSM with respect to T, M satisfies that ¢(T3M)=T3M. For each
x&TiM, denote x.:=E_x=TzM, then E.x_=x. Hence, X:=7(x.)+x-€
ToM and E.X=x. So that K(x, E_x)=K(E.X, E_LE.X)=1/9K(G]J+K)X,
@I —lrpM)X), whose expanded form is easily shown to be zero by means of (a),
(), (¢), and Cemma 2.1. If (H’, E}, E.) is another one, then there is a&
Sp(1)¢ such that a(H, E.,, E_)a"'=(H’, E,, EL). In this case, a(T3M)=T3y M
and K(ax, Elax)=K(x, a'E'ax)=K (x, E_.x)=0. (ili)—(iv): is trivial at each
point peM by (2.4.10). (iii)—(@{) when s=0: If s=0, then g([xyz], E-w) is
symmetric with respect to =x, y, z, w by [Proposition 2.4. In this case, if
K(x, E_x)=g([xxx], E-x)=0, then g([xyz], E.w)=0 and [xyz]=0. Since
(x, y>=0, we get R=0, i.e. M is locally flat. In particular, M has a constant
Q-sectional curvature 0. (iii)—(0) when s#0: If s+0 and ¢=0, then M is locally
isometric to HP, or HH, by [Theorem 3.6. In this case, 4 ol3(M)=Sp(n)SpQ1)
preserves R. Take XeT,M,Y, Z€H(X) such that |X|=|Y|=|Z|=1 and
g¥, Z)=0. There is acSp(n) such as a(Y)=X. Then a(Z)=a,IX+a:JX+
asKX for some a,=R such that 3;a3=1. There is =Sp(1) (resp. rESp(n))
such that B 'e(a,J+a.J+a;K)-B=I (resp. rX=BX). So that K, Z)=
K@Y, aZ)=K(X, (a;[4+a,]/+a;K)X) = K(,B-er, 13—17(01I+azj+asK)X)=K(X:
BYa,I+a,J+a:K)rX)=K (X, IX). Hence M has Q-sectional curvatures p(X)
at each peM. Since Sp(n) is transitive on the tangent hyper sphere and pre-
serves p(X), M has constant Q-sectional curvature p(p). Since M is locally
homogeneous, for p, g=M, there is a linear isometry f:T,M—T M preserv-
ing R. Hence f*(4ol)=43l0l3 and f*(Sp(1))=Sp(1), as the unique normal three
dimensional subgroup in 4.(*(M)=Sp(n)Sp). So f(H(X))=H(f(X)). Hence,
p(p)=pX)=p(fX)=p(g) is a constant p on M. Q.E.D.

End of the proof of Main Theorem . Suppose that the scalar curvature s=0.
By (2.4.7) and (), [xvz] and g([xyz], E_w) are symmetric with
respect to x, v, z, weTiM. 1f M has Q-sectional curvatures p(X) at each
point, then, by Lemma 3.8 (1), for all x&T}M at each peM, g(R(x, E-x)x, E_x)
=0, i.e. g([xxx], E_.x)=0. Hence g([xyz], E.w)=0 and [xyz]=0 for all
x, v, z&€T+tM. Since <{x, y>=0, we have R=0, i.e. M is locally flat. By
Cartan-Ambrose-Hicks theorem (cf. Lemma 3.3), the assertion holds. Conversely,
if M is locally isometric to a 4n-dimensional Euclidean space, then R=0 and
M has a constant Q-sectional curvature 0. Assume s#0. Suppose M has Q-
sectional curvatures p(X) at each point. By ¢=0 for e,(M) at each
pEM. By the assertion follows. In this case, M has a constant
Q-sectional curvature p=0 by and M is quaternion-Kdhler by Theo-
rem 1.4. Q.E.D.
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