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Summary. Let & be a family of distribution functions and let v be a stationary
ergodic probability measure on FT=]I7-, &F of copies of F. Now for each w=
(F?,F¢,-- )93, we define a probability measure P, on (RT, BF) so that
P,=TI7-199, Let X,: R7—R be the coordinate functions X,(x)=xy5, x=
(xn). In this paper we study LIL for partial sums of {X,} with respect to
P, and as a special case of above model we also study LIL for interchangeable
process.

1. Introduction

Let F be a set of distributions on R' with the topology of weak convergence,
and let A4 be the o-field generated by the open sets. We denote by 7 the
space consisting of all infinite sequence (F,, F,, --), F,€%, and RT the space
consisting of all infinite sequences (x,, x,, ---) of real numbers. Take the o-field
AT to be the smallest o-field of subsets of &5 containing all finite-dimensional
rectangles and take 8% to be the Borel o-field of ®%. Let w=(F¢, F$, --) be
the coordinate process in &% and v its distribution on A5. Let @ be the co-
ordinate shift: 8*(w)=w’ with F¥=F%,,, k=12 ---. On (RS, BF) we also
define the shift transformation ¢: RT— RS by o(x,, x5, - )=(Xg, Xs, ==+). v is
called stationary if for every A= A%, v(0-(A))=v(A) and we let = be its marginal
distribution. Let @ be the ¢-field of invariant sets in 8%, that is, ¢={B|o¢~'(B)
=B, Be8%}. For each w define a probability measure P, on (RT, 87) so that
P,=I17-:F¢. A monotone class argument shows that P,(B), BE 8%, is A%-
measurable as a function of w. So we can define a new probability measure

P such that P(B)=SP,,,(B)v(dw). Define the process {X,} on (RT, 87) such that

Xa(x,, x5, --)=x, and set S,=X,+X,4---+X,. By the definition of P,, {X,}
are independent with respect to P, and we also note that {X,} is a sequence
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of independent and identically distributed random variables when & has just
one element. The purpose of this paper is to study LIL for partial sums of X,
with respect to P, and as an application we apply this result to interchangeable
processes. The following propositions are important basic tools throughout
this paper.

Proposition 1. Iy v is stationary, then {X,} is a stationary process with
respect to P.

Proof. Let f(w)=P,(B), B€8%, then f is a measurable function of w.
Then

P<B>=§Pm<B>u<dw>=Sf(w)»(dw>=wa(w))»(dw)

=(PswrBd)={Pu(o-BYd0)=P(a"B)).
Proposition 2. If v is ergodic, then {X,} is ergodic with respect to P.

Proof. Let C= 3% be an invariant set, i.e. ¢-*(C)=C and let f(w)=P,(C),
then
f(@)=P,(C)=P,(671(C))=Pyw(C)=f (0 (w)).

This implies f is an invariant random variable, hence it is a.s. constant, since
y is ergodic. By Proposition 6.32 [1] and Kolmogorov zero-one law, f(w)=0
or 1, then P,(C)=0 v-a.e. w or 1 v-a.e. w. Hence P(C)=0 or 1, therefore
{X.} is ergodic with respect to P.

Proposition 3. Let AcC RS be measurable. Then P,(A)=1 for v-a.e. w if
and only if P(A)=1.

Proof. The proof follows directly from the definition of P.

2. Results and Proofs

As a generalization of the Hartman-Wintner theorem, we first prove the
following theorem

Theorem 1. Let 9’={Fl§xdF(x)=0} and let v be stationary and ergodic
with SSx”dF(x);ddF):l.f Then we have

Sn
(2n log log n)!/®

P,,,{lim sup =1}=1, v-a.e. .

To prove above theorem we need the following lemma.
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Lemma 1. Let EF*:{FISxdF(x)——-O} and v stationary with SSIxIdF(x)z(dF)
<oco. Then {X,} with respect to P satisfies
E[X:X,, X,, -+, X;-,]=0 a.s. for all i=2.

Proof. By the assumption, E|X,|<c and hence E[X.|X, X,, -, Xi-1]
exists for all /=22. Now let Ac=a(X,, X,, -, Xi-1) and let {(X:, X, -+, Xe-y)
€B}=A for some 7/—1 dimensional cylinder set B. Then we have

SAE[XAX,, X, -, Xt_ldengXiszglAXth
={{1atxs, -, xe-dwdF 20 dFT (e Dde)

=|(f1ates, -, xendFse) P (en)([2dFeo)udw)
=0,
the last equality holding since SxdF (x)=0 for all Feg. This proves the
lemma.
Proof of Theorem 1. By Propositions 1, 2 and Lemma 1, {X,} is a sta-
tionary and ergodic process with respect to P such that E[X;|X,, X,, ---, Xi_,]

=0 a.s. for all #1=2 and by assumption EX%:SSx“dF‘(x)n(dF):l. Now apply-
ing Stout’s result [5], we have

P{lim sup 1y =1.

(2n log log n)'/2 - }

Hence by Proposition 3,

Sn
(2n log log n)'/2

Pw{lim sup :l}zl, v-a.e. o.

What if the ergodicity assumption in above theorem is dropped? In this
paper we obtain one possible answer for this question, that is, we need to
impose one extra conditon on &. As an application we apply this result to
interchangeable processes.

Theorem 2. Let 9-'={F|SxdF(x)=0 and Sx”dF(x):l} and let v be sta-
tionary. Then we have

.Sn
(2n log log n)'/®

P«.;{lim sup }:1, y-a.e. .

Proof. By the ergodic decomposition theorem [6, Theorem 5.2.16], there
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is a probability measure py on MY(FT), the space of stationary probability
measures on 4%, with the properties that py(EMY(F%))=1, where EMYF?) is
the set of ergodic elements of M{(F%), and

»=S”€ a, ROV@R)
holds. For every Re EMYF%), we have that
[[x2arsr@w=1,
since
Sx’dF‘;‘(x):l for any w.
Then by above theorem, we have for any ReEMY(IF?Y)

Sa _ B
(2n log log n)'/? "‘1} R(dw)=1.

SP,,,{lim sup
Now

Sy
(2n log log n)'/?

SP,,, {lim sup =1}v(dw)

=SSP,,, {lim sup @n lo;;og ~C =1} R(dw)pyv(dR)=1,

which is equivalent to

. Sn 0
P,,,{hm sup @n log log )7 —1}—1, v-a.e. o,
which completes the proof.

Next we consider a special case of the model in introduction. Let v{w|F?¢
=F9¢ for all i+ }=1. Then clearly v is stationary and hence we see from
and the definition of P that

P{lim sup (2n log ;og n)!/® =1} =1
if
u{wledF‘;’(x):O and Sx”dF‘;‘(x):l}:l.

We shall show that this condition is also necessary. Since {X,} is independent
and identically distributed with respect to P, v-a.e. o,
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Sa _
(2n log log n)*/*

P, {lim sup l}:l, v-a.e.

implies
[xaFem=0 ana jrrarsm=1 vae o
by Martikainen theorem [4]. Hence
vol {xdFe(@x)=0 and [rrarsm=1}=1.
We summarize in |

Lemma 2. Let v{w|F¢=F% for all i#j}=1. Then

. Sn L
P{hm SUP 3 Tog log n)'7? _1} =1

if and only if
y{wledF‘;’(x)zo and Sx’dF‘;’(x):l}=1.

A random variables {Y,, n>1} on (2, &, P) are called interchangeable if
the joint distribution of every finite subset of % of these random variables
depends only on % and not the particular subset, 2=1. According to Theorem
7.3.2 the random variables {Y,, n=1} are conditionally i.i.d. given the ¢-
field ¢ of permutable events and according to Corollary 7.3.5 [2] there is a
regular conditional distribution, say P¢, for Y=(,, Y, ---) given ¢ such that
for each we £ the coordinate random variables {X,, n=1} of the probability
space (RT, 87, P®) are i.i.d.. Now suppose EY,=0 and EY?=1. Then, mo-
reover, we see that

Cov(Y,, Y,)=0=Cov(Y% Y%
is equivalent to
E[Y,|g]=0 and E[Y?% g¢]=1 a.s. [2, p.310].

Consequently, for almost all @
[~ eape=o, [ atape=1,
and thus, by we have the following theorem.

Therem 3. Let {Y,, n=1} be an interchangeable process with mean zero and
variance one. Then the law of the iterated logarithm holds for the process if
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and only if
Cov (Y, YV,)=0=Cov (Y} Y9.
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