ON A PROBLEM OF MILLER AND MOCANU

By
Mamoru Nunokawa and Derek Keith Thomas

(Received January 9, 1992 ; Revised March 29, 1992)

Abstract. Let $f(z)$ be analytic in $D=\{z:|z|<1\}$ and $f(0)=0$. It is shown that if

$$
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\frac{\sqrt{\alpha}}{2} \quad(z \in D)
$$

where $\sqrt{\alpha} / 2=2.5159 \cdots$, then $f(z)$ is starlike in D.

1. Introduction

Suppose that f is analytic in the unit disc $D=\{z:|z|<1\}$ with $f(0)=0$. It was shown in [1] that if $\left|f^{\prime \prime}(z) / f^{\prime}(z)\right|<2$ then f is starlike in D. On the other hand, $f_{0}(z)=e^{\lambda z}-1$ is starlike if and only if $|\lambda|<M_{1}=2.8329 \cdots$, [2]. Miller and Mocanu [1] posed the question of finding the maximum value of M for which $\left|f^{\prime \prime}(z) / f^{\prime}(z)\right|<M$ implies f satarlike in D. Clearly $2 \leqq M \leqq M_{1}$ and recently Nunokawa et al [3] have improved the lower bound of M to $13 \sqrt{2} / 8$ $=2.298 \cdots$. In this paper we further improve this lower bound to $2.5159 \cdots$.

2. Results

We prove
Theorem. Let f be analytic in D with $f(0)=0$, then if

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\frac{\sqrt{\alpha}}{2} \quad(z \in D) \tag{1}
\end{equation*}
$$

f is starlike in D, where α is the minimum value of

$$
\phi(t)=\frac{6}{5+4 t}\left(14+\frac{21}{2} t+8 t^{2}+2 t^{3}\right)+\frac{157}{16}+\frac{39}{4} t+3 t^{2} \quad(-1 \leqq t \leqq 1) .
$$

Proof. Let p be analytic in D with $p(0)=1$. Then if $p(z)=z f^{\prime}(z) / f(z)$, the inequality (1) is equivalent to

Key words and phrases: univalent and starlike functions.

$$
\begin{equation*}
\left|p(z)+\frac{z p^{\prime}(z)}{p(z)}-1\right|<\frac{\sqrt{\alpha}}{2} . \tag{2}
\end{equation*}
$$

Thus we need to show that (2) implies $\operatorname{Re} p(z)>0$ for $z \in D$.
Write

$$
\begin{equation*}
p(z)=(1+\omega(z))^{3} \tag{3}
\end{equation*}
$$

so that ω is analytic in D and $\omega(0)=0$. Then

$$
p(z)+\frac{z p^{\prime}(z)}{p(z)}-1=\frac{3 z \omega^{\prime}(z)}{1+\omega(z)}+\omega(z)\left[3+3 \omega(z)+\omega(z)^{2}\right] .
$$

Suppose now that there exists $z_{0} \in D$ such that

$$
\max _{|z| \leq\left|z_{0}\right|}|\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1 / 2,
$$

then from the Clunie-Jack Lemma, $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right)$ for $k \geqq 1$. Thus

$$
\left|p\left(z_{0}\right)+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}-1\right|=\left|\omega\left(z_{0}\right)\right|\left|\frac{3 k}{1+\omega\left(z_{0}\right)}+3+3 \omega\left(z_{0}\right)+\omega\left(z_{0}\right)^{2}\right| .
$$

Now write $\omega\left(z_{0}\right)=e^{i \theta} / 2$. Then with $t=\cos \theta$ and since $k \geqq 1$,

$$
\begin{aligned}
4\left|p\left(z_{0}\right)+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}-1\right|^{2} & =\left|\frac{6 k\left(2+e^{-i \theta}\right)}{5+4 t}+3+3 e^{i \theta} / 2+e^{2 i \theta} / 4\right|^{2} \\
& =\frac{36 k^{2}}{5+4 t}+\frac{6 k}{5+4 t}\left[12+12 t+4\left(2 t^{2}-1\right)+\left(4 t^{3}-3 t\right) / 2\right] \\
& +181 / 16+9 t+3\left(2 t^{2}-1\right) / 2+3\left(4 t^{3}-3 t\right) / 4 \\
& \geqq \frac{6}{5+4 t}\left[14+21 t / 2+8 t^{2}+2 t^{3}\right]+157 / 16+39 t / 4+3 t^{2} \\
& =\phi(t) \text { say. }
\end{aligned}
$$

A simple calculation shows that $\phi(t)$ is minimum when $t=-0.26933 \cdots$, and so

$$
\left|p\left(z_{0}\right)+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}-1\right| \geqq \frac{\sqrt{\alpha}}{2}
$$

which contradicts (2). Thus $|\omega(z)|<1 / 2$ for all $z \in D$ and so from (3) it follows that $\operatorname{Re} p(z)>0$ for $z \in D$ and the proof is complete.

Remark. The function $\phi(t)$ given in Theorem take its minimum value when $t_{0}=-0.26933 \cdots$. Then we have $\alpha=\phi\left(t_{0}\right)=25.319011 \cdots$, or $\sqrt{\alpha} / 2=2.5159 \cdots$. From this fact, we see that our result is the improvement of the theorem by Nunokawa et al [3].

We remark that by choosing $p(z)=(1+\omega(z))^{n}$ and $\left|\omega\left(z_{0}\right)\right|=\sin (\pi / 2 n)$, for $n \geqq 1$, the above method will give different estimates for M. However when
$n \geqq 4$ the computations become much more complicated and will be the subject of a subsequent paper.

References

[1] S.S. Miller and P.T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J., 32 (1985), 185-195.
[2] P. T. Mocanu, Asupra razei de stelaritate a functiilor univalente, Stud. Cerc. Mat. (Cluj), 11 (1960), 337-341.
[3] M. Nunokawa, S. Owa, H. Saitoh and K. Ohtake, An improvement of sufficient conditions for starlike functions, Proc. Japan Acad., 66 (1990), 312-314.

Department of Mathematics
University of Gunma Aramaki, Maebashi 371 Japan
and
Department of Mathematics and Computer Science University of Wales Swansea SA2 8PP U.K.

