Yokohama Mathematical Journal Vol. 40, 1993

ON A PROBLEM OF MILLER AND MOCANU

By

MAMORU NUNOKAWA and DEREK KEITH THOMAS

(Received January 9, 1992; Revised March 29, 1992)

Abstract. Let f(z) be analytic in $D = \{z : |z| < 1\}$ and f(0) = 0. It is shown that if

$$\left|\frac{f''(z)}{f'(z)}\right| < \frac{\sqrt{\alpha}}{2} \qquad (z \in D),$$

where $\sqrt{\alpha}/2=2.5159\cdots$, then f(z) is starlike in D.

1. Introduction

Suppose that f is analytic in the unit disc $D = \{z : |z| < 1\}$ with f(0)=0. It was shown in [1] that if |f''(z)/f'(z)| < 2 then f is starlike in D. On the other hand, $f_0(z)=e^{\lambda z}-1$ is starlike if and only if $|\lambda| < M_1=2.8329\cdots$, [2]. Miller and Mocanu [1] posed the question of finding the maximum value of M for which |f''(z)/f'(z)| < M implies f satarlike in D. Clearly $2 \le M \le M_1$ and recently Nunokawa et al [3] have improved the lower bound of M to $13\sqrt{2}/8 = 2.298\cdots$. In this paper we further improve this lower bound to $2.5159\cdots$.

2. Results

We prove

Theorem. Let f be analytic in D with f(0)=0, then if

$$\left|\frac{f''(z)}{f'(z)}\right| < \frac{\sqrt{\alpha}}{2} \qquad (z \in D), \tag{1}$$

f is starlike in D, where α is the minimum value of

$$\phi(t) = \frac{6}{5+4t} \left(14 + \frac{21}{2}t + 8t^2 + 2t^3 \right) + \frac{157}{16} + \frac{39}{4}t + 3t^2 \qquad (-1 \le t \le 1).$$

Proof. Let p be analytic in D with p(0)=1. Then if p(z)=zf'(z)/f(z), the inequality (1) is equivalent to

1991 Mathematics Subject Classification: Primary 30C45.

Key words and phrases: univalent and starlike functions.

$$\left| p(z) + \frac{z p'(z)}{p(z)} - 1 \right| < \frac{\sqrt{\alpha}}{2}.$$
⁽²⁾

Thus we need to show that (2) implies Re p(z)>0 for $z\in D$.

Write

$$p(z) = (1 + \omega(z))^3, \qquad (3)$$

so that $\boldsymbol{\omega}$ is analytic in D and $\boldsymbol{\omega}(0)=0$. Then

$$p(z) + \frac{z p'(z)}{p(z)} - 1 = \frac{3z \omega'(z)}{1 + \omega(z)} + \omega(z) [3 + 3\omega(z) + \omega(z)^2].$$

Suppose now that there exists $z_0 \in D$ such that

$$\max_{|z| \le |z_0|} |\omega(z)| = |\omega(z_0)| = 1/2 ,$$

then from the Clunie-Jack Lemma, $z_0\omega'(z_0) = k\omega(z_0)$ for $k \ge 1$. Thus

$$\Big|p(z_0) + \frac{z_0 p'(z_0)}{p(z_0)} - 1\Big| = |\omega(z_0)| \Big|\frac{3k}{1 + \omega(z_0)} + 3 + 3\omega(z_0) + \omega(z_0)^2\Big|.$$

Now write $\omega(z_0) = e^{i\theta}/2$. Then with $t = \cos \theta$ and since $k \ge 1$,

$$4 \left| p(z_{0}) + \frac{z_{0}p'(z_{0})}{p(z_{0})} - 1 \right|^{2} = \left| \frac{6k(2+e^{-t\theta})}{5+4t} + 3 + 3e^{t\theta}/2 + e^{2t\theta}/4 \right|^{2}$$

$$= \frac{36k^{2}}{5+4t} + \frac{6k}{5+4t} [12 + 12t + 4(2t^{2} - 1) + (4t^{3} - 3t)/2]$$

$$+ 181/16 + 9t + 3(2t^{2} - 1)/2 + 3(4t^{3} - 3t)/4$$

$$\ge \frac{6}{5+4t} [14 + 21t/2 + 8t^{2} + 2t^{3}] + 157/16 + 39t/4 + 3t^{2}$$

$$= \phi(t) \text{ say.}$$

A simple calculation shows that $\phi(t)$ is minimum when $t = -0.26933\cdots$, and so

$$\left| p(z_0) + \frac{z_0 p'(z_0)}{p(z_0)} - 1 \right| \geq \frac{\sqrt{\alpha}}{2}$$

which contradicts (2). Thus $|\omega(z)| < 1/2$ for all $z \in D$ and so from (3) it follows that Re p(z)>0 for $z \in D$ and the proof is complete.

Remark. The function $\phi(t)$ given in Theorem take its minimum value when $t_0 = -0.26933\cdots$. Then we have $\alpha = \phi(t_0) = 25.319011\cdots$, or $\sqrt{\alpha}/2 = 2.5159\cdots$. From this fact, we see that our result is the improvement of the theorem by Nunokawa et al [3].

We remark that by choosing $p(z)=(1+\omega(z))^n$ and $|\omega(z_0)|=\sin(\pi/2n)$, for $n\geq 1$, the above method will give different estimates for M. However when

112

 $n \ge 4$ the computations become much more complicated and will be the subject of a subsequent paper.

References

- [1] S.S. Miller and P.T. Mocanu, On some classes of first-order differential subordinations, *Michigan Math. J.*, 32 (1985), 185-195.
- [2] P.T. Mocanu, Asupra razei de stelaritate a functiilor univalente, Stud. Cerc. Mat. (Cluj), 11 (1960), 337-341.
- [3] M. Nunokawa, S. Owa, H. Saitoh and K. Ohtake, An improvement of sufficient conditions for starlike functions, *Proc. Japan Acad.*, 66 (1990), 312-314.

Department of Mathematics University of Gunma Aramaki, Maebashi 371 Japan

and

Department of Mathematics and Computer Science University of Wales Swansea SA2 8PP U.K.