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Abstract. Let $f(z)$ be analytic in $D=\{z:|z|<1\}$ and $f(O)=0$ . It is shown
that if

$|\frac{f^{\prime}(z)}{f^{\prime}(z)}|<\frac{\sqrt{a}}{2}$ $(z\in D)$ ,

where $\sqrt{\alpha}/2=2.5159\cdots$ , then $f(z)$ is starlike in $D$ .

1. Introduction
Suppose that $f$ is analytic in the unit disc $D=\{z;|z|<1\}$ with $f(O)=0$ . It

was shown in [1] that if $|f^{\prime\prime}(z)/f^{\prime}(z)|<2$ then $f$ is starlike in $D$ . On the
other hand, $f_{0}(z)=e^{\lambda z}-1$ is starlike if and only if $|\lambda|<M_{1}=2.8329\cdots$ , [2].

Miller and Mocanu [1] posed the question of finding the maximum value of $M$

for which $|f^{\chi}(z)/f^{\prime}(z)|<M$ implies $f$ satarlike in $D$ . Clearly $2\leqq M\leqq M_{1}$ and
recently Nunokawa et al [3] have improved the lower bound of $M$ to $13\sqrt T/8$

$=2.298\cdots$ . In this paper we further improve this lower bound to 2.5159 $\cdots$ .

2. Results

We prove

Theorem. Let $f$ be analytic in $D$ with $f(O)=0$ , then if

$|\frac{f^{l}(z)}{f’(z)}|<\frac{\sqrt{a}}{2}$ $(z\in D)$ , (1)

$f$ is starlike in $D$ , where $a$ is the minimum value of

$\phi(t)=\frac{6}{5+4t}(14+\frac{21}{2}t+8t^{2}+2t^{S})+\frac{157}{16}+\frac{39}{4}t+3t^{2}$ $(-1\leqq t\leqq 1)$ .

Proof. Let $P$ be analytic in $D$ with $p(O)=1$ . Then if $p(z)=zf^{\prime}(z)/f(z)$ ,
the inequality (1) is equivalent to
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$|p(z)+\frac{zp^{\prime}(z)}{p(z)}-1|<\frac{\sqrt{\alpha}}{2}$ . (2)

Thus we need to show that (2) implies ${\rm Re} p(z)>0$ for $z\in D$ .
Write

$p(z)=(1+\omega(z))^{3}$ , (3)

so that $\omega$ is analytic in $D$ and $\omega(0)=0$ . Then

$p(z)+\frac{zp^{J}(z)}{p(z)}-1=\frac{3z\omega^{\prime}(z)}{1+\omega(z)}+\omega(z)[3+3\omega(z)+\omega(z)^{2}]$ .

Suppose now that there exists $z_{0}\in D$ such that

$\max_{|l||z_{0}|}|\omega(z)|=|\omega(z_{0})|=1/2$ ,

then from the Clunie-Jack Lemma, $z_{0}\omega^{\prime}(z_{0})=k\omega(z_{0})$ for $k\geqq 1$ . Thus

$|p(z_{0})+\frac{z_{0}p^{\prime}(z_{0})}{p(z_{0})}-1|=|\omega(z_{0})||\frac{3k}{1+\omega(z_{0})}+3+3\omega(z_{0})+\omega(z_{0})^{2}|$ .
Now write $\omega(z_{0})=e^{\ell\theta}/2$ . Then with $ t=\cos\theta$ and since $k\geqq 1$ ,

$4|p(z_{0})+\frac{z_{0}p^{\prime}(z_{0})}{p(z_{0})}-1\left|2 & =\right|\frac{6k(2+e^{-i\theta})}{5+4t}+3+3e^{\ell\theta}/2+e^{2i\theta}/4|^{2}$

$=\frac{36k^{2}}{5+4t}+\frac{6k}{5+4t}[12+12t+4(2t^{2}-1)+(4t^{s}-3t)/2]$

$+181/16+9t+3(2t^{2}-1)/2+3(4t^{8}-3t)/4$

$\geqq\frac{6}{5+4t}[14+21t/2+8t^{2}+2t^{3}]+157/16+39t/4+3t^{2}$

$=\phi(t)$ say.

A simple calculation shows that $\phi(t)$ is minimum when $ t=-0.26933\cdots$ , and so

$|p(z_{0})+\frac{z_{0}p^{\prime}(z_{0})}{p(z_{0})}1|\geqq\frac{\sqrt{\alpha}}{2}$

which contradicts (2). Thus $|\omega(z)|<1/2$ for all $z\in D$ and so from (3) it follows
that ${\rm Re} p(z)>0$ for $z\in D$ and the proof is complete.

Remark. The function $\phi(t)$ given in Theorem take its minimum value
when $ t_{0}=-0.26933\cdots$ . Then we have $ a=\phi(t_{0})=25.319011\cdots$ , or $\sqrt{\alpha}/2=2.5159\cdots$ .
From this fact, we see that our result is the improvement of the theorem by
Nunokawa et al [3].

We remark that by choosing $p(z)=(1+\omega(z))^{n}$ and $|\omega(z_{0})|=\sin(\pi/2n)$ , for
$n\geqq 1$ , the above method will give different estimates for $M$. However when
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$n\geqq 4$ the computations become much more complicated and will be the subject
of a subsequent paper.
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