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Abstract. In this paper a characterization of small spheres in a sphere is
obtained in terms of a pinching relation on the Ricci curvature.

1. Introduction

Although many works have gone into the study of minimal hypersurfaces
of a sphere, with a view to characterizing totally geodesic spheres (great spheres),
less attention has been given to establishing sufficient conditions for a hypersurface
to be a small sphere. Such a characterization was obtained by Nomizu and
Smyth (see [5], Theorem 1, (ii)), by using the Gauss image of the hypersurface.
Reilly [6] (see also Carter and West [2]) has shown that the result of Nomizu
and Smyth is equivalent to a certain hypersurface immersion into Euclidean
space. A characterization of small hyperspheres of a sphere was also obtained
by Markvorsen [4]. More recently, Coghlan and Itokawa [3] used a pinch of
the sectional curvature and the position of a hypersurface of the sphere to
characterize a small sphere.

In this Paper we consider a compact hypersurface $M$ of $S^{n+1}$ and a parallel
unit vector field $Z$ in $R^{n+2}$ . Denoting the tangential projection of $Z$ on $S^{n+1}$

by $Z^{T}$ and the tangential projection of $Z^{T}$ on $M$ by $t$ , we can write $Z^{T}=t+\rho N$,
where $N$ is the unit normal vector field to $M$ in $S^{n+1}$ and $\rho=\langle Z^{T}, N\rangle$ is a
smooth function on $M$, usually referred to as the relative support function of
the hypersurface $M$ with respect to the vector field $Z$ in $R^{n+2}$ . Here $\langle\cdot, \rangle$ is
the Euclidean metric in $R^{n+2}$ . The main object of this paper is to prove

Theorem. Let $M$ be a $comPact$ , connected and orientable $hyPersurface$ of
$S^{n+1}$ with a relative suPport function $\rho$ with resPect to a parallel unit vector field
$Z$ in $R^{n+2}$ . If the Ricci curvature of $M$ satisfies the pinchng relation

$\rho^{2}(n-1)(n+2)<\rho^{2}Ric\leqq n-1$ ,
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then $\rho$ is a constant and $M=S^{n}(1/\rho^{g})$ .

A hypersurface of constant mean curvature in $S^{n+1}$ is also considered and
a sufficient condition for such a hypersurface to be a hypersphere is obtained.

2. Preliminaries

Let $M$ be an orientable hypersurface of the unit sphere $S^{n+1}$ in the Euclidean
space $R^{n+2}$ with center at the origin. $M$ therefore has a unique global unit
normal vector field $N$ in $S^{n+1}$ . For any pair of vector fields $X$ and $Y$ on $M$

the Riemannian connections $\nabla$ and $\nabla$ on $S^{n+1}$ and $M$, respectively, are related by

(2.1) $\nabla_{X}Y=\nabla_{X}Y+g(AX, Y)N$ ,

where $g$ is the induced metric on $M$ and $A$ is the Weingarten map, which is
a symmetric tensor field of type $(1, 1)$ on $M$ defined by

(2.2) $\nabla_{X}N=-AX$ .
Fix a parallel unit vector field $Z$ in $R^{n+2}$ and let $Z^{r}$ and $Z^{N}$ be the tan-

gential and normal components of $Z$ to $S^{n+1}$ , respectively, so that $Z=Z^{T}+Z^{N}$ .
Let $\overline{N}$ be the unit normal vector field to $S^{n+1}$ in $R^{n+2}$ , and put $ f=\langle Z^{n},\overline{N}\rangle$ .
It then follows that

(2.3) $\nabla_{X}Z^{r}=$ $fX$ and $Xf=g(X, Z^{T})$ , $X\in x(M)$ ,

$X(M)$ being the Lie algebra of vector fields on $M$ as a hypersurface of $S^{n+1}$ .
Finally we define a smooth function $\rho:M\rightarrow R$ by setting $Z^{T}=t+\rho N,$ $ t\in$

$X(M)$ . As pointed out above, $\rho$ is the relative support function of the hyper-

surface $M$ with respect to the parallel unit vector field $Z$ on $R^{n+2}$ .
Using the equations (2.1), (2.2) and (2.3), we arrive at

(2.4) $\nabla_{X}t=-fX+pAX$ , $X\rho=g(AX, t)$ , and $Xf=g(X, t)$ , $X\in X(M)$ ,

(2.5) grad $\rho=-At$ , grad $f=t$ .
Gauss’ equation gives the Ricci curvature tensor of $M$ as

(2.6) Ric (X, $Y$)$=(n-1)g(X, Y)+n\alpha g(AX, Y)-g(AX, AY)$ ,

where $\alpha=(1/n)\Sigma_{1}^{n}g(Ae, e_{\ell}),$ $\{e_{\ell}\}$ being a local orthonormal frame in $M$, is the
mean curvature of $M$ (see [1]). On the other hand, Codazzi’s equation gives

(2.7) $(\nabla_{X}A)Y=(\nabla_{Y}A)X$ , $X,$ $Y\in X(M)$ .
Using the symmetry of $A$ in this equation, we conclude that

(2.8) $g((\nabla_{X}A)Y, Z)=g((\nabla_{X}A)Z, Y)$ , $X,$ $Y,$ $Z\in X(M)$ .
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Let $\Delta$ be the Laplacian operator acting on the smooth functions on $M$.

Lemma 2.1.
(a) $\Delta f=n(-f+\rho a)$ ,
(b) $(1/2)\Delta f^{2}=n(-f^{2}+afp)+\Vert t\Vert^{2}$ .

Proof. (a) follows immediately from equation (2.4), and (b) follows from
(a), (2.5) and the equality $\Delta f^{2}=2f\Delta f+2\Vert gradf\Vert^{2}$ .

3. Hypersurfaces of constant mean curvature

For hypersurfaces of constant mean curvature in $S^{n+1}$ , Nomizu and Smyth
(see [5], Theorem 2, p. 490) proved that, if the Gauss image lies in a closed
hemisphere of $S^{n+1}$ , then the hypersurface is necessarily a hypersphere in $S^{n+1}$ .
Here we shall prove

Theorem 3.1. Let $M$ be a $comPact$ , connected and orientable hypersurface
of constant mean curvature in $S^{n+1}$ . If some relative suppOrt function of $M$ with
$resPect$ to a parallel unit vector field $Z$ in $R^{n+2}$ is nowhere zero on $M$, then $M$

is a hypersphere in $S^{n+1}$ .

Proof. Using the equation (2.4), we obtain the following expression for
the Hessian $H_{\rho}$ of the function $\rho$

$H_{\rho}(X, Y)=-g((\nabla_{X}A)Y, t)+fg(AX, Y)-\rho g(AX, AY)$ .
This, together with (2.8), implies

(3.1) $\Delta p=-nt\alpha+n$fa-p trA2.

From (2.4) it follows that div $t=n(-f+p\alpha)$ and hence div $(at)=t\alpha+n\alpha(-f$

$+p\alpha)$ . Using this last equation in (3.1), we arrive at

(3.2) $\Delta\rho=-n(n-1)f\alpha+n^{2}a^{t}\rho-p$ trA2–div $(n\alpha t)$ .
If $a$ is a constant, then this equation, combined with Lemma 2.1 (a), yields

$\Delta(\rho-(n-1)\alpha f)=\rho$ ( $n\alpha^{2}$ –tr $A^{f}$) $-div(n\alpha t)$ .
By integrating over $M$ we conclude that

$\int_{r}\rho(n\alpha^{\epsilon}-trA^{3})dv=0$ .

From the Schwarz inequality we have $n\alpha^{2}-trA^{8}\geqq 0$ , where the equality holds
if and only if $M$ is totally umbilic. If $\rho\neq 0$ on $M$ and $M$ is connected, then
$n\alpha^{2}=trA^{f},$ $i.e$ . $M$ is totally umbilic. $M$ being compact, this implies that $M$
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is a hypersphere of $S^{n+1}$ .

4. Proof of the main theorem

Let $S$ be the scalar curvature of $M$, which is given by $S=n(n-1)+n^{2}a^{2}-$

trA2. The equation (3.2) then gives

(4.1) $\rho\Delta\rho=\rho(S-n(n-1))-n(n-1)f\rho\alpha-$ pdiv $(n\alpha t)$ .
Since

div $(n\alpha\rho t)=nat\rho+\rho$ div $(nat)$ ,

the second equation in (2.4) implies

$-\rho$ div $(n\alpha t)=n\alpha g(At, t)$ -div $(na\rho t)$ .

Thus the equation (4.1) becomes

$p\Delta\rho=\rho(S-n(n-1))-n(n-1)f\rho\alpha-n\alpha g(At, t)$ -div $(n\alpha\rho t)$ .
Using the identity $(1/2)\Delta\rho^{2}=\rho\Delta\rho+\Vert grad\rho\Vert^{2}$ and the equation (2.5), we therefore
obtain

$\frac{1}{2}\Delta p^{2}=\rho^{2}(S-n(n-1))-fpan(n-1)-[Ric(t, t)-(n-1)\Vert t\Vert^{2}]$ -div (napt).

Now Lemma 2.1 (b) gives

$\frac{1}{2}\Delta(\rho^{2}+(n-1)f^{2})+div(na\rho t)=\rho^{2}S-n(n-1)(p^{2}+f^{Z}+\Vert t\Vert^{2})$

$+(n-1)(n+2)\Vert t\Vert^{2}-Ric(t, t)$ .

Since $Z=t+\rho N+f\overline{N}$ is a unit vector field, we have $\Vert t\Vert^{2}+\rho^{2}+f^{2}=1$ . Thus,

integrating the above equation over $M$, we get

$\int_{\kappa}[\Vert t\Vert^{2}(Ric(t, t)-(n-1)(n+2))+(n(n-1)-\rho^{2}S)]dv=0$ ,

where $\hat{t}$ is the unit vector field defined by $ t/\Vert t\Vert$ on the open subset of $M$ where
$t$ is non-zero. Now, using the hypothesis of the theorem, we get $t=0$ and
$\rho^{2}S=n(n-1)$ . From the equation (2.4) we see that $\rho$ is a non-zero constant,
$f|_{K}$ is a constant, and that $A=(f/\rho)I$ . Consequently $M=S^{n}(1/\rho^{2})$ by Gauss’
equation.
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