A SUFFICIENT CONDITION FOR A COMPACT HYPERSURFACE IN A SPHERE TO BE A SPHERE

By
Sharief Deshmukh and M.A. Al-Gwaiz
(Received December 17, 1991 ; Revised February 25, 1992)

Abstract

In this paper a characterization of small spheres in a sphere is obtained in terms of a pinching relation on the Ricci curvature.

1. Introduction

Although many works have gone into the study of minimal hypersurfaces of a sphere, with a view to characterizing totally geodesic spheres (great spheres), less attention has been given to establishing sufficient conditions for a hypersurface to be a small sphere. Such a characterization was obtained by Nomizu and Smyth (see [5], Theorem 1, (ii)), by using the Gauss image of the hypersurface. Reilly [6] (see also Carter and West [2]) has shown that the result of Nomizu and Smyth is equivalent to a certain hypersurface immersion into Euclidean space. A characterization of small hyperspheres of a sphere was also obtained by Markvorsen [4]. More recently, Coghlan and Itokawa [3] used a pinch of the sectional curvature and the position of a hypersurface of the sphere to characterize a small sphere.

In this paper we consider a compact hypersurface M of S^{n+1} and a parallel unit vector field Z in R^{n+2}. Denoting the tangential projection of Z on S^{n+1} by Z^{T} and the tangential projection of Z^{T} on M by t, we can write $Z^{T}=t+\rho N$, where N is the unit normal vector field to M in S^{n+1} and $\rho=\left\langle Z^{T}, N\right\rangle$ is a smooth function on M, usually referred to as the relative support function of the hypersurface M with respect to the vector field Z in \boldsymbol{R}^{n+2}. Here $\langle\cdot, \cdot\rangle$ is the Euclidean metric in \boldsymbol{R}^{n+2}. The main object of this paper is to prove

Theorem. Let M be a compact, connected and orientable hypersurface of S^{n+1} with a relative support function ρ with respect to a parallel unit vector field Z in \boldsymbol{R}^{n+2}. If the Ricci curvature of M satisfies the pinching relation

$$
\rho^{2}(n-1)(n+2)<\rho^{2} \text { Ric } \leqq n-1,
$$

1991 Mathematics Subject Classification: Primary 53C40, Secondary 53C42.
Key words and phrases: sphere, hypersurface.
then ρ is a constant and $M=S^{n}\left(1 / \rho^{2}\right)$.
A hypersurface of constant mean curvature in S^{n+1} is also considered and a sufficient condition for such a hypersurface to be a hypersphere is obtained.

2. Preliminaries

Let M be an orientable hypersurface of the unit sphere S^{n+1} in the Euclidean space \boldsymbol{R}^{n+2} with center at the origin. M therefore has a unique global unit normal vector field N in S^{n+1}. For any pair of vector fields X and Y on M the Riemannian connections ∇ and ∇ on S^{n+1} and M, respectively, are related by

$$
\begin{equation*}
\nabla_{X} Y=\nabla_{X} Y+g(A X, Y) N, \tag{2.1}
\end{equation*}
$$

where g is the induced metric on M and A is the Weingarten map, which is a symmetric tensor field of type $(1,1)$ on M defined by

$$
\begin{equation*}
\nabla_{X} N=-A X . \tag{2.2}
\end{equation*}
$$

Fix a parallel unit vector field Z in R^{n+2} and let Z^{T} and Z^{N} be the tangential and normal components of Z to S^{n+1}, respectively, so that $Z=Z^{T}+Z^{N}$. Let \bar{N} be the unit normal vector field to S^{n+1} in R^{n+2}, and put $f=\left\langle Z^{n}, \bar{N}\right\rangle$. It then follows that

$$
\begin{equation*}
\nabla_{X} Z^{\boldsymbol{r}}=-f X \quad \text { and } \quad X f=g\left(X, Z^{\boldsymbol{T}}\right), \quad X \in \mathscr{X}(M), \tag{2.3}
\end{equation*}
$$

$\mathscr{X}(M)$ being the Lie algebra of vector fields on M as a hypersurface of S^{n+1}.
Finally we define a smooth function $\rho: M \rightarrow \boldsymbol{R}$ by setting $Z^{T}=t+\rho N, t \in$ $\mathscr{X}(M)$. As pointed out above, ρ is the relative support function of the hypersurface M with respect to the parallel unit vector field Z on R^{n+2}.

Using the equations (2.1), (2.2) and (2.3), we arrive at

$$
\begin{array}{cl}
\nabla_{x} t=-f X+\rho A X, \quad X \rho=g(A X, t), & \text { and } \quad X f=g(X, t), \quad X \in \mathscr{X}(M), \\
\operatorname{grad} \rho=-A t, \quad \operatorname{grad} f=t . \tag{2.5}
\end{array}
$$

Gauss' equation gives the Ricci curvature tensor of M as

$$
\begin{equation*}
\operatorname{Ric}(X, Y)=(n-1) g(X, Y)+n \alpha g(A X, Y)-g(A X, A Y), \tag{2.6}
\end{equation*}
$$

where $\alpha=(1 / n) \sum_{1}^{n} g\left(A e_{i}, e_{i}\right),\left\{e_{i}\right\}$ being a local orthonormal frame in M, is the mean curvature of M (see [1]). On the other hand, Codazzi's equation gives

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=\left(\nabla_{Y} A\right) X, \quad X, Y \in \mathscr{X}(M) . \tag{2.7}
\end{equation*}
$$

Using the symmetry of A in this equation, we conclude that

$$
\begin{equation*}
g\left(\left(\nabla_{X} A\right) Y, Z\right)=g\left(\left(\nabla_{X} A\right) Z, Y\right), \quad X, Y, Z \in \mathscr{X}(M) \tag{2.8}
\end{equation*}
$$

Let Δ be the Laplacian operator acting on the smooth functions on M.
Lemma 2.1.
(a) $\Delta f=n(-f+\rho \alpha)$,
(b) $(1 / 2) \Delta f^{2}=n\left(-f^{2}+\alpha f \rho\right)+\|t\|^{2}$.

Proof. (a) follows immediately from equation (2.4), and (b) follows from (a), (2.5) and the equality $\Delta f^{2}=2 f \Delta f+2\|\operatorname{grad} f\|^{2}$.

3. Hypersurfaces of constant mean curvature

For hypersurfaces of constant mean curvature in S^{n+1}, Nomizu and Smyth (see [5], Theorem 2, p. 490) proved that, if the Gauss image lies in a closed hemisphere of S^{n+1}, then the hypersurface is necessarily a hypersphere in S^{n+1}. Here we shall prove

Theorem 3.1. Let M be a compact, connected and orientable hypersurface of constant mean curvature in S^{n+1}. If some relative support function of M with respect to a parallel unit vector field Z in R^{n+2} is nowhere zero on M, then M is a hypersphere in S^{n+1}.

Proof. Using the equation (2.4), we obtain the following expression for the Hessian H_{ρ} of the function ρ

$$
H_{\rho}(X, Y)=-g\left(\left(\nabla_{X} A\right) Y, t\right)+f g(A X, Y)-\rho g(A X, A Y) .
$$

This, together with (2.8), implies

$$
\begin{equation*}
\Delta \rho=-n t \alpha+n f \alpha-\rho \operatorname{tr} A^{2} . \tag{3.1}
\end{equation*}
$$

From (2.4) it follows that $\operatorname{div} t=n(-f+\rho \alpha)$ and hence $\operatorname{div}(\alpha t)=t \alpha+n \alpha(-f$ $+\rho \alpha)$. Using this last equation in (3.1), we arrive at

$$
\begin{equation*}
\Delta \rho=-n(n-1) f \alpha+n^{2} \alpha^{2} \rho-\rho \operatorname{tr} A^{2}-\operatorname{div}(n \alpha t) . \tag{3.2}
\end{equation*}
$$

If α is a constant, then this equation, combined with Lemma 2.1(a), yields

$$
\Delta(\rho-(n-1) \alpha f)=\rho\left(n \alpha^{2}-\operatorname{tr} A^{2}\right)-\operatorname{div}(n \alpha t)
$$

By integrating over M we conclude that

$$
\int_{M} \rho\left(n \alpha^{2}-\operatorname{tr} A^{2}\right) d v=0 .
$$

From the Schwarz inequality we have $n \alpha^{2}-\operatorname{tr} A^{2} \geqq 0$, where the equality holds if and only if M is totally umbilic. If $\rho \neq 0$ on M and M is connected, then $n \alpha^{2}=\operatorname{tr} A^{2}$, i.e. M is totally umbilic. M being compact, this implies that M
is a hypersphere of S^{n+1}.

4. Proof of the main theorem

Let S be the scalar curvature of M, which is given by $S=n(n-1)+n^{2} \alpha^{2}-$ $\operatorname{tr} A^{2}$. The equation (3.2) then gives

$$
\begin{equation*}
\rho \Delta \rho=\rho(S-n(n-1))-n(n-1) f \rho \alpha-\rho \operatorname{div}(n \alpha t) \tag{4.1}
\end{equation*}
$$

Since

$$
\operatorname{div}(n \alpha \rho t)=n \alpha t \rho+\rho \operatorname{div}(n \alpha t)
$$

the second equation in (2.4) implies

$$
-\rho \operatorname{div}(n \alpha t)=n \alpha g(A t, t)-\operatorname{div}(n \alpha \rho t)
$$

Thus the equation (4.1) becomes

$$
\rho \Delta \rho=\rho(S-n(n-1))-n(n-1) f \rho \alpha-n \alpha g(A t, t)-\operatorname{div}(n \alpha \rho t) .
$$

Using the identity $(1 / 2) \Delta \rho^{2}=\rho \Delta \rho+\|\operatorname{grad} \rho\|^{2}$ and the equation (2.5), we therefore obtain

$$
\frac{1}{2} \Delta \rho^{2}=\rho^{2}(S-n(n-1))-f \rho \alpha n(n-1)-\left[\operatorname{Ric}(t, t)-(n-1)\|t\|^{2}\right]-\operatorname{div}(n \alpha \rho t)
$$

Now Lemma 2.1(b) gives

$$
\begin{aligned}
\frac{1}{2} \Delta\left(\rho^{2}+(n-1) f^{2}\right)+\operatorname{div}(n \alpha \rho t)= & \rho^{2} S-n(n-1)\left(\rho^{2}+f^{2}+\|t\|^{2}\right) \\
& +(n-1)(n+2)\|t\|^{2}-\operatorname{Ric}(t, t)
\end{aligned}
$$

Since $Z=t+\rho N+f \bar{N}$ is a unit vector field, we have $\|t\|^{2}+\rho^{2}+f^{2}=1$. Thus, integrating the above equation over M, we get

$$
\int_{M}\left[\|t\|^{2}(\operatorname{Ric}(\hat{t}, \hat{t})-(n-1)(n+2))+\left(n(n-1)-\rho^{2} S\right)\right] d v=0
$$

where \hat{t} is the unit vector field defined by $t /\|t\|$ on the open subset of M where t is non-zero. Now, using the hypothesis of the theorem, we get $t=0$ and $\rho^{2} S=n(n-1)$. From the equation (2.4) we see that ρ is a non-zero constant, $\left.f\right|_{M}$ is a constant, and that $A=(f / \rho) I$. Consequently $M=S^{n}\left(1 / \rho^{2}\right)$ by Gauss' equation.

References

[1] B. Y. Chen, Geometry of Submanifolds, Marcel Dekker, N. Y., 1973.
[2] S. Carter and A. West, A characterization of certain embedded spheres; J. Lond. Math. Soc., 7 (1973), 441-452.
[3] L. Coghlan and Y. Itokawa, On the sectional curvature of compact hypersurfaces, Proc. Amer. Math. Soc., 109 (1990), 215-221.
[4] S. Markvorsen, A sufficient condition for a compact immersion to be spherical, Math. Z., 183 (1983), 407-411.
[5] K. Nomizu and B. Smyth, On the Gauss mapping for hypersurfaces of constant mean curvature in the sphere, Comm. Math. Helv., 44 (1969), 484-490.
[6] R.C. Reilly, Application of stereographic projections to submanifolds in E^{n} and S^{n}, Proc. Amer. Math. Soc., 25 (1970), 119-123.

Department of Mathematics
College of Science
King Saud University
P. O. Box 2455, Riyadh 11451

Saudi Arabia

