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Summary. In this paper, we find Hadamard products and neighbourhoods of
spirallike functions. Using convolution properties, we find a sufficient condi-
tion guaranteeing a function to be in a subclass of i-spirallike functions.

1. Introduction

Let A denote the family of functions of the form

(1.1) f@)=z+25zan2"

that are analytic in the open unit disk A(]z|<1), and suppose S is a subfamily
of A consisting of univalent functions in A. Given 1, —x/2<i<w/2, let H?
be the class of A-spiral-like functions in A. An analytic function f of the form
(1.1) is in H* if and only if Re(e**zf’(2)/f(2))>0, z£A. This class was intro-
duced by Spacék [15], who showed that H*cS.

If f in A is of the form and =0 we define the d-neighbourhood of
f by

Ni(f)={t(a)=z+ e crz*€A: i k|ar—ci| =0} .

Goodman [4] proved that if f,(z)=z, the identity function in A4, then N,(fo)<
S*, the class of starlike functions in 4. Ruscheweyh extended this result
and proved that if feA satisfies the condition that (f(z)+ez)/(1+¢) is A-
spirallike for all eC with |e| <d, then Njcos2(f)=H?, |2|<m/2. Analogous
results for d-neighbourhoods involving other subclasses of A can be found in
[1], [3], [11], and others. We shall find d-neighbourhood information for certain
subclasses of H# defined as follows.
For —1<B<A<1 and —zn/2<i<=x/2, let

1+ Az
1+ Bz

4
S(A, B)={feA: 1 2@
f(2)
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cos A+isinA for zeA},
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where < denotes subordination. This family was introduced in [2]. Since
S*(A, B)cS*(1, —1)=H?*, the functions in S*(4, B) are spirallike in A. By
taking A=1—2a, B=—1, the family S*(A4, B) coincides with the class H?(a),
0<a<l, introduced by Libera [6]. For 2=0, the class S*(A4, B)=SA4, B) was
defined by Janowski [[5]. Note that S°(1—2a, 1)=S*(a), the family of starlike
functions of order a, 0<a<1.

A function g of the form

1.2 g@=g(a=2(L2Y

is said to be in S¥A, B) if f belongs to S*(A, B) for some fixed real 7 and for
all zeA. Note that for y=1, S{A, B) coincides with S*(A4, B). For y=—1, we
may write g(z)=z/(1+3%-1b:2*) with a,=b,_,. Recently, Silverman has
found some properties of the class Sy(1—2a, —1).

In the present paper, we first find convolution properties of the operator
when f is in S*(4, B). Using convolution properties we then determine
6 nelghbourhoods information concerning the classes S}(A, B) and S*(4, B).
Finally, convolution properties are used to obtain a sufficient condition guaran-
teeing a function of the form to be in S*(A, B).

2. Convolution properties

For f(z2)=z+3%-:a,2" and g(z)=z+X7-2b.2" in A, the Hadamard or con-
volution product is defined by

(f*)(2)=z+D5=2 @nbaz® (z€4).

The Hadamard products offer a useful characterization for memberships in
classes. For example, the convolution characterizations allow us to benefit
from the distributive property of the Hadamard product.

Theorem 1. Let f(z)=z+n-:an2", g(2)=2(f(2)/2)", zE€A. Then function
g=S*(A, B) if and only if

~ (e Z+Cz)z )£ (zed),

where
__ re**(x—B)—(A—B)cos 4

.1) (A—B) cos 2 ([x]=1).

Proof. Since

a 2f’ (z) 207\ 4 z2g'(2)
1S R e Lk 7o o
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it follows that g=S*(A4, B) if and only if

22172 ’(2)

i ot 1+ Az
2.2) re f(z) 1—n=<

1+Bz

cos A+isin 4 (z€4).

The function

1+ Az

2.3) 1+Bz

€0s A+17 sin 4

maps the unit circle |z|=1 onto the boundary of the circle centered at (1—AB)/
(1—B?) cos A+ sin 4 with radius ((A—B)/(1—B?%)cos 2. Note that zf'(2)/f(2)=
1 at z=0. The function (2.3) is analytic and hence maps the regions onto
regions. Thus the image of every point in the interior of A goes over to an
interior point of the image of the function (2.3). Consequently, is equi-
valent to

il Zf/(z)
AT

which simplifies to

1+Ax

1A01
+et' 1=+ -5 1+Bx

— " cosd+isind (|x|=1, Bx+—1),

(2.4) 7et*(1+Bx)zf'(2)+et*(1—1)1+Bx)f(2)
—(14+Ax)f(z) cos A—i(1+Bx)f(2) sin 2#0.
Since zf'(z)=f(2)x(z/(1—2)?), f(z2)=f(2)*(z/(1—z)), we notice that is equi-

valent to

— - i2 2
@.5) —l—[f(z)*{ (B—A)xzcos 2+ ((A B_)x 2cos A+ret*(1+Bx))z }] 0.
z (1—2)

By some simple computations and writing —% as x, (2.5) may be written as
(f(2)*h(2))/2#0, where
ret*(x—B)—(A—B)cos i\ ,
Z+( (A—B)cos 4 )z
(1—-2)°

hi(z)=

We thus obtain the desired conclusion.
We now obtain a characterization of S}(A4, B) in terms of convolution.

Theorem 2. With f and g as defined in Theorem 1, the function g=S¥ A, B)
if and only if ‘

(g( Yk g‘_dz >#=0 (z€4),

where
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__ e**(x—B)—(A—B)r cos A
(2.6) d= (A—B)rcos A

(Ix]=1).

Proof. Since

=<1—r>+r%§) (zcd)

and feS%(A4, B), it follows that gESXA, B) if and only if

28'(2)
@7 20)

1+ Az
14+-Bz

2.8) o128/ 2) —et (1—p<

2@ 7cos A+irsin 4.

Using arguments similar to the lines of the proof of [Theorem 1, we find that
g=S¥A, B) if and only if

1 (A—B)rxzcos A—((A—B)rx cos A+(Bx+1)et?)z?
z [g(z)*{ (1—2)* }] #0,

which is equivalent to
1
;(g(z)*hz(Z))qﬁO (z€4),

where

e**(x—B)—(A—B)y cos A ) .
(A—B)r cos 4 z
(1—2)* ’

z+(

hy(z)=

and the proof is complete.
Remark. For y=1, the results in Theorems 1 and 2 coincide.

Given a normal family Fc A, the dual of F is defined as the family
F'={heA: hxf+#0 for all fEF, 0<]|z|<1}.

The concept of duality was introduced by Ruscheweyh in [10]. In view of
the definition of duality and Theorem 2, the class S A, B) is the dual of the
family
et* (x—B)—(A—B)rcosa\ ,
z+( (A—B)rcos i )z Cx|=1
(1—2)? R

2.9) (SKA, B))’={
Fixing y=1 and choosing suitable values of the parameters 1 (—z/2<A<
n/2), A, and B (—1<B<AZ1), we may obtain the dual sets of several sub-

classes of H* and S*.

Corollary 1. For a fixed real number 2, —n/2<A<m/2, the family H? is
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the dual of

x_e~zt2

22
1 -242
(H‘)’={ (1+__ez)2 :|x|=1}.

Proof. The result follows from by fixing y=1, A=1, B=—1 and
noting from that

_ (x+1)e**—2cos A

d 2cos i

~242

_ xett—etl  x—e¢

eil__l_e—tl - 1+e—2tl .

Corollary 2. For a fixed real a (0Sa<l), the family S*(a) #s the dual of

(S*(a))’={ tlx|=1 }

(1—2)*
Proof. Let y=1, =0, A=1—-2a, B=—1 in and the result follows.

Remarks. The results in Corollaries 1 and 2 were contained in [14]. The
case 4=0, r=1 in was established in [13].

Corollary 3. The function g(z)=z/(14+=1b:2*) is stariike of order a, 0<
a<l, if and only if
14+3—2a ,

1 T 24 ?
el

for all z€A and |x|=1.

Proof. Set y=-—1, A=0, A=1—2a, B=-—1, and a,=b,_, in [Theorem 2.

3. Neighbourhoods of spiral-like functions

Theorem 3. With f and g as defined in Theorem 1, let g(2)=2z+iusbaz*
be in A and suppose 0<|y|cos A<1. If for all complex ¢, |e| <8, assume (g(2)+
e2)/(1+e)eSXA, B) (z€4), then

N,(g)=SK(A4, B),
where p=(3|71(A—B)cos )/(1+|B).

Proof. In view of (2.9), we first observe that
3.1 : teSHA, B) & (txh)(2)#0
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for all he(S#(A, B)) and for all 0<|z|<1. Since (g(2)+e2)/(1+e)=SKA, B),
we have

3.2) %—Z—*h(z)io 0<|z|<1)

for all he(S}A, B))’. We observe that [3.2) simplifies to
1
—z—(g*h)(z)ab—s (z€4)

for all e such that |¢| <&, which is equivalent to

3.3 l(g*zﬂl =5  (zeA).

We next notice that .if he(S A, B))’ and h(z)=z+3, hxz*, then

_ (k=D)xe**+(A—B)y cos A—(k—1)Bet?

@.4) hs (A—B)y cos A

(k=2).

Assume t(z)=z+4%: cxz* =N,(g). Then

‘_l—(t*h)(Z)l - | (gxh)) + (t—8)(2)*h(z) ’ |
z : :

> ‘ (g*h)(2) I _' (t—g)(2)*h(2) I
- z z

=0— | 2ie(ce—br)hpz"® |

20— |z| el be—cel [ hel.
Since from

(k—1)+(A+[B|)|7Icosi+(k—1)|B|
[7|/(A—B) cos 4

_ (—1+]7|cos D1+ |B])
= |7|(A—B) cos 4

k(1+|B])
= |r|(A—B)cos i’

[hel <

we have

lz|(1+|B])
|71 (A—B) cos A

|z|(1+|B )0
20— T (A—B) cos 2

=0(1—1[2])>0.

|2 x2)| 20— i £lbs—eal

This proves that
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—i—(t*h)(z);ﬁo (z€4),

and, therefore, it follows from that t=S¥ A, B). This completes the proof
of the theorem.

Corollary. Let fA be of the form (1.1), and A a fixed real number with
|A| <m/2. For all complex ¢, |e| <0, assume (f(2)+¢cz)/(1+e)=S*(A, B) (z€4),
then

Ny (f)=S*(4, B),

where 6’=(0(A—B)cos )/(1+|B|).

Remarks. The special cases of (i) A=1, B=-—1, (ii) A=0, A=1, B=-1
in were proved by Ruscheweyh [9].

4, Sufficient coefficient conditions

We shall now use the properties of Hadamard products in Section 2 to
determine a sufficient condition guaranteeing a function of the form (1.3) to be
in S%(A, B).

Lemma. With f and g as defined in Theorem 1, the function g=S*(A, B)
if and only if
14252 (n+(n—1Dc)a,z"'+0

for all z€A and |x|=1, where c¢ is given in (2.1).

Proof. Since

z+cz?

(1—2)*

hi(z)= =z+ 0= (n+(n—1)c)z",

we may write

L (f#h)D=14D5ma (n+ (0 — D) a2

and the result follows from [Theorem 1.

Theorem 4. With f and g as defined in Theorem 1, the function gS*(A,
B) if
e1:=2Dn(27 T, Ar B)lanlél
for

4.1) D.&, 71, A B)=

(n—DI71++(A—B)(A—B—2By(n—1))cos?A+B*r¥(n—1)*
(A—B) cos A )
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Proof. With ¢ defined in and z€A, we notice that
114+ 25-2(n+(m—1)c)a,2" | Z1 - D5 n+(m—1Del | an| 2]}
21-2R=ln+®m—1cllaal,

and
_ _ |(n—1ye**x+(A—B) cos A—(n—1)Byet?|
[nt(m—1el= (A—B)cos A
< (n—=DI|7|+|(A—B)cos A—(n—1)Bye'?|
= (A—B)cos A
_(=D|r|+|(A—=B—By(n—1)) cos A—iBy(n—1) sin 1|
- (A—B)cos A
=D.@4, 7, A, B).

We thus conclude from that 25.:D.(4, 7, A, B)la,| <1 is a sufficient
condition for g to be in S*(A4, B).

Corollary 1. Let f(z)=z+X%-:a.2", and let a, A be constants, 0<a<1,
—n/2<A<m/2. If the coefficients {a,} satisfy
2r=[(n—D+({(n—1+4(n—a)(l—a) cos® a)'/*]|a,| <2(1—a) cos A,

then f is in H*(a), the class of A-spiral functions of order a.
Proof. By setting A=1—2a, B=—1, =1 in [Theorem 4, the result follows.

Corollary 2. Let g(z)=z/(14+3%-.bs), and let a be constant, 0<a<l. If

the coefficients {b,} satisfy
(l1-a)—(1—a)lb,], 0=axl/2,
i (k—14a)|be| =
(l1—a)—albl, 1/2<a<1,

then the function g is starlike of order a in the disk A.

Proof. Let y=—1, A=1—2a, B=—1, and a,=b,_, in and the
result follows.

Remarks. By using a different technique, the results in the preceding
corollaries were proven, respectively, in and [8].
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