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Summary. A zero-dimensional topological space is called h-homogeneous if all
nonempty clopen subspaces are homeomorphic. The Cantor discontinuum, the
space of rational numbers and the space of irrational numbers are h-homo-
geneous. We show the following:

(1) If a non-pseudocompact zero-dimensional space $Y$ has a dense set of
isolated points, then the Product space $Y^{\iota}$ is h-homogeneous for any infinite
cardinal $\kappa$ .

(2) If $X$ is a strongly zero-dimensional h-homogeneous space of countable
type, then $\beta X-X$ is h-homogeneous.

1. Introduction

All topological spaces considered here are Tychonoff. A space $X$ is called
homogeneous if for any two points $x,$ $y\in X$ there exists a homeomorphism $f$

from $X$ onto itself which maps $x$ to $y$ . A zero-dimensional (in the ind sense)
space $X$ is said to be h-homogeneous [8] if all nonempty clopen (closed and
open) subspaces are homeomorphic. It is well known [3] that every first
countable h-homogeneous space is homogeneous. At a glance, the class of h-
homogeneous spaces seems special. But some important zero-dimensional spaces
have this property. For example, the Cantor discontinuum $C$ , the space $Q$ of
rational numbers, the space $P$ of irrational numbers, the Sorgenfrey line and
the remainder $\beta\omega-\omega$ of the Stone-\v{C}ech compactification of $\omega$ are all h-homo-
geneous. Further, Motorov ([6], [7]) showed the following interesting result:
If $X$ is a first countable zero-dimensional space which has a dense set of iso-
lated points, then the $\omega$-power $X^{\omega}$ is h-homogeneous and hence homogeneous.
Recently, Balcar and Dow [2] showed that, for an infinite compact extremally
disconnected space $X$, the dynamical system (X, $Hom$) is minimal if and only if
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$X$ is h-homogeneous, where Hom is the group of all autohomeomorphisms on
$X$ under the operation of composition $\circ$ .

A Boolean algebra $B$ is called homogeneous if for any non-zero element $a$

of $B$ , the relative algebra $B\uparrow a(=\{x\in B:x\leqq a\})$ is isomorphic to $B$ . It is well
known that a zero-dimensional compact space $X$ is h-homogeneous if and only

if the Boolean algebra Clop (X) of all clopen subsets of $X$ is homogeneous (see

[5]). Hence it follows that the study of h-homogeneous compact spaces is
equivalent to the study of homogeneous Boolean algebras. For a non-compact

space $X$, the h-homogeneity of $X$ implies also the homogeneity of the Boolean
algebra Clop (X) of all clopen subsets of $X$, but the converse implication is not

generally true. Further, since the space $Q$ of rational numbers and the space
$P$ of irrational numbers are h-homogeneous as noted above, the study of non-
compact h-homogeneous spaces seems to be also interesting.

In this paper, using some properties of the Stone-\v{C}ech compactifications of
spaces, we will obtain some results concerning non-compact h-homogeneous

spaces.

2. Some basic facts and results

For a topological property $\mathcal{P}$ , a space $X$ is called nowhere locaily $\mathcal{P}$ if no
point of $X$ has a neighborhood which has the property $\mathcal{P}$ . At first, let us
note the following trivial property of h-homogeneous spaces.

Lemma 2.1. Let $X$ be an h-homogeneous space.
(1) If $X$ is not compact, then $X$ is nowhere locally compact.
(2) If $X$ is not pseudocompact, then $X$ is nowhere locally pseudocompact.

The next lemma is also easy and well known.

Lemma 2.2. Let $p$ be a point in a space $X$ and let $q$ be a point in a space
Y. If there exist two sequences $\{U_{n} : n\in\omega\},$ $\{V_{n} : n\in\omega\}$ of disjoint clopen sub-
sets of $X,$ $Y$ respectively with the following properties;

(a) $U_{n}$ and $V_{n}$ are homeomorphic for each $ n\in\omega$ ,
(b) $X=\cup\{U_{n} : n\in\omega\}\cup\{P\},$ $Y=\cup\{V_{n} : n\in\omega\}\cup\{q\}$ ,
(c) $\{\cup\{U_{n} : k\leqq n\}\cup\{p\} : k\in\omega\}$ is a neighborhood base of $p$ in $X$,

$\{U\{V_{n} : k\leqq n\}\cup\{q\} : k\in\omega\}$ is a neighborhood base of $q$ in $Y$,

then there is a homeomorphism $f$ from $X$ onto $Y$ such that $f(p)=q$ .

In case only the condition (a) above is satisfied, it is obvious that $\cup\{U_{n}$ :
$n\in\omega\}$ and $\cup\{V_{n} : n\in\omega\}$ are homeomorphic. A space $X$ is called strongly zero-
dimensional if its Stone-\v{C}ech compactification is $z$ero-dimensional.
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Proposition 2.3. Let $X$ be a non-Pseudocompact, strongly zero-dimensional,
h-homogeneous space. Then all nonempty cozero-sets of $X$ are homeomorPhc.

Proof. Every nonempty cozero-set can be expressed as the disjoint union
of a sequence of nonempty clopen subsets of $X$. Since $X$ is h-homogeneous,
every nonempty cozero-set is homeomorphic to the topological discrete union of
infinitely countable copies of $X$ .

Motorov [6] showed essentially that, if a first countable zero-dimensional
space $X$ has a $\pi$-base consisting of clopen subsets which are homeomorphic to
$X$, then $X$ is h-homogeneous. The following theorem says that the first count-
ability can be omitted in case $X$ is not pseudocompact.

Theorem 2.4. Let $X$ be a non-pseudocompact zero-dimensional space. If $X$

has a $\pi$-base consisting of clopen subsets which are homeomorPhc to $X$, then $X$

is h-homogeneous.

Proof. Let $A$ be an arbitrary nonempty clopen subset of $X$. Since $A$

contains a homeomorphic copy of $X$ as a clopen subset, $A$ is not pseudocompact.
Hence $A$ can be expressed as the disjoint union of a sequence of nonempty
clopen subsets of $X$ . Let

$ A=A_{1}\oplus A_{2}\oplus A_{s}\oplus\cdots$ .
Then from the assumption it follows that $A_{1}$ contains a clopen subset $B_{1}$ which
is homeomorphic to $X$. Let $C_{1}=A_{1}-B_{1}$ and let $B_{2}=X-C_{1}$ . Then $A_{1}=B_{1}\oplus C_{1}$

and $X=C_{1}\oplus B_{2}$ . Next, since $A_{2}$ contains a copy of $X$ as a clopen subset, $A_{2}$

contains a copy $B_{2}^{\prime}$ of $B_{2}$ as a clopen subset. Then we can express that $A_{t}=$

$B_{2}^{\prime}\oplus C_{2}$ and $X=C_{2}\oplus B_{3}$ . Continuing this procedure, we obtain a sequence
$\{B_{n}, C_{n} : n\in\omega\}$ of pairs of clopen subsets of $X$ which satisfy the following
conditions:

$A_{\ell}\approx B_{i}\oplus C_{i}$ ; $X=C_{i}\oplus B_{\ell+1}$ $(i=1,2, 3, )$ .
Then

$ A\approx(B_{1}\oplus C_{1})\oplus(B_{2}\oplus C_{2})\oplus(B_{s}\oplus C_{s})\oplus\cdots$

$\approx B_{1}\oplus(C_{1}\oplus B_{2})\oplus(C_{2}\oplus B_{s})\oplus\cdots$

$\approx X\oplus X\oplus X\oplus\cdots$ .

The last space does not depend on $A$ .
of $X$ are homeomorphic.

Hence all nonempty clopen subspaces
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3. Product spaces and h-homogeneity

Motorov [7] showed some interesting results about the h-homogeneity of
products of first countable compact spaces. Here we will show the similar
results for non-pseudocompact spaces.

Theorem 3.1. Let $Y$ be a non-Pseudocompact zero-dimensional space. Let $\kappa$

be an arbitrary cardinal and let $X=Y^{\kappa}$ . If $Y$ has a $\pi$ -base $B$ consisting of
clopen subsets $U$ which satisfy $U\times X\approx X$, then $X$ is h-homogeneous.

Proof. Let $C$ be the family of canonical open subsets $V$ of $X$ which are
defined as follows:

$V=\Pi\{V_{\alpha} ; \alpha\in\kappa\}$ .
where $V_{a}=X$ or $V_{a}\in B$ for each $\alpha$ . Then it is obvious that $C$ is a $\pi$-base of
$X$ consisting of clopen subsets which are $hommorphic$ to $X$. Hence it follows
that $X$ is h-homogeneous from Theorem 2.4.

Corollary 3.2. Let $Y$ be a non-pseudOcOmpact zero-dimensional space. If
the set of all / solated points of $Y$ is dense in $Y$ , then $Y^{\kappa}$ is h-homogeneous $Jor$

any infinite cardinal $\kappa$ .

It is trivial that any product of homogeneous spaces is homogeneous. But
the author does not know whether every product of h-homogeneous spaces is
h-homogeneous. However we have the following.

Theorem 3.3. Let $\{Y_{\lambda} : \lambda\in\Lambda\}$ be a family of h-homogeneous spaces and let
$X=\prod\{Y_{\lambda} : \lambda\in\Lambda\}$ . If $X$ is compact or non-Pseudocompact, then $X$ is h-homo-
geneous.

Proof. A canonical open subset $U$ of $X$ will be called a canonical clopen
subset, when every factor of $U$ is clopen. If $X$ is non-pseudocompact, then $X$

is h-homogeneous by Theorem 2.4, since every canonical clopen subset of $X$ is
homeomorphic to $X$. In case $X$ is compact, every nonempty clopen subset of
$X$ can be expressed as a finite disjoint union of canonical clopen subsets.
Since we can suppose that the cardinality of at least one space $Y_{\lambda}$ is infinite,
every discrete union of finite copies of $X$ is homeomorphic to $X$. It follows
that $X$ is h-homogeneous.

Motorov (see [1]) suggested that for every first countable zero-dimensional
compact space $X$, the $\omega$-power $X^{\omega}$ is homogeneous. And it is not known
whether there is a first countable zero-dimensional space whose $\omega$-power is not
homogeneous [4]. Similary the following question is natural.
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Question. Is there a first countable zero-dimensional space whose $\omega$-power
is not h-homogeneous ?

We have the following, when the first countability is omitted.

Theorem 3.4. Let $X$ be a space such that $\chi(x, X)\geqq\omega_{1}$ for any Point $x\in X$.
Then $(X\oplus\{p\})^{\omega}$ is neither h-homogeneous nor homogeneous.

Proof. Let $Y=(X\oplus\{p\})^{\omega}$ . Then $Y$ contains a point which has a countable
neighborhood base. However $Y$ contains a clopen subset which is homeomorphic
to $X\times Y$ . And no point of $X\times Y$ has a countable neighborhood base.

Let $D$ be the discrete space consisting of two points. Then $D^{\omega_{1}}$ is a zero-
dimensional compact space such that $\chi(x, D^{\omega_{1}})\geqq\omega_{1}$ for any $x\in D^{\omega_{1}}$ . Hence
there is a (compact) $zero_{-}dimensiona1$ space whose $\omega$-power is not h-homogeneous.

Remark. Let $\mathcal{P}$ be a class of zero-dimensional spaces. If $\mathcal{P}$ is clopen
hereditary and closed under finite discrete unions, then the following assertions
are equivalent:

(1) For every space $X$ in $\mathcal{P}$ , the $\omega$-power $X^{\omega}$ is h-homogeneous.
(2) For any spaces $A,$ $B$ in $\mathcal{P}$ , the $\omega$-power $(A\oplus B)^{\omega}$ is homeomorphic to

$A\times(A\oplus B)^{\omega}$ .

4. Stone-\v{C}ech compactifications and h-homogeneity

As noted in Introduction, a compact zero-dimensional space $X$ is h-homo-
geneous if and only if the Boolean algebra of all clopen subsets is homogeneous
in the sense of Boolean algebra. Let $X$ be a zero-dimensional space which is
not compact. Then, since the h-homogeneity of $X$ implies obviously the h-
homogeneity of its Stone-\v{C}ech compactification $\beta X$ and the Boolean algebra of
all clopen subsets of $X$ is isomorphic to the Boolean algebra of all clopen sub-
sets of $\beta X$, the h-homogeneity of $X$ implies the homogeneity of the Boolean
algebra of all clopen subsets of $X$. However the converse of this assertion is
not generally true. We will use some basic properties concerning the Stone-
\v{C}ech compactifications (see [9]) in this section.

Theorem 4.1. If $X$ is a strongly zero-dimensional h-homogeneous space,
then $\beta X$ is h-homogeneous, Let $X$ be a first countable zero-dimensional space.
If $\beta X$ is h-homogeneous, then $X$ is h-homogeneous.

Proof. Since the first assertion is obvious, we will show the second asser-
tion. Let $A$ be a nonempty clopen subset of $X$. Then $c1_{\beta X}A$ is clopen in $\beta X$

and homeomorphic to $\beta A$ . Hence, from the h-homogeneity of $\beta X$, it follows
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that $\beta A$ is homeomorphic to $\beta X$. Since any point of $\beta X-X$ does not have a
countable neighborhood base in $\beta X$ and any point of $\beta A-A$ does not have a
countable neighborhood base in $\beta A$ , the spaces $A$ and $X$ must be homeomorphic.

Next, we will study the h-homogeneity of remainders of Stone-\v{C}ech com-
pactifications. It is well known that the remainder $\beta\omega-\omega$ of the Stone-\v{C}ech
compactification of $\omega$ is h-homogeneous. A space $X$ is called a space of
countable type if every compact subset is included in a compact subset with a
countable neighborhood base. For a closed subset $F$ of a space $X$, the quotient
space of $X$ obtained by collapsing $F$ to one point is expressed by $X/F$.

Theorem 4.2. Let $X$ be a strongly $zero- dimens onal$ sPace of countable type.
SuppOse that, for every non-compact regular closed subset $A$ with the compact
boundary $Bd_{X}A$ , there is a compact subset $F$ of $X$ containing $Bd_{X}A$ such that
$(A\cup F)/F$ and $X/F$ are homeomorphic. Then $\beta X-X$ is h-homogeneous.

Proof. Let $U$ be an arbitrary nonempty clopen subset of $\beta X-X$. We can
assume that the complement $V=\beta X-X-U$ is not empty. Then $c1_{\beta X}U\cap c1_{\beta X}V$

is a compact subset of $X$. There is a compact subset $C$ with a countable
neighborhood base in $X$ such that $c1_{\beta X}U\cap c1_{\beta X}V\subset C$ . Then there is a real-
valued continuous function $f$ on $c1_{\beta X}(\beta X-X)\cup C$ such that $f(U)\subset(O, \infty)$ and
$f(V)\subset(-\infty, 0)$ . Let

$A=c1_{X}(\beta f^{-1}((0, \infty))\cap X)$ ,

where $\beta f$ is the real-valued continuous extension of $f$ to $\beta X$ . Then $A$ is a
regular closed subset of $X$ whose boundary is compact. By the assumption,
$Bd_{X}A$ is contained in a compact subset $F$ of $X$ such that $(A\cup F)/F$ and $X/F$

are homeomorphic. Since $A\cup F$ is $c*$-embedded in $X$ and $U=c1_{\beta X}(A\cup F)-$

$(A\cup F)$ , the clopen set $U$ is homeomorphic to the remainder of the Stone-\v{C}ech
compactification of $(A\cup F)/F$. Since $\beta X-X$ is homeomorphic to the remainder
of the Stone-\v{C}ech compactification of $X/F$, the clopen set $U$ is homeomorphic
to $\beta X-X$.

Corollary 4.3. If $X$ is a strongly zero-dimensional h-homogeneous space of
countable tyPe, then $\beta X-X$ is h-homogeneous.

Proof. Let $A$ be a non-compact regular closed subset of $X$ with the com-
pact boundary $Bd_{X}A$ . Then $Bd_{X}A$ is included in a compact subset $F$ with a
countable neighborhood base. By Lemma 2.2, it is obvious that $(A\cup F)/F$ and
$X/F$ are homeomorphic.
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