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Abstract. In this paper, we establish the existence of viable solutions for a
class of nonlinear time dependent evolution equations. Our proof uses Galerkin
approximations and a recent finite dimensional result of Deimling [6]. Then
we use our viability theorem to prove the existence of admissible trajectories,
for a class of nonlinear, time-varying, feedback control systems. An example
of a nonlinear parabolic control system is also worked out in detail.

1. Introduction

In a recent paper, Averginos-Papageorgiou [3], established the existence of
viable solutions for a class of nonlinear, time invariant evolution inclusions.
Their approach followed that of Shuzhong [12], who examined semilinear, time
invariant evolution inclusions using Galerkin approximations.

In this paper, using a very recent viability result due to Deimling [6], we
extend the above mentioned works to nonlinear, time varying evolution in-
clusions. Furthermore, our hypotheses are weaker than those in the other
nonlinear work [3]. Then we use the viability result to establish the existence
of trajectories for a class of time-varying, infinite dimensional feedback control
systems, with state constraints. Finally, an example of a distributed parameter
control system is worked out in detail.

2. Preliminaries

Let (2, ) be a measurable space and X a separable Banach space. By
P;,(X) we will denote the family of nonempty, closed, (convex) subsets of X.
A multifunction (set-valued function) F: 2—P,(X) is said to be measurable, if
for all x X, w—d(x, F(w)=inf{||x—z||: z& F(w)} is measurable. Other equi-
valent definitions of measurability of a P,(X )-valued multifunction, can be found
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in the survey paper of Wagner [13]. A multifunction G: 2-2*\{@} is said
to be graph measurable, if GrG={(w, x)€2X X: x=Gw)}=2 X B(X), with
B(X) being the Borel ¢-field of X. For P,(X)-valued multifunctions, mea-
surability implies graph measurability and the converse holds, if there is a o-
finite complete measure p(-) on 2.

Let Y, Z be Hausdorft topological spaces. A multifunction G: Y—2%\{@}
is said to be closed if GrG={(y, 2)€Y XZ: z&G(y)} is closed in Y XZ. Note
that such a multifunction necessarily has closed values. We will say that G(-)
is upper semicontinuous (u.s.c.), if for all C<Z nonempty, closed, G-(C)=
{(yeY : GNC+#@} is closed in Y. If G(-) is an u.s.c. multifunction with
closed values and Z is regular, then G(-) is closed. The converse is true if
G({) is compact. For details we refer to [9] (Theorems 7.1.15 and 7.1.16,
p. 78). ,

Our mathematical setting is the following: Let T=[0, b] and H a separable
Hilbert space. Let X be a dense subspace of H carrying the structure of a
separable Hilbert space which embeds into H continuously. We will also assume
that the embedding is compact. Identifying H with its dual (pivot space), we
have X—H—X*, with all embeddings being continuous, dense (see [15], p. 416).
Such a triple of spaces, is known in the literature as “evolution triple” or
“Gelfand triple”. By |- (resp. |-1|, |l ]x), we will denote the norm of X (resp.
of H, X*). By <., -> we will denote the duality brackets for the pair (X, X*)
and by (-, -) the inner product in H. The two are compatible in the sense
that <-, >|xxg=(+, *). Also by (-, -)x and by (-, -)xs«, We will denote the
inner products of X and X* respectively.

Let Je.£(X, X*) be the duality operator (canonical isometry) from X into
X*. Then from the Riesz-Fredholm theorem (see [1], p. 236), we know that
there exists a sequence {e,}.:0S X of eigenvectors of J-' with corresponding
eigenvalues {A,}n:0ER: s.t.

1) e,=A.Jen, n=0,1, 2, ---, where 2, |0,

) (en, em)=0nm, (€n, €n)x=An0nm and (e,, en)x+=21,0,m, With 8,, being

the Kronecker symbol, n, m=0, 1, 2, ---,

(8) for every x*= X* we have x*= kz_}o<x*, e>e, and in addition

X={xreXx*: B 1Gx, enli<o} with [xrl=y 515, el

; H={x*€X*: Ig)oI(x*, e,.>|2<oo} with Ix*l=«/§ol<x*, er|?
an

X*={x*€X*: 31 4] <x%, ek>|2<°°} with llx*ll*=J§2kl<x*, e |t
k=0 k=0

Set X,=span{ez}o. Then {X,}.., is a Galerkin scheme for each one of
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the spaces X, H, X*; i.e. this is a sequence of nonzero, finite dimensional

subspaces of X s.t. d(x, X,)—0 as n—o for all xX. Similarly for H and
X*. For every x*< X* set

Pa(x*)= éo {x*, exyey .

Then p,(x*)=X, and p,(-) is the projection from X* (also from H, X)
onto X,. :

Let W(T)={x=L*X): 4= L*X*)}(in this definition the derivative of x(-)
is understood in the sense of vectorial distributions). Furnished with the inner

product (x, y)mm:S:(x(t), y(t))xdt-i-S:(a'c(t), $(0)gsdt, W(T) becomes a Hilbert

space (see [14], Theorem 25.4). It is well-known (see for example, [14],
Theorem 25.5 or [15], Proposition 23.23), that W(T)—C(T, H) continuously.
So every function in W(T), after possible modification on a Lebesgue null set
in T, equals a continuous function from 7T into H. Furthermore, since we
have assumed that X— H compactly, we have that W(T)— L*(H) compactly (see
[15], p. 450).

3. Viability theorem

Let T'=[0, b] and (X, H, X*) an evolution triple as in Section 2. The
problem under consideration is the following:

2O+ AR, x)eF(E, x@) a.e.,
x(0)=x,=K<H, (%)
x@)eK for all t<T.

We will need the following hypotheses on the data of (x).
H(A): A: TXX—X* is an operator s.t.
(1) t—A(, x) is measurable,
(2) x—A(t, x) is monotone, hemicontinuous (i.e. for all x, yeX, we
have {A(t, x)—A(, v), x—y>=0 (monotonicity) and for all x, y, 2
e X, 1—<A(t, x+2y), 2> is continuous on [0, 1] (hemicontinuity)),
@) <A@, x), x>=c,|x]|? a.e. with ¢,>0,
@ [A¢, 0)lx=c.(1+]x]) a.e. with ¢,>0.
H(K): K is a nonempty, closed subset of H s.t. KNX,=p.(K) is compact
for each n=1.
H(F): F: TXH—P;(H) is a multifunction s.t.
1) (¢, x)»F(@, x) is graph measurable,
(2) x—F(t, x) is sequentially closed in HXH, (here H, denotes the
Hilbert space H endowed with the weak topology),
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@) |F@, x)|=sup{|y|: yeF{ x)}=a(t)+c|x| a.e. with a(-)e L}, ¢>0.

Remark. Note that hypothesis H(A)@2) above is weaker than hypothesis
H(A)Q) in [3], where the time independent operator A was assumed to be
weakly sequentially continuous in x. Also hypothesis H(F) above relaxes the
corresponding hypothesis H(F) in [3].

Let xeK. By Tkx(x) we will denote the Bouligand tangent cone to K at
x defined in the space X*; i.e. v&Tk(x) if and only if 111% dx(x+Av, K)/4=0,
where di(z, K)=inf{|z—yllx: y€K}. When K is convex, then T%k(x)=cl
[Uiso(K—x)/A] and is simply known as the tangent cone to K at x. For
further details, we refer to [2], p. 407. We will also need the following
Nagumo type condition :

H.: for every xeKNX, [F{, x)— A, x)INTk%(x)#=@ for all teT.

Theorem 3.1. If hypotheses H(A), H(K), H(F) and H. hold, then problem
(*) admits a solution x(-)eW(T)—C(T, H).

Proof. Consider the Galerkin approximations for problem (x):

ZaO)+ D02 AR, xD)EPLF(2, x4(8) a.e.,
xn(0)=pn(xo)EKn=pn(K), (*)n
ek, for all t=T.

Since by hypothesis H(A)(2), A(¢, ) is monotone and hemicontinuous, it is

demicontinuous (see [I5], Prop. 26.4 (c)). So if xm— x in X, then A(t, tm)—
A(t, w) in X*. Hence for every n=1, we have p,A{, xx)—p, A, x) in X, as
m—oo. Also let CSX, be nonempty, closed and set p,F;(C)={ze X,:
P Fit, DINC+@}. Let {Zn} mz21SPpaF(C) and assume that z,—z in X,. By
definition p,F@, z,)N\C+ @ for every m=1. Choose v,=p,F{t, 2,)N\C, m=1.
Then {vm}m=1 is bounded in X,, thus relatively compact and so by passing to
a subsequence if necessary, we may assume that v,—v as m—oo. Clearly veC
and for every m=1, [zm, vnl]E=Grp, F({, ) and [2,, va]—[2, v] in X, as m—
. Because of hypothesis H(F)?2), [z, v]=Grp,F(, -), while [z, v]€ X, X Xa.
Hence [z, v]€Grp, . F(t, ) =vep. Ft, 2)=z2<p, Fi(C)=p,.Fir(C) is closed =x—
pnF(t, x) is u.s.c. on X,, hence x—p,F(t, x)—p,A(t, x) is u.s.c. on X,. Fur-
thermore, it is clear from hypotheses H(A)(1) and H(F)1) that t—p,F(t, x)—
p.A(t, x) is measurable. From hypothesis H,, we know that for all (¢, x)e
Tx K, we have

[F@, x)—A¢, x)INTxx)+D .
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Furthermore, from Aubin-Ekeland [2], p. 440, we have p,Tx(x)ST p,x>(Pn(x))
=Tk,(pn(x)) and so we get

D+ pal(F@, x)—A(t, 2NNTx(x)]
S[pa(Ft, x©)—A@, x)INPpaTx(x)
S[paF(t, x)—paAlt, )INTk,(Pa()).

Hence for every (t, x)=T X X., we have [p.F(t, x)— p. A, x)INTx ,(x)#D.
Finally note that |p,F(t, x)|=sup{lylx,: YEFE, )} <|palca®)+|pnlcclx|
a.e.. Thus, we have verified all hypotheses of Theorem 1, p. 639 in [6].
Applying that result, we get a solution x,(-) for the Galerkin approximation
problem (x),. Then we have:

CEa(t), £a@D+<PaAlt, 2a(@), 2aED=(Pnf (D), Xa(1)) a.e.,

where f,=L*H), f.()=F({, x,(t) a.e.. Recall that x,({)K, and that since
pn is the projection of X* onto X,, p¥ projects X onto X, (see [7], V1.3.3and
V1.9.19 or [5], p. 258). So we have

2L 21 AW, a0, PEEAD=(Daf n(D), aE)=CFall), PEXAD) 2.0

=0 21 H2UAN, 520D, 2 OD=(FaD, 20D 2.

::>_c(11? | 2@ 1242011 X2 OIP L2 fa(D)] - | xa(D)]  a.e. (1)

Applying Cauchy’s inequality with ¢>0 on the right-hand side, we get
21 fa®)]- 12201 281 faD] - 12O SeB?| fr(D*+e M xaOI* a.e.

where >0 is such that |-|<B|-||. It exists since we have assumed that X
embeds into H continuously. Choose ¢>0 so that ¢'=2¢,=(2¢,)"'=e. Then
we have

xS el fald1? with c=6%/(2c),
5D Seal) e 2P S2esadF +205t  1a D1 2ce.

t
= 12,01 S | x| 26 ali+260 | 2a(9)]* .

Invoking Gronwall’s inequality, we deduce that there exists M,>0 s.t. for
all t=T and all n=1, we have

[xn(®)| S M.
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Using this bound in inequality (1) above, we get that

a2, 2 OS2I 201 M, ae.

b b
— 26, I xao1rats | x4+ 20 (a®+eM)dt
Thus, there exists M,>0 s.t. for all n=1, we have:

[xallz2car=Ms. : (2)
Finally, let he L3 X)=L%* X*)*. For every n=1, we have:

[i<tato), nspds={'<—padls, 2as), RS> ds+{ (Bafa(s), A(Hs

<" Manacs, xu Il rlds+{ M1 £u(9)1 BRI ds
where M,>0 is such that Ipall =M, for all nz1 (see [S]. So we have:
S:<xn(s), h(s))dsgS:[cz(l—i—len(s)ll)+(a(s)+cM1)] IA(s)lids .

Since a(-)eL?:, |x,(-)leL?and ||A(:)je L2, applying the Cauchy-Schwartz
inequality and recalling that for all n=1 | x,|L2cx)< M,, we get that there exists
M, >0 s.t. ’

(n, 0= <20, BO>AESMullR 220> ,

where ((-, -)), denotes the duality brackets for pair (L*(X), L*X*)). Since he
L*(X) was arbitrary, we deduce that for all n=1, we have

ZallLecxn=M,. (3)

From (2) and (3) above, we deduce that {x,} .z, is bounded in W(T). Recall
(see Section 2) that W(T)— L?*(H) compactly. So by passing to a subsequence

if necessary, we may assume that xn—swt in L®(H) and since W(T)— C(T, H)
continuously (see Section 2), we may assume that x,,(b)—i £() in H Let A:
L*(X)— L*X*) be the Nemitsky operator corresponding to the map A(Z, x); i.e.
A(x))=A(t, x(t)) for all x=L*X). Because of hypothesis H(A)4), {A(x2)} ns1
is bounded in the Hilbert space L3(X*). So by passing to a subsequence if neces-
sary, we may assume that A(xn)—liv in L} X*). Let p,: L¥(X*)— L¥X,) be
the lifting of the projection operator p,: X*—X,;i.e. (p,x)t)=p.x(t). Recall-
ing that by ((-, -)), we denote the duality brackets for the pair (L%*(X), L¥3(X*)),
we have for every n=1:

((xn; xn_ﬁ))o_l'((ﬁnla(xn): xn'—x\))oz((ﬁnfm xn"‘-’e))o- (4)
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From the integration by parts formula for functions in W(T) (see [15],
Prop. 23.23), we have:
(%n—%, ‘Xn'-ﬂe))o=(1/2)|xn(b)—f(b)l2
= (%, Xn—£))o=(1/2)| £2(b)—ZB)|*+((Z, xn—£))o —> 0 as n—co.

Also because ||x,lccr, my<M, for all n=1 and using hypothesis H(F)(3), we
have that {f,}..: is relatively weakly compact in L*(H). So we may assume
that f,— f in L%*(H). Hence we have:

((ﬁnfm xn_f))o=((fn’ xn—ﬁ;’:f))oz‘(fn, Xn— Aﬁf)m(m

=(fnr Xa—Z)2canr+(Fny 2— D) 12ca>
=(far =Dz +] (20, 20— pEEE)L.

But (fn, xa—£)12cr—0 and |£@)— pEi()| >0 (see [5], p. 258) as n—oo.
Therefore we have

(BPufny Xn—%))o—>0 as n—oo.
So from (4) above, we have that
HM((pnA(%n), Xn—%))=0.
Then we have:
(A(x2), 2= ENe=(A(%1), xo— £+ PEE—DPER)0
=((A(xn), PEE—ENo+(A(xn), Xa—PEEs
=((A(x,), pEE—ENe+((PrA(xr), Xn—£))o.

But recall that lim(($,A(x,), xn—£))y=0, {A(%.)}2: is bounded and || p%*£(?)
—£(@)||—0 as n—ooo=|| prLt— £l L2cx>—0. Thus we get

lim((A(x,), £n—%£))e=0.

Because of hypothesis H(A), A(-) is hemicontinuous, monotone, hence it has
property (M) (see [15], 583-584). So A(xn)— A(%) in L¥X*). Then for every
heL¥ X), we have (hnA(xn), h))e= (A(xn), PXh)e. Since A(x.)— A(%) in
L¥X*) and p*h—h in LX), we get that (h.A(x.), B)e—((A(%), b)) Because
heL*(X) was arbitrary, we deduce that p,A(x.)— A(£) in LAX*). Therefore

EntPal(xs) —> x+A(x) in LAX*)
and f,,—w+f in L*(H), hence in L% X*) too.
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So in the limit as n—oo, we get that

*O+AQ, xO)=f0) a.e..

3
Also since x,— x in L*H), by passing to a subsequence if necessary, we

may assume that xn(t)L x(¢) a.e.. Then applying of [117, we get
f@®) Econv w-im{f2(H)} n21 Sconv w-limF(¢, x,())

=Ccom{YEH: yn, = ¥, Y0, EF, x2,1), n1<ne< - <np<-++}  a.e..

On the other hand, using hypothesis H(F)(2), and since F(f, x) has closed,
convex values, we can easily check that cony w-limF(, x,t)S F(, £(%) a.e. =
fAEFt, £2@) a.e. 22(-)eW(T)—C(T, H) is the desired viable trajectory of (x).

Q.E.D.

4. Control systems

In this section, we use to establish the existence of trajectories
for a class of infinite dimensional, nonlinear feedback control systems, with
state constraints.

Let T=[0, b] and (X, H, X*) an evolution triple as in Section 3. The
system under consideration is the following:

2O+AQ, xO)=f(¢, x@®)u(t) a.e.,

x0)=x, €K< H,

(%)
xeK for all teT, u(t)eU(, x(t)) a.e.,

u(-)=measurable. -

We will need the following hypothesis on the control vector field f(z, x)u.
Here Y is a separable Banach space, modelling the control space. Also by
LY, H) we will denote the Banach space of bounded linear operators from Y
into H. ‘

H(f): f:TxK—-xL(,H)is a map s.t.
(1) t—f@, x)u is measurable for all (x, u)e KXY,
(2) x—f(t, x)* is continuous from K into L(H, Y*) with the strong
operator topology,
3) If¢, ollr<alt)+c|x| a.e. with- a(-)eL2, ¢>0.

Also we will assume the following about the control constraint multifunc-
tion. Denote by P,:.(Y) the family of nonempty, weakly compact and convex
subsets of Y.
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HU): U: TXH—-P,,.(Y) is a multifunction s.t.
1) &, x)»U(t, x) is graph measurable,
(2) x—-U(t, x) is u.s.c. from H into Y ,, where Y ,, denotes the Banach
space Y equipped with the weak topology,
3) U, x)&W a.e. with W& Py, (Y)
H:: for every x=K, there exists ucU(t, x) s.t. f(t, x)u—A@, x)=Tk(x) a.e..

Theorem 4.1. If hypotheses H(A), HK), H(f), HU) and H hold, then con-
trol system (xx) admuts a viable trajectory x(-)eW(T)—C(T, H).

Proof. Let F: TXH—P;.(H) be defined by
F@, x)=f, U, x)=U{f(t, ©)u: ucU(, x)}

(the orientor field of the control system (xx)).

Note that F(-, -) has in fact weakly-compact and convex values in H.
First we claim that (¢, x) - F(t, x) is graph measurable. Note that GrF =
Projramsxuilt, x, vy, W) ST XHXHXW : y=f(&, x)u, ucU(t, x)}. Because of hy-
pothesis H(f), for every ve H, the map (¢, x, u)— (v, f(t, x)u) is measurable in
t and continuous in (x, u) € HX W,, where W, denotes the relative weak
topology on WZY. Since W, is a compact, metrizable space (see , Theorem
3, p. 434), we have that (¢, x, u)—(u, f(¢, x)u) is measurable. Since v H was
arbitrary, Prop. 2.1 of [4], tells us that (¢, x, u)—f(¢, x)u is measurable on
TXHXW,. Also because of hypothesis H{U), GrU < B(T)X B(H)xX B(W). But
because Y is separable, B(W)=B(W,) (see for example [8], Cor, 2.4, p. 461).
So GrUeB(T)XB(H)X B(W ). Thus we finally have:

{¢t x, vy, W) €TXHXHXW : y=f(@, x)u, ucU({, x)}
EB(T)XB(H)XB(H)X B(W ).

Since W, is compact, metrizable, we can apply Lemma 2.2, p. 435 of [10],
to get that

projremxul{lt, x, ¥y, W) ETXHXHXW :: yef(t, x)u, ucU(t, x)}
eB(T)XB(H)x B(H)
= GrFeB(T)XB(H)X B(H)
= F(., -) is indeed graph measurable.

Next we will show that F(¢, -) is sequentially closed om H X H,. To this
end let [x,, y.1=GrF(, ), [xn, ¥21—[x, y] in HX H,. Then from the defini-
tion of the multifunction F(-, -), we know that there exist u,cU(t, x,)n=1
s.t. y.=f({, x,)u,. Because of hypothesis HU) and from Theorem 7.4.2 of
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[9], we have that U,..U(, x,) is relatively w-compact on Y. So by passing
w
to a subsequence if necessary, we may assume that u,—u. Then from hy-

pothesis H(f)(2), we get f(t, x,,)u,,—w>f(t, x)u in H=y=f(, x)u. Also because
of hypothesis HU)(2), we have ues U(t, x). Therefore [x, y] € GrF(t, -)=
GrF(, -) is sequentially closed in HX H,,.

Finally note that |F(t, x)|=sup{|y|: yeF{, x)} Sa@®)|W|+c|W||x| a.e.,
where |W|=sup{llully: ucW}.

Then consider the following multivalued viability problem :

2+ AE, x@)eF@, x@)) a.e.,
x(0)=x, K S H, ()’
xHekK, teT. »
We have just checked that ()’ satisfies the hypotheses of [Theorem 3.1.
So applying that result, we get a viable trajectory x(:)eW(T)— C(T, H).
Then let
R®)={ucU(, x@®): 2®O+AE, xO)=fE, x@)u}.

From the definition of F(¢, x(¢)), we know that R(t)+@ a.e., and by re-
defining it on a Lebesgue null subset of 7., we can have R()# @ for all tT.
Also

GrR={{t, w)eT XY : )+ AQ, x®)=f({t, x@)u}NGrU(-, x(-)).

Note that the function (¢, u)—%(t)+A(t, x(t))— f(t, x(¥))u is measurable in ¢,
continuous in u, hence jointly measurable. Thus {(t, u)eT XY : 2({)+ A, x(?))
=ft, x@)u} B(T)XBY). Also from hypothesis HU), GrU(-, x(-))€B(T)X
B(Y). Therefore GrReB(T)XB(Y). Apply Aumann’s selection theorem (see
[13], Theorem 5.10), to get u: T—Y measurable s.t. u(t)eR() for all tT.
Then
2O+ AR, x@))=f@, x@)u®) a.e.,

x(0)=x€K S H,
xekK, teT, u@t)eU(, x@) a.e.,

u(-)=measurable.

Thus x(:)eW(T)—C(T, H) is the desired viable trajectory of (¥x).
Q.E.D.
5. An example

In this section, we present an example of a parabolic distributed parameter
control system, illustrating the  applicability of our work.
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So let T=[0, ] and Z a bounded domain in R”, with boundary 0Z=I".
Let D,=d/0z;, i=1, ---, N and D*=D%..-Dg~y, where a=(ay, -+, an) are N-
tuples of nonnegative integers (multiindex) and |a|=2/,a; is the length of
the multi-index. Also let Np=(N+m)!/N!m! and let p(x)={D%x: |a|=m}.
The problem under consideration is the following:

B2 | 5 (DDA, 7, et =BG, 2, 1, Dutt ) on TXZ,

D'BxlTxFZO: Iﬁl.S_m—l.- JC(O, z)::xo(z) on Z’ ”x<t: ')“LZ(Z)ér: tET;

r<u(t, 2)=rt, zl|lx(t, )lilez) a.e., 7>0.
(*k*)

We will need the following hypotheses on the data of (x#x*):
H(A),: A,: TXZXR"n»—R are functions s.t.
1) &, 2)—A.t, z, p) is measurable,
(2) n—Aa, 2z, ) is continuous,
@) Siaism(Aalt, z, N)—Aut, 2, 7)) (Pa—7na)20 a.e,
@ |4t 2z, 9| Seut, D+a®lnl a.e., with e LT, LXZ)), e.€ L3,
(B) Ziaism Aalt, 2, PINazcalnl® a.e., ¢:>0.
H(B): B: TXZ—R is a function s.t.
(1) (¢, 2>—B(t, z, x) is measurable,
(2) x—B(t, z, x) is continuous,
3) |B(, z x)|<a(, z) a.e. with ac L=(T X Z).
H@y): ro: TXZXR,—R, is a function s.t.
(1) (&, z, v)—rot, 2z, v) is measurable,
(2) v—ort, 2z, v) is u.s.c.,
@) 7o, 2, V)0, 2) a.e., with = L>(TXZ).

Here X=H™Z), H=L*Z) and X*=HM™Z)*=H-™(Z). Then from the
Sobolev embedding theorem, we know that (X, H, X*) is an evolution triple,
with all embeddings being compact. Also let K =rBy={ve L¥Z): |v|=|vlie
<r}. From Prop. 8, p. 170 of [2] (see also [12], p. 961), we have for x<
HMZ):

H-™(Z) if  fxllecr<r
x(x)= {

fve H-™(Z): {x, waprwza-nuzn=0} if lxlzecr=r.

Consider the time varying Dirichlet form a: TX HMZ)X HMZ)— R defined
by a(, x, y)=2.aISmSZAa(t, z, N(x(2)D*y(2)dz, for x, yE H{(Z).
Using the Cauchy-Schwartz inequality, we get that

lat, x, M=l xllara|yara
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for some 7,>0. So there exists a generally nonlinear operator A: TXX-X*
defined by

A, x), y>=alt, x, ¥).

Then from Fubini’s theorem, we have that t— <A(t, x), y> is measurable
=t—A(t, x) is weakly measurable. But H ~™(Z) is a separable Hilbert space.
Thus from the Pettis measurability theorem, we deduce that t—A(t, x) is mea-
surable. Also using hypothesis H(A);,, we can easily check that x—A(, x) is
continuous, while from H(A),(5) we get that <A(t, x), x> Zc,l| x4 ca-

Next let Y=L*Z) (the control space) and U(t, x)={ucs L¥(Z): r<u(z)<r,

t, 2, |1 xllzez)}. Note that GrU={(t, x, w)eT x LXZ)X LXZ): TICI“ggcu(z)dz
égcro(t, 2, | %]l zecpr)dz for all C=B(Z)=the Borel g-field of Z, with |C|>0}

(here |C| denotes the Lebesgue measure of C). But recall that B(Z) is coun-
tably generated. So GrU<eB(T)XB(LXZ))X B(L¥Z)). Also let VEY=L*2Z)
be nonempty, w-closed and let Uy (V)= {xL¥Z)=H: U@, x)N\V+@}. We

claim that this last set is closed. Let x,cUz(V), x,,—s>x in H=L¥Z). Take
u,cU(, x,)N\V, n=1. Because of hypothesis H(r,)3) and by passing to a
subsequence, we may assume that u,—u in Y=L%Z). Then for all C&B(Z)
and by using hypothesis H(r,), we have

7IC1< | u@de<Tm rot, 2l xalisa)dz= | rult, 2, xlzc)dz

sSuceU(, x) and vV, since the latter is w-closed.
Hence xUz(V)=U7 (V) is closed =U(t, ) is u.s.c. from H=L*Z) into
Y w=L*Z),. Furthermore |U(¢t, x)| =sup{||u|recz>: ucU, x)} <8,8=[0(, )l
Next define F: T X L¥Z)—P,;.(L¥Z)) by

F(@, x)={yeL¥Z): y(2)=B(, z, x(2))u(z) a.e. with ucU(t, x)}.

Let B(t, x)(2)=B(, z, x(z)). Then F(t, x)=B(, x)U(t, x) and as in the proof

of [Theorem 4.1, we can check that F(-, -) is graph measurable, while F(, -)
is sequentially closed in LY Z)X L¥Z),. Also |F(t, x)|<]all«|f]~ a.e..

Then we can rewrite (xxx) in the following equivalent evolution inclusion
form. Assume that x,= L*Z), |xollzeczry 7.

@)+A@, x@))SF@, @) a.e.,
x(0)=%,=K S H,

(ke )’
xtek, teT, u@t)eU(, x(t) a.e.,

u(+-)=measurable.

We will make the following hypothesis:
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HY?: for every x(-)e HiMZ) with | x|.2cs>=7, we can find ucU(t, x) s.t.
ZB(t, z, x(2)u(z)x(z)dz<0 (sign condition).

Then given | x| z2czy=r, for this particular u, we will have
<B(t, x)u, x)<0
with B(t, x)(z)=B(t, z, %(2)), and so
(B(t, x)u—A(t, x), 2y —&llx|4pn<0
= B(t, x)u—A(, x)=Tx(x)
= [F(, x)— A, ©)INTx(x)#*D

for all (¢, x)&eTXHMZ), | x|L2czy=b. So we have satisfied hypotheses H(F)
and H,. Thus all hypotheses of have been verified, and we have:

Theorem 5.1. If hypotheses H(A),, H(B), H(r,) and H? hold, then problem
(xxx) admits a soluon x(-, -)eL¥T, HMZ)NC(T, LXZ)) with 0x/otc LXT,
H-™(Z)).
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