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Abstract. Kobayashi [6] has shown that if an almost hermitian manifold $B$

admits a Riemannian submersion $\pi$ : $M\rightarrow B$ of a CR-submanifold $M$ of a Kaehler
manifold $\overline{M}$, then $B$ is necessarily a Kaehler manifold. In this paper we
consider similar question for the CR-submanifolds of manifolds in different
classes of almost hermitian manifolds viz hermitian manifolds, quasi-Kaehler
manifolds, and nearly Kaehler manifolds.

1. Introduction

The study of the Riemannian submersion $\pi;M\rightarrow B$ of a Riemannian mani-
fold $M$ onto a Riemannian manifold $B$ is initiated by O’Neill [7]. A submersion
$\pi$ naturally gives rise to two distributions on $M$ called the horizontal and
vertical distributions respectively, of which the vertical distribution is always
integrable giving rise to the fibers of the submersion which are closed submani-
folds of M. Bejancu [1] introduced a special class of submanifolds of an almost
hermitian manifold which includes both the class of complex submanifolds as
well as the class of totally real submanifolds. These submanifolds of an almost
hermitian manifold $\overline{M}$ are known as CR-submanifolds. A CR-submanifold $M$

of an almost hermitian manifold $\overline{M}$ with almost complex structure $J$ requires
two orthogonal complementary distributions $D$ and $D^{\perp}$ defined on $M$ such
that $D$ is invariant under $J$ and $D^{\perp}$ is totally real (cf. [1], [2]). For a CR-
submanifold $M$ of a Kaehler manifold $\overline{M}$, the distribution $D^{\perp}$ is integrable [21.
Kobayashi [6] observed the similarity between the total space of submersion
$\pi;M\rightarrow B$ and the CR-submanifold $M$ of a Kaehler manifold $\overline{M}$ in terms of the
distributions. Thus he considered the submersion $\pi;M\rightarrow B$ of a CR-submani-
fold $M$ of a Kaehler manifold $\overline{M}$ onto an almost hermitian manifold $B$ such
that the distributions $D$ and $D^{\perp}$ of the CR-submanifold structure of $M$ become
respectively the horizontal and vertical distributions required by the submersion
$\pi$ and $\pi$ restricted to $D$ becomes an isometry which preserves the complex
structures, that is, $J^{\prime_{Q}}\pi_{*}=\pi_{*}\circ J$ on $D$ , where $J$ and $J^{\prime}$ are the complex struc-
tures of $\overline{M}$ and $B$ respectively. He has shown that under this situation $B$ is
necessarily a Kaehler manifold and obtained the relation between the holo-
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morphic sectional curvatures of $\overline{M}$ restricted to $D$ and those of $B$ .
To deal with the similar question for the CR-submanifolds of the manifolds

in other classes of almost hermitian manifolds one has the difficulty that the
distribution $D^{\perp}$ for these CR-submanifolds are not necessarily integrable to
match the requirement of the submersion. To overcome this we have to have
the submersions $\pi;M\rightarrow B$ of CR-submanifolds $M$ with integrable $D^{\perp}$ onto an
almost hermitian manifold $B$ . This additional assumption will be worth pro-
vided that does not render the ambient almost hermitian manifold $\overline{M}$ into a
Kaehler manifold. Fortunately it works, for, a real hypersurface in $S^{6}$ (which
is a nearly Kaehler manifold) is a 5-dimensional CR-submanifold with $D^{\perp}$ a 1-
dimensional distribution which is integrable and yet $S^{6}$ is not a Kaehler manifold
(cf. [5]). In the present paper we study the submersions of CR-submanifolds with
integrable totally real distribution $D^{\perp}$ of a hermitian manifold, a quasi-Kaehler
manifold and a nearly Kaehler manifold onto an almost hermitian manifold and
in fact, it is shown that Kobayashi’s result can be deduced immediately from
our results. In addition we also study the effect of these submersions on the
topology of the CR-submanifolds. Lastly for the submersion $\pi;M\rightarrow B$ of a CR-
submanifold $M$ of $S^{6}$ onto an almost hermitian manifold $B$ , it is shown that $B$

is a 4-dimensional Kaehler manifold.

2. Preliminaries

Let $\overline{M}$ be a $2n$ -dimensional Riemannian manifold with Rimannian metric $g$ .
If there exists an almost complex structure $J$ on $\overline{M}$ which is compatible with
the metric, that is, it satisfies

$g(JX, JY)=g(X, Y)$ , $X,$ $Y\in\chi(\overline{M})$ ,

then $\overline{M}$ is called an almost hermitian manifold, where $\chi(\overline{M})$ is the Lie algebra
of vector fields on $\overline{M}$ . The Nijenhuis torsion $N$ for an almost hermitian mani-
fold $\overline{M}$ is defined by

(2.1) $N(X, Y)=[JX, JY]-[X, Y]-J[X, JY]-J[JX, Y]$ , $X,$ $Y\in\chi(\overline{M})$ .
If $N\equiv 0$ on an almost hermitian manifold, then it is called a hermitian

manifold. Let $\nabla$ be the Riemannian connection on the almost hermitian mani-
fold $\overline{M}$ . If the almost complex structure $J$ on almost hermitian manifold $\overline{M}$

satisfies

(2.2) $(\nabla_{X}J)(Y)+(\nabla_{JX}J)(JY)=0$ $X,$ $Y\in\chi(\overline{M})$ ,

then $\overline{M}$ is called a quasi-Kaehler manifold, and if it satisfies

(2.3) $(\nabla_{X}J)(X)=0$ , $X\in\chi(\overline{M})$ ,
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then it is called a nearly Kaehler manifold. Further if on an almost hermitian
manifold $\overline{M}$ we have

(2.4) $(\overline{\nabla}_{X}J)(Y)=0$ , $X,$ $Y\in\chi(\overline{M})$ ,

then $\overline{M}$ is called a Kahler manifold. The Kaehler structure is richer than all
the above structures, for it can be easily verified that (2.4) implies $N\equiv 0,$ $(2.2)$

and (2.3). However, there are examples showing that the converse is not true.
The tensor field $J$ on an almost hermitian manifold $\overline{M}$ is skew-symmetric

and as such for any unit vector Peld $X$ on $\overline{M}$, {X, $JX$ } span a plane section
and this gives rise to a sectional curvature $H(X)$ called the holomorphic sec-
tional curvature.

Let $M$ be an m-dimensional submanifold of an almost hermitian manifold
$\overline{M}$ . If there exist two orthogonal complementary distributions $D$ and $D^{\perp}$ on $M$

satisfying $JD=D$ and $ JD^{\perp}\subset\nu$ , where $J$ is the almost complex structure on $\overline{M}$

and $\nu$ is the normal bundle of $M$, then $M$ is called a CR-submanifold of $\overline{M}$ (cf.
[1]). We denote by the same letter $g$ the induced metric on $M$. The Rie-
mannian connection V on $\overline{M}$ gives rise to the induced Riemannian connectiin $\nabla$

on $M$ and a connection $\nabla^{\perp}$ in the normal bundle $\nu$ and they are related by

(2.5) $5_{X}Y=\nabla_{X}Y+h(X, Y)$ , $X,$ $Y\in\chi(M)$ ,

(2.6) $5_{X}N=-\overline{A}_{N}X+\nabla_{X}^{\perp}N$ , $X\in\chi(M),$ $ N\in\nu$ ,

where $h$ is the second fundamental form and $AN$ is the Weingarten map and
they are related by $g(h(X, Y),$ $N$) $=g(\overline{A}_{N}X, Y),$ $X,$ $Y\in\chi(M)$ . The curvature
tensor $R$ of the submanifold $M$ is related to the curvature tensor $\overline{R}$ of $\overline{M}$ by
the following Gauss formula

(2.7) $R(X, Y ; Z, W)=\overline{R}(X, Y ; Z, W)+g(h(Y, Z),$ $h(X, W))$

$-g(h(X, Z),$ $h(Y, W))$ for $X,$ $Y,$ $Z,$ $W\in\chi(M)$ .
For the theory of submersions $\pi;M\rightarrow B$ of a Riemannian manifold $M$ onto

a Riemannian manifold $B$ we follow [7]. We now state the definition for the
submersion of a CR-submanifold of an almost hermitian manifold onto an almost
hermitian manifold (cf. [6]).

Definition 2.1. Let $M$ be a CR-submanifold of an almost hermitian manifold
$\overline{M}$ with distributions $D$ and $D^{\perp}$ and the normal bundle $\nu$ . By a submersion
$\pi;M\rightarrow B$ of $M$ onto an almost hermitian manifold $B$ we mean a Riemannian
submersion $\pi;M\rightarrow B$ together with the following conditions:

(i) $D^{\perp}$ is the kernel of $\pi_{*}$ , that is, $\pi_{*}D^{\perp}=\{0\}$ ,
(ii) $\pi_{*}D_{p}^{\perp}=T_{\pi(p)}B$ is complex isometry, where $p\in M$ and $T_{\pi(p)}B$ is the

tangent space of $B$ at $\pi(p)$ ,
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(iii) $J$ interchanges $D^{\perp}$ and $\nu$ , that is, $ JD^{\perp}=\nu$ .
Naturally the above definition puts restrictions on the dimension of $\overline{M}$,

namely we should have dim $\overline{M}=\dim D+2$ dim $D^{\perp}$ . We recall that a vector field
$X\in\chi(M)$ for this submersion $\pi;M\rightarrow B$ is said to be basic vector field if $X\in D$

and $X$ is $\pi$ related to a vector field on $B$ , that is, there exists a vector $x_{*}$ on
$B$ such that $(\pi_{*}X)_{p}=X_{*\cdot(p)}$ for each $p\in M$ (cf. [7]). We have the following
lemma for basic vector fields [7].

Lemma 2.1. Let $X$ and $Y$ be basic vector fields on M. Then
(i) $g(X, Y)=g_{*}(X_{*}, Y_{*})\circ\pi,$ $g$ is the metric on $M$ and $g_{*}$ is the Riemannian
metric on $B$ .
(ii) The horizontal part $\ovalbox{\tt\small REJECT}[X, Y]$ of [X, $Y$ ] is a basic vector field and corre-
sponds to $[X_{*}, Y_{*}]$ , that is $\pi_{*}3[[X, Y]=[X_{*}, Y_{*}]\circ\pi$ ,
(iii) [V, $X$] $\in D^{\perp},$ $V\in D^{\perp}$ ,
(iv) $\ovalbox{\tt\small REJECT}(\nabla_{Y}Y)$ is basic vector field correspondjng to $\nabla_{X*}^{*}Y_{*}$ , where $\nabla^{*}$ is the Rie-
mannian connection on $B$ .

Set
$\tilde{\nabla}_{X}^{*}Y=\ovalbox{\tt\small REJECT}(\nabla_{X}Y)$ , $X,$ $Y\in D$ ,

then $\tilde{\nabla}_{X}^{*}Y$ is the basic vector field and from above lemma we have

(2.8) $\pi_{*}(\theta_{X}^{*}Y)=\nabla_{X*}^{*}Y_{*}\circ\pi$ .
Define a tensor field $C$ on $M$ by setting

(2.9) $\nabla_{X}Y=\tilde{\nabla}_{X}^{*}Y+C(X, Y)$ , $X,$ $Y\in D$ ,

that is, $C(X, Y)$ is the vertical component $\subset\nu(\nabla_{X}Y)$ of $\nabla_{X}Y$ . The tensor field
$C$ is known to be a skew-symmetric and it satisfies

(2.10) $C(X, Y)=\frac{1}{2}\subset V[X, Y]$ , $X,$ $Y\in D$ .

Also, for $X\in D$ and $V\in D^{\perp}$ define an operatorA on $M$ by setting $\nabla_{X}V=$

$\subset V(\nabla_{X}V)+A_{X}V$ , that is, $A_{X}V$ is the horizontal component of $\nabla_{X}V$ . Since by
Lemma 2.1 [V, $X$] $\in D^{\perp}$ for $X\in D$ and $V\in D^{\perp}$ we have

(2.11) $\ovalbox{\tt\small REJECT}(\nabla_{X}V)=\ovalbox{\tt\small REJECT}(\nabla_{V}X)=A_{X}V$ .
The operators $C$ and $A$ are related by

(2.12) $g(A_{X}V, Y)=-g(V, C(X, Y))$ , $X,$ $Y\in D,$ $V\in D^{\perp}$ .
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3. Submersions of CR-submanifolds of hermitian manifolds

Let $M$ be a CR-submanifold of a hermitian manifold $\overline{M}$ and $\pi:M\rightarrow B$ be
its submersion on an almost hermitian manifold $B$ as described in Definition
2.1. If $J$ and $J^{\prime}$ are the almost complex structures on $\overline{M}$ and $B$ respectively,
then from (ii) in Definition 2.1 we have $\pi_{*\circ}J=J^{\prime}\circ\pi_{*}$ on $D$ . This together with
(ii) in Lemma 2.1 and the definition of Nijenhuis torsion gives immediately
$N^{\prime}(X_{*}, Y_{*})=0,$ $X_{*},$ $Y_{*}\in\chi(B)$ , where $N^{\prime}$ is the Nijenhuis torsion for almost
complex structure $J^{\prime}$ on $B$ . Thus we have

Theorem 3.1. Let $\pi:M\rightarrow B$ be a submersion of a CR-submanifold $M$ of a
hermitian manifold $\overline{M}$ onto an almost hermitian manifold B. Then $B$ is a her-
mitian manifold.

We recall that on a Riemannian manifold $M$ a distribution $S$ is said to be
parallel if $\nabla_{X}Y\in S$ , $X,$ $Y\in S$ , where $\nabla$ is the Riemannian connection on $M$.
From the definition of a Riemannian submersion $\pi:M\rightarrow B$ of a Riemannian
manifold $M$ onto a Riemannian manifold $B$ , it follows that the vertical distri-
bution is always integrable and its integral submanifolds are the fibers [7]. If
in addition $D^{\perp}$ is parallel, then we prove

Proposition3.1. Let $\pi;M\rightarrow B$ be a submersion of a connected, comPlete and
simply connected CR-submanifold $M$ of a hermitian manifold $\overline{M}$ onto an almost
hermitian manifold B. If $D$ is integrable and $D^{\perp}is$ Parallel, then $M$ is the
Riemannian product $M_{1}xM_{2}$ , where $M_{1}$ is an invariant submanifold and $M_{2}$ is a
totally real submanifold of $\overline{M}$ .

Proof. Since $D$ is integrable for $X,$ $Y\in D$ , we have $\subset \mathcal{V}[X, Y]=0$ . Then
from equation (2.10), we have $C(X, Y)=0,$ $X,$ $Y\in D$ . Thus from the definition
of $C$ we have $\nabla_{X}Y=\tilde{\nabla}_{X}^{*}Y\in D$ , that is, $D$ is parallel. Since $D$ and $D^{\perp}$ are both
parallel by de Rham’s Theorem $M$ is the product $M_{1}\times M_{2}$ , where $M_{1}$ is integral
submanifold of $D$ and $M_{f}$ that of $D^{\perp}$ . From the properties of $D$ and $D^{\perp}$ it
follows that $M_{1}$ is invariant submanifold of $\overline{M}$ and $M_{2}$ is totally real submani-
fold of $\overline{M}$ .

Next we discuss how the submersion $\pi;M\rightarrow B$ of a CR-submanifold $M$ with
integrable $D$ effects the topology of $M$. Let $M$ be a CR-submanifold of a her-
mitian manifold $\overline{M}$ with almost complex structure $J$ . Assume that dim $D=2p$

and dim $M=m$ . We choose a local orthonormal frame { $e_{1},$ $\cdots$ , $e_{p},$ $Je_{1},$ $\cdots$ , $Je_{p}$ ,
$e_{2p+1},$ $\cdots$ , $e_{m}$ } on $M$ such that $\{e_{1}, \cdots , e_{p}, Je_{1}, \cdots , Je_{p}\}$ is a local orthonormal
frame of $D$ and $\{e_{2p+1}, \cdots , e_{m}\}$ is that of $D^{\perp}$ . Let $\{\omega^{1}, \cdots , \omega^{2p}, \omega^{2p+1}, \cdots , \omega^{m}\}$

be the dual frame of l-forms to the above local orthonormal frame. Define a



50 S. DESHMUKH, ET AL.

$2p$ -form $\Omega$ on $M$ by

(3.1) $\Omega=\omega^{1}\wedge\cdots\wedge\omega^{2p}$ ,

then it can be easily shown that this $2p$-form $\Omega$ is independent of the choice
of the frame $\{e_{1}, \cdots , e_{p}, Je_{1}, \cdots , Je_{p}\}$ and is globally defined on $M$.

Deflnition 3.1. Let $S$ be a q-dimensional distribution on a Riemannian
manifold $M$. If $\Sigma_{i=1}^{q}\nabla_{e\ell}e_{\ell}\in S$ , then the distribution $S$ is said to be minimal,
where $\nabla$ is the Riemannian connection on $M$ and $\{e_{1}, \cdots , e_{q}\}$ is a local ortho-
normal frame of $S$ .

Theorem 3.2. Let $\overline{M}$ be a hermitian manifold and $M$ be a closed CR-sub-
manifold of $\overline{M}$ with integrable D. Let $B$ be an almost hermitian manifold and
$\pi;M\rightarrow B$ a submersion. Then the $2p$-form $\Omega$ is closed which defines a canonical
de Rham cohomology class $[\Omega]\in H^{sp}(M, R)$ , where 2$ p=\dim$ D. Moreover the
cohomology group $H^{\epsilon p}(M, R)$ is non-trivial if $D^{\perp}is$ minimal.

Proof. From definition (3.1) of $\Omega$ , we have

$ d\Omega=\Sigma_{\ell=1}^{2p}(-1)^{\ell-1}\omega^{1}\wedge\cdots\wedge d\omega^{\ell}A\ldots$ A $\omega^{2p}$ .
From above equation it follows that $d\Omega=0$ if and only if

(3.2) $d\Omega(Z, W, E_{1}, \cdots , E_{2p-1})=0$ and $d\Omega(Z, E_{1}, \cdots , E_{2p})=0$ ,

for $Z,$ $W\in D^{\perp}$ and $E_{1},$ $\cdots$ , $E_{2},\in D$ . Choosing the vectors $E_{1},$ $\cdots$ , $E_{2p}\in D$ as a
local orthonormal frame $\{e_{1}, \cdots , e_{p}, Je_{1}, \cdots , Je_{p}\}$ of $D$ to which $\{\omega^{1}, \cdots , \omega^{2p}\}$

works as dual frame of l-forms, we get by a straightforward computation that
the first equation in (3.2) holds if and only if $D^{\perp}$ is integrable; and the second
equation in (3.2) holds if and only if $D$ is minimal. However, from the defini-
tion of submersion it follows that $D^{\perp}$ is integrable. The hypothesis of theorem
gives that $D$ is integrable and this together with the proof of Proposition 3.1
gives that $D$ is minimal. Hence the form $\Omega$ is closed, and it defines a de Rham
cohomology class $[\Omega]$ in $H^{2p}(M, R)$ .

Now suppose $D^{\perp}$ is minimal and we proceed to show that in this case
$H^{2p}(M, R)\neq 0$ . To accomplish this we show that the form $\Omega$ is harmonic which
would then make the cohomology class $[\Omega]$ non-trivial. Define a $(m-2p)$-form
$\Omega^{\perp}$ on $M$ by setting

$\Omega^{\perp}=\omega^{2p+1}\Lambda\ldots\wedge\omega^{m}$

where $\{\omega^{2p+1}, \cdots , \omega^{m}\}$ is dual frame to the local orthonormal frame $\{e_{2p+1}, \cdots, e_{m}\}$

of $D^{\perp}$ . Then with the similar argument for $\Omega$ , it follows that $d\Omega^{\perp}=0$ if $D$ is
integrable and $D^{\perp}$ is minimal. Since both conditions are met, we have $d\Omega^{\perp}=0$ .
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This proves that the $2p$ -form $\Omega$ is co-closed, that is $\delta\Omega=0$ . Since $d\Omega=\delta\Omega=0$

and $M$ is a closed submanifold, we get that $\Omega$ is a harmonic $2p$-form; and this
completes the proof.

4. Submersion of CR-submanifolds of quasi-Kaehler manifolds

Let $M$ be a CR-submanifold of a quasi-Kaehler manifold $\overline{M}$ . First we prove
the following lemma.

Lemma 4.1. Let $M$ be a CR-submanifold of a quasi-Kaehler manifold $\overline{M}$ .
If the horizontal distribution $D$ is integrable, then

$h(X, JY)=h(JX, Y)$ , $X,$ $Y\in D$ .
Proof. For $X,$ $Y\in D$ , we have

$J[JX, JY]=J\nabla_{JX}JY-JF_{JY}JX=-(\overline{\nabla}_{JX}J)(JY)-\nabla_{JX}Y+(\nabla_{JY}J)(JX)+\nabla_{JY}X$.
Using equations (2.2) and (2.5) in above equation we obtain

$J[JX, JY]=\nabla_{X}JY+h(X, JY)-J\nabla_{X}Y-\nabla_{JX}Y-h(JX, Y)$

$-\nabla_{Y}JX-h(Y, JX)+J\overline{\nabla}_{Y}X+\nabla_{JY}X+h(JY, X)$ ,
which gives

$J[JX, JY]+J[X, Y]=\nabla_{X}JY-\nabla_{Y}JX+\nabla_{JY}X-\nabla_{JX}Y+2(h(X, JY)-h(JX, Y))$

since $D$ is integrable the terms on the left hand side are tangential to $M$,
equating normal components in the above equation we get $h(X, JY)=h(JX, Y)$ ,
$X,$ $Y\in D$ , which proves the Lemma.

Theorem 4.1. Let $\overline{M}$ be a quasi-Kaehler manifold and $M$ be a CR-submani-
fold of M. Let $B$ be an almost hermitian manifold and $\pi:M\rightarrow B$ a submersion.
Then $B$ is a quasi-Kaehler manifold.

Proof. Let $X,$ $Y\in D$ be the basic vector fields. From equations (2.5) and
(2.9), we have

$\overline{\nabla}_{XY}=\tilde{\nabla}_{X}^{*}Y+C(X, Y)+h(X, Y)$ .
Using this relation in $(\overline{\nabla}_{X}J)(Y)+(\nabla_{JX}J)(JY)=0$ , we obtain

$\tilde{\nabla}_{X}^{*}JY-\tilde{\nabla}_{JX}^{*}Y-J\tilde{\nabla}_{X}^{*}Y-J\tilde{\nabla}_{JX}^{*}JY+(C(X, JY)-C(JX, Y))+(h(X, JY)$

$-h(JX, Y))-J(C(X, Y)+C(JX, JY))-J(h(X, Y)+h(JX, JY))=0$ ,

where $J$ is the almost complex structure on $\overline{M}$ . Equating horizontal vertical
and normal components in above equation we get
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(4.1) $\tilde{\nabla}_{X}^{*}JY-\tilde{\nabla}_{JX}^{*}Y-J\tilde{\nabla}_{X}^{*}Y-J\tilde{\nabla}_{JX}^{*}JY=0$ ,

(4.2) $C(X, JY)-C(JX, Y)=J(h(X, Y)+h(JX, JY))$ ,

$J(C(X, Y)+C(JX, JY))=h(X, JY)-h(JX, Y)$ .

Operating $\pi_{*}$ on the equation (4.1) to project it down on $B$ and using $I_{\lrcorner}emma$

2.1 together with the equation (2.8), we get

$(\nabla_{X*}^{*}J^{\prime})(Y_{*})+(\nabla_{JX*}^{*\prime}J^{\prime})(J^{\prime}Y_{*})=0$ , $X_{*},$ $Y_{*}\in\chi(B)$

where $\pi_{*}X=X_{*}$ and $\pi_{*}Y=Y_{*}$ and $J^{\prime}$ is the almost complex structure on $B$ .
This proves that $B$ is a quasi-Kaehler manifold.

Remark. In the latter half of the Kobayashi’s result [6] on the submer-
sion $\pi;M\rightarrow B$ of a CR-submanifold $M$ of a Kaehler manifold $\overline{M}$ onto an almost
hermitian manifold $B$ , he obtained the following relation

(4.3) $\overline{H}(X)=H^{*}(X_{*})-4\Vert h(X, X)\Vert^{2}$ $X\in D,$ $\Vert X\Vert=1$ ,

where $\overline{H}$ and $H^{*}$ are holomorphic sectional curvatures of $\overline{M}$ and $B$ respectively,
$\pi_{*}X=X_{*}$ and $D$ is the horizontal distribution. However we could not decide
whether the relation (4.3) holds in general for the submersion $\pi:M\rightarrow B$ of a
CR-submanifold $M$ of a quasi-Kaehler manifold $\overline{M}$ onto an almost hermitian
manifold $B$ , and instead obtain relation (4.5) (see below) for this situation. For
this first we observe that using equations (2.8), (2.9), (2.10), (2.11) and (2.12)

together with Lemma 2.1, after a straightforward computation we obtain

(4.4) $R(X, Y;Z, W)=R^{*}(X_{*}, Y_{*} ; Z_{*}, W.)-g(C(Y, Z),$ $C(X, W))$

$+g(C(X, Z),$ $C(Y, W))+2g(C(X, Y),$ $C(Z, W))$ , $X,$ $Y,$ $Z,$ $W\in D$ ,

where $R$ and $R^{*}$ are curvature tensors of $M$ and $B$ respectively and $\pi_{*}X=X_{*}$ ,
$\pi_{*}Y=Y_{*},$ $\pi_{*}Z=Z_{*}$ and $\pi_{*}W=W_{*}\in B$ . Then using equation (2.7) and the fact
that $C$ is skew symmetric in above equation we get

(4.5) $\overline{H}(X)=H^{*}(X_{*})+\Vert h(X, JX)\Vert^{2}-g(h(JX, JX),$ $h(X, X))-3\Vert C(X, JX)\Vert^{2}$ ,

where $\overline{H}(X)=\overline{R}(X, JX;JX, X)$ and $H^{*}(X_{*})=R^{*}(X_{*}, J^{\prime}X_{*} ; J^{\prime}X_{*}, x_{*})$ are the
holomorphic sectional curvatures of $\overline{M}$ and $B$ respectively.

However if we assume that the horizontal distribution $D$ is integrable, we
have the following corollary comparing the holomorphic sectional curvatures of
$\overline{M}$ and $B$ . Recall that a CR-submanifold $M$ of an almost hermitian manifold
$\overline{M}$ is said to be D-totally geodesic if $h(X, Y)=0,$ $X,$ $Y\in D$ .

Corollary 4.1. Let $\overline{M}$ be a quasi-Kaehler manifold and $M$ be a CR-submani-
fold of $\overline{M}$ with integrable D. Let $B$ be an almost hermitian manifold and
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$\pi;M\rightarrow B$ a submersion. Then the holomorPfuc sectional curvatures $\overline{H}$ and $H^{*}$ of
$\overline{M}$ and $B$ respectjvely satisfy

$\overline{H}(X)\geqq H^{*}(X_{*})$ , $X\in D$ , $\Vert X\Vert=1$ , $\pi_{*}X=X_{*}$ ,

and the equality holds if and only if $M$ is D-totally geodesic.

Proof. Since $D$ is integrable by Lemma 4.1, we have $h(X, X)=-h(JX, JX)$ .
Then taking $Y=X$ in first equation of (4.2) we get $C(X, JX)=0$ . Thus the
equation (4.5) gives,

$\overline{H}(X)=H^{*}(X_{*})+\Vert h(X, JX)\Vert^{2}+\Vert h(X, X)\Vert^{2}$ , $X\in D,$ $\Vert X\Vert=1$ .

This proves that $\overline{H}(X)\geqq H^{*}(X_{*})$ with the equality holding if and only if $h(X, X)$

$=0$ and $h(X, JX)=0,$ $X\in D$ , $\Vert X\Vert=1$ . From $h(X, X)=0,$ $X\in D,$ $\Vert X\Vert=1$ and
linearity of $h$ it follows immediately that $h(X, Y)=0,$ $X,$ $Y\in D$ and proves that
$M$ is D-totally geodesic.

5. Submersions of CR-submanifolds of nearly Kaehler manifolds

Let $\overline{M}$ be a nearly Kaehler manifold with almost complex structure $J$ . Then
on $\overline{M}$ the equation (2.3) can be equivalently written as

(5.1) $(\nabla_{X}J)(Y)+(\nabla_{Y}J)(X)=0$ , $X,$ $Y\in\chi(\overline{M})$ .
Also using (5.1), we can immediately show that on a nearly Kaehler manifold
$\overline{M}$, we have

(5.2) $(\nabla_{X}J)(JY)=-J(\nabla_{X}J)(Y)$ and $(\nabla_{JX}J)(Y)=-J(\nabla_{X}J)(Y)$ , $X,$ $Y\in\chi(\overline{M})$ .

Thus using (5.1), we find that

$(\nabla_{JX}J)(JY)+(\nabla_{X}J)(Y)=-(\nabla_{X}J)(Y)+(\nabla_{X}J)(Y)=0$ ,

that is, a nearly Kaehler manifold is a quasi-Kaehler manifold. We state the
following lemma which describes how far is the nearly Kaehler manifold from
being a Kaehler manifold.

Lemma 5.1. Let $\overline{M}$ be a nearly Kaehler manifold. If the Nijenhuis torsion
for $\overline{M}$ is zero, then $M$ is a Kaehler manifold.

Proof. The equation (2.1) can be immediately made into

$N(X, Y)=J(\nabla_{JX}J)(JY)-J(\nabla_{JY}J)(JX)+(\nabla_{X}J)(JY)-(\nabla_{Y}J)(JX)$ , $X,$ $Y\in\chi(\overline{M})$ .
Since $\overline{M}$ is a nearly Kaehler manifold, it is quasi-Kaehler manifold and thus
using equations (5.1), (5.2) and (2.2), we get $N(X, Y)=-4J(\nabla_{X}J)(Y)$ . This
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proves that if $N(X, Y)=0$ , then $\overline{M}$ is a Kaehler manifold.

It is known that the six-dimensional sphere $S^{6}$ considered as sphere in the
space of purely imaginary Cayley numbers admits an almost complex structure
making $S^{6}$ an almost hermitian manifold which is nearly Kaehler but not a
Kaehler manifold. Also the only complete and simply connected 6-dimensional
nearly Kaehler manifold of constant holomorphic sectional curvature which is
not Kaehler is $S^{6}$ . Next we prove

Theorem 5.1. Let $\overline{M}$ be a nearly Kaehler manifold and $M$ be a CR-submani-
fold of M. Let $B$ be an almost hermitian manifold and $\pi:M\rightarrow B$ a submersion.
Then $B$ is a nearly Kaehler manifold. If $\overline{H}$ and $H^{*}$ are the holomorphjc sec-
tional curvatures of $\overline{M}$ and $B$ resPectively, then

$\overline{H}(X)=H^{*}(X_{*})-4\Vert h(X, X)\Vert^{2}$ , $X\in D,$ $\Vert X\Vert=1$ ,

where $\pi_{*}X=X_{*}$ and $D$ is the horizontal distribution.

Proof. Let $X\in D$ be a basic vector field with $\pi_{*}X=X_{*}\in\chi(B)$ , then from
(2.5) and definition of tensor $C$ , we have

$5_{X}JX=\tilde{\nabla}_{X}^{*}JX+C(X, JX)+h(X, JX)$

and
$J\overline{\nabla}_{X}X=J\tilde{\nabla}_{X}^{*}X+JC(X, X)+Jh(X, X)$ .

Using (2.3) and equating horizontal vertical and normal components we get
$\tilde{\nabla}_{X}^{*}JX=J\tilde{\nabla}_{X}^{*}X,$ $C(X, JX)=Jh(X, X)$ and $JC(X, X)=h(X, JX)$ . Operating $\pi_{*}$

on the first equation we get $(\nabla_{X*}^{*}J^{\prime})(X_{*})=0,$ $X_{*}\in\chi(B)$ , that is, $B$ is a nearly
Kaehler manifold. The rest of the proof follows using $C(X, JX)=Jh(X, X)$

and $h(X, JX)=JC(X, X)=0$ in the equation (4.5).

As a particular case of above theorem we have the following corollary
which is essentially the result of Kobayashi [6].

Corollary 5.1. Let $\overline{M}$ be a Kaehler manifold and $M$ be a CR-submanifold
of M. Let $B$ be an almost hermitian manifold and $\pi;M\rightarrow B$ a submersion. Then
$B$ is a Kaehler manifold. If $\overline{H}$ and $H^{*}$ are the holomorphic sectional curvatures
of $\overline{M}$ and $B$ respectively, then

$\overline{H}(X)=H^{*}(X_{*})-4\Vert h(X, X)\Vert^{2}$ , $X\in D,$ $\Vert X\Vert=1$ ,

where $\pi_{*}X=X_{*}$ and $D$ is the horizontal distribution.

Proof. Since $\overline{M}$ is a nearly Kaehler manifold with vanishing Nijenbuis
torsion. From Theorems 3.1 and 5.1 it follows that $B$ is a nearly Kaehler
manifold with vanishing Nijenhuis torsion; and the corollary follows from



SUBMERSIONS OF CR-SUBMANIFOLDS 55

Lemma 5.1 and Theorem 5.1.

We also have the $2p$-form $\Omega$ defined on the CR-submanifold $M$ of a nearly

Kaehler manifold $\overline{M}$ as in equation (3.1) for a CR-submanifold of a hermitian
manifold. Next we have the following

Theorem 5.2. Let $\overline{M}$ be a nearly Kaehler manifold and $M$ be a closed CR-
submanifold of M. Let $B$ be an almost hermitian manifold and $\pi;M\rightarrow B$ a sub-
mersion. Then the $2p$-form $\Omega$ is closed which defines a canonical de Rham co-
homology class $[\Omega]$ in $H^{2p}(M, R)$ , where $2p=\dim D$ the horizontal distribution.
Moreover the cohomology grouP $H^{2p}(M, R)$ is non-trivial if $D$ is integrable and
the vertical distributor $D^{\perp}is$ minimal.

Proof. The second part of the theorem follows exactly parallel to Theo-
rem 3.2. To prove the first part it is again similar to that of Theorem 3.2,
except in this case we have to show that $D$ is minimal (for this follows directly

in Theorem 3.2 owing to the integrability of $D$). Since $\overline{M}$ is also a quasi-
Kaehler manifold, replacing $Y$ by $JX,$ $X\in D$ in equation (2.2), we get

$\nabla_{X}X+\nabla_{JX}JX=h(X, X)+h(JX, JX)-J[JX, X]=0$ , $X\in D$ .

Taking inner product with $Z\in D^{\perp}$ in above equation we get $g(\nabla_{X}X+\nabla_{JX}JX, Z)$

$=0$ , that is, $\nabla_{X}X+\nabla_{JX}JX\in D$ . Since we can choose a local orthonormal frame
$\{e_{1}, \cdots , e_{p}, Je_{1}, \cdots , Je_{p}\}$ for $D$ , we get that $D$ is minimal.

Theorem 5.3. Let $M$ be a CR-submanifold of the nearly Kaehler $S^{6}$ and $B$

an almost hermitian manifold. If $\pi:M\rightarrow B$ is a submersion, then $B$ is a 4-
dimensional Kaehler manifold and the horizontal distribution is not integrable.

Proof. Since dim $M<6$ , we have either dim $D=2$ or dim $D=4$ . First we
show that dim $D=2$ cannot occur. For this suppose dim $D=2$ . Then from de-
finition we have $D^{\perp}$ is integrable and $ JD=\nu$ and thus dim $D^{\perp}=2$ , that is, $M$ is
a 4-dimensional CR-submanifold. For $X\in D$ , we have $(\overline{\nabla}_{X}J)(X)=0$ and $(\overline{\nabla}_{X}J)(JX)$

$=-J(\nabla_{X}J)(X)=0$ . Since a local frame of $D$ is of the form {X, $JX$ }, it follows
that

(5.3) $(\overline{\nabla}_{X}J)(Y)=0$ , $X,$ $Y\in D$ .
Next consider a local orthonormal frame $\{e_{1}, e_{2}\}$ for $D^{\perp}$ , then $\{Je_{1}, Je_{2}\}$ is local
orthonormal frame of normals. Since the operator $\overline{\nabla}_{Z}J$ is skew-symmetric,
using equation (5.1) we get

$g((5_{e_{1}}J)(e_{2}), e_{1})=0$ , $g((\nabla_{e_{1}}J)(e_{2}), e_{2})=0$ ,

$g((F_{e_{1}}J)(e_{2}), Je_{1})=0$ , $g((\nabla_{e_{1}}J)(e_{2}), Je_{2})=0$ .
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Hence we have $(\nabla_{e_{1}}J)(e_{2})\in D$ . Thus we can verify that

(5.4) $(\nabla_{Z}J)(W)\in D$ , $Z,$ $W\in D^{\perp}$ .
Now for $Z,$ $W\in D^{\perp}$ , using (2.5) and (2.6), we have

(5.5) $J[Z, W]=-2(\nabla_{Z}J)(W)+\overline{A}_{JZ}W-\overline{A}_{JW}Z+\nabla_{Z}^{\perp}JW-\nabla_{W}^{\perp}JZ$ .
Now for a vector field $U\in\chi(M)$ , using the equation (5.1) we have

$2g(\overline{A}_{JZ}W, U)=2g(h(W, U),$ $JZ$ ) $=-g(J(\nabla_{W}U+\nabla_{U}W), Z)$

$=-g(\nabla_{W}JU, Z)-g(\nabla_{U}JW, Z)$ .
Using $g(JU, Z)=0$ , we get

$2g(\overline{A}_{JZ}W, U)=-g(J\nabla_{W}Z, U)+g(\overline{A}_{JW}Z, U)$ .
Similarly we get

$2g(\overline{A}_{JW}Z, U)=-g(J\nabla_{Z}W, U)+g(\overline{A}_{JZ}W, U)$ .
Subtracting these two equations we get

$g(J3l[Z, W], U)=3g(\overline{A}_{JZ}W-\overline{A}_{JW}Z, U)$ ,

where we have used the fact that $ J^{c}U[Z, W]\in\nu$ . Since $U\in\chi(M)$ is arbitrary,
from above equation we get

(5.6) $J3f[Z, W]=3(\overline{A}_{JZ}W-\overline{A}_{JW}Z)$ , $Z,$ $W\in D^{\perp}$ .
From the definition it follows that $D^{\perp}$ is integrable, that is, $3f[Z, W]=0,$ $Z,$ $W$

$\in D^{\perp}$ . Thus from equations (5.5) and (5.6), we get for $V\in D$ , that $g((\nabla_{Z}J)(W), V)$

$=0$ . Utilizing this in equation (5.2), we obtain $(\nabla_{Z}J)(W)=0,$ $Z,$ $W\in D^{\perp}$ . Next
for $X\in D$ and $Z\in D^{\perp}$ , we get

$g((\nabla_{X}J)(Z), X)=0$ , $g((\nabla_{X}J)(Z), JX)=0$ ,

$g((\nabla_{X}J)(Z), Z)=0$ , $g((\nabla_{X}J)(Z), JZ)=0$ .
Also for $W\in D^{\perp}$ with $W\perp Z$ , we get

$g((\nabla_{X}J)(Z), W)=g(X, (\nabla_{z}J)(W))=0$

and
$g((\nabla_{X}J)(Z), JW)=g(JX, (\nabla_{Z}J)(W))=0$ ,

where we have used $(\nabla_{Z}J)(W)=0$ proved in previous paragraph. Taking a
local orthonormal frame {X, $JX,$ $Z,$ $W,$ $JZ,$ $JW$ } of $S^{6}$ where $X\in D$ and $Z,$ $W$

$\in D^{\perp}$ , we have proved that

$(\nabla_{X}J)(JX)=0$ , $(\nabla_{X}J)(Z)=0$ , $(\nabla_{X}J)(W)=0$ ,
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$(\overline{\nabla}_{JX}J)(Z)=0$ , $(\overline{\nabla}_{Z}J)(W)=0$ , $(\nabla_{JX}J)(W)=0$ .
We also have

$(\nabla_{X}J)(JZ)=-J(\nabla_{X}J)(Z)=0$ ,

and that
$(\nabla_{X}J)(JW)=-J(\nabla_{z}J)(W)=0$

$(\nabla_{Z}J)(JW)=-J(\nabla_{Z}J)(W)=0$ .
All this amounts to $(\nabla_{X}J)(Y)=0$ for all $X,$ $Y\in\chi(S^{6})$ which is a contradiction.
Hence dim $D=4$ , and by Theorem 5.1 $B$ is a 4-dimensional nearly Kaehler mani-
fold. It is easy to show that a 4-dimensional nearly Kaehler manifold is a
Kaehler manifold by taking a local frame $\{X_{*}, J^{\prime}X_{*}, Y_{*}, J^{\prime}Y_{*}\}$ on $B$ . Further
the horizontal distribution $D$ is not integrable, for otherwise the integral sub-
manifold of $D$ would be a 4-dimensional invariant submanifold in $S^{6}$ which does
not exist (cf. [5]).
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