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\S 0. Introduction

Let $P.(C)$ be an n-dimensional complex projective space with Fubini-Study
metric of constant holomorphic sectional curvature 4, and let $M$ be a real
hypersurface of $P_{n}(C)$ . $M$ has an almost contact metric structure $(\phi, \xi, \eta, g)$

induced from the complex structure $J$ of $P_{n}(C)$ (see, \S 1). Many differential
geometers have studied $M$ (cf. [3], [9], [12] and [13]) by using the structure
$(\phi, \xi, \eta, g)$ .

Typical examples of real hypersurfaces in $P_{n}(C)$ are homogeneous ones.
R. Takagi ([11]) showed that all homogeneous real hypersurfaces in $P_{n}(C)$ are
realized as the tubes of constant radius over compact Hermitian symmetric
spaces of rank 1 or 2. Namely, he showed the following:

Theorem A ([11]). Let $M$ be a homogeneous real hypersurface of $P_{n}(C)$ .
Then $M$ is a tube of radius $r$ over one of the following Kaehler submanifolds:
(A) hyPerplane $P_{n-1}(C)$ , where $0<r<\pi/2$ ,
(A) totally geodesic $P_{k}(C)(1\leqq k\leqq n-2)$ , where $0<r<\pi/2$ ,
(B) complex quadric $Q_{n-1}$ , where $0<r<\pi/4$ ,
(C) $P_{1}(C)\times P_{(n-1)/2}(C)$ , where $0<r<\pi/4$ and $n(\geqq 5)$ is odd,
(D) complex Grassmann $G_{2,6}(C)$ , where $0<r<\pi/4$ and $n=9$ ,
(E) Hermitian symmetric sPace $SO(10)/U(5)$ , where $0<r<\pi/4$ and $n=15$ .

Due to his classification we find the number of distinct constant principal
curvatures of a homogeneous real hypersurface is 2, 3 or 5.

It is well-known that there does not exist a totally umbilic real hyper-
surface $M$ in $P_{n}(C)$ (cf. [13]). We here recall Cecil and Ryan’s work. The
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statement is as follows:

Theorem $B$ ([1]). Let $M$ be a real hypersurface in $P_{n}(C),$ $n\geqq 3$ , with at
most two distinct $pnn\dot{\alpha p}al$ curvatures at each point. Then $M$ is locally congruent
to a homogeneous real hyPersurface of type $A_{1}$ .

Theorem $B$ tells us that a geodesic hypersphere $M$ in $P_{n}(C)$ (that is, a
homogeneous real hypersurface $M$ of type $A_{1}$ in $P_{n}(C))$ can be considered as
the simplest one in the class of real hypersurfaces.

The main purpose of this paper is to provide some characterizations of
geodesic hyperspheres in $P_{n}(C)$ in terms of Ricci tensors $S$ . Now note that
$P_{n}(C)(n\geqq 3)$ does not admit a real hypersuface $M$ with parallel Ricci tensor $S$

(cf. [2]). We characterize geodesic hyperspheres in $P_{n}(C)$ in terms of the
derivative of $S$ (cf. Theorem 1). In consequence of Theorem 1, we obtain an
estimate of $\Vert\nabla S\Vert$ (that is, the length of the derivative of the Ricci tensor $S$),

which characterizes geodesic hyperspheres in $P_{n}(C)$ (cf. Theorem 2).

Here we review the work of Kon, Cecil and Ryan. They determined $\eta-$

Einstein real hypersurfaces $M$ in $P_{n}(C)$ . As a matter of course the condition
$\eta$ -Einstein” is weaker than ”Einstein”. The statement is as follows:

Theorem $C$ ([1], [7]). Let $M$ be a connected real hyPersurface in $P_{n}(C)$ ,
$n\geqq 3$ , whose Ricci tensor $S$ satisfies the identity $ SX=aX+b\eta(X)\xi$ , for some
smooth functions $a$ and $b$ on M. Then $M$ is locally congruent to one of the fol-
lowing:

(1) a geodesic hyPersphere,
(2) a tube of radius $\gamma$ over a totally geodesic $P_{i}(C),$ $0<k<n-1$ , where

$0<r<\pi/2$ and cot2$r=k/(n-k-1)$ ,
(3) a tube of radius $\gamma$ over a complex quadric $Q_{n-1}$ , where $0<r<\pi/4$ and

$\cot^{2}2r=n-2$ .
In \S 3, we characterize $\eta$ -Einstein real hypersurfaces in $P_{n}(C)$ by using an

estimate of the length of the Ricci tensor $S$ (cf. Theorem 3).

\S 1. Preliminaries

Let $M$ be an orientable real hypersurface of $P_{n}(C)$ and let $N$ be a unit
normal vector field on $M$. The Riemannian connections V in $P_{n}(C)$ and $\nabla$ in
$M$ are related by the following formulas for any vector fields $X$ and $Y$ on $M$ :

(1.1) $\tilde{\nabla}_{X}Y=\nabla_{X}Y+g(AX, Y)N$ ,

(1.2) $\tilde{\nabla}_{X}N=-AX$ ,

where $g$ denotes the Riemannian metric of $M$ induced from the Fubini-Study
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metric $G$ of $P_{n}(C)$ and $A$ is the shape operator of $M$ in $P_{n}(C)$ . An eigen-
vector $X$ of the shape operatorA is called a Pnncipal curvature vector. Also
an eigenvalue $\lambda$ of $A$ is called a Principal curvature. In what follows, we
denote by $V_{\lambda}$ the eigenspace of $A$ associated with eigenvalue $\lambda$ . It is known
that $M$ has an almost contact metric structure induced from the complex struc-
ture $J$ on $P_{n}(C)$ , that is, we define a tensor field $\phi$ of type (1.1), a vector field
$\xi$ and a l-form $\eta$ on $M$ by $g(\phi X, Y)=G(JX, Y)$ and $g(\xi, X)=\eta(X)=G(JX, N)$ .
Then we have

(1.3) $\phi^{2}X=-X+\eta(X)\xi$ , $g(\xi, \xi)=1$ , $\phi\xi=0$ .
It follows from (1.1) that

(1.4) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ ,

(1.5) $\nabla_{X}\xi=\phi AX$ .
Let $\beta$ and $R$ be the curvature tensors of $P_{n}(C)$ and $M$, respectively. Since the
curvature tensor $R$ has a nice form, we have the following Gauss and Codazzi
equations:

(1.6) $g(R(X, Y)Z,$ $W$ )$=g(Y, Z)g(X, W)-g(X, Z)g(Y, W)+g(\phi Y, Z)g(\phi X, W)$

$-g(\phi X, Z)g(\phi Y, W)-2g(\phi X, Y)g(\phi Z, W)$

$+g(AY, Z)g(AX, W)-g(AX, Z)g(AY, W)$ ,

(1.7) $(\nabla_{X}A)Y$ $(\nabla_{Y}A)X=\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi$ .
From (1.3), (1.5), (1.6) and (1.7) we get

(1.8) $SX=(2n+1)X-3\eta(X)\xi+hAX-A^{2}X$ ,

(1.9) $(\nabla_{X}S)Y=-3(g(\phi AX, Y)\xi+\eta(Y)\phi AX)+(Xh)AY$

$+(hI-A)(\nabla_{X}A)Y-(\nabla_{X}A)AY$ ,

where $h=traceA,$ $S$ is the Ricci tensor of type $(1, 1)$ on $M$ and $I$ is the identity
map.

We here recall the notion of an $\eta$ -Parallel Ricci tensor $S$ of $M$, which is
defined by $g((\nabla_{X}S)Y, Z)=0$ for any $X,$ $Y$ and $Z$ orthogonal to $\xi$ .

In the following, we use the same terminology and notations as above unless
otherwise stated. Now we prepare without proof the following in order to
prove our results:

Theorem $D$ ([10]). Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the Ricci
tensor of $M$ is $\eta$ -parallel and $\xi$ is principal if and only if $M$ is locally congruent
to one of homogeneous real hyPersurfaces of type $A_{1},$ $A_{2}$ and B.
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Theorem $E$ ([6]). Let $M$ be a real hypersurface with constant mean cur-
vature in $P_{n}(C)$ . Supp0se that $\xi$ is a principal curvature vector and the corre-
sp0nding $pn$ncipal curvature is non-zero. If $\nabla_{\xi}S=0$ (that is, the Ricci tensor $S$

is parallel in the direction of $\xi$), then $M$ is a tube of radius $r$ over one of the
following Kaehler submanifolds:
(A) hyperplane $P_{n-1}(C)$ , where $0<r<\pi/2$ and $r\neq\pi/4$ ,
(A) totally geodesic $P_{k}(C)(1\leqq k\leqq n-2)$ , where $0<r<\pi/2$ and $r\neq\pi/4$ ,
(B) complex quadric $Q_{n-1}$ , where $0<r<\pi/4$ and $\cot^{2}2r=n-2$ ,
(C) $P_{1}(C)\times P_{(n-1)/2}(C)$ , where $0<r<\pi/4,$ $\cot^{2}2r=1/(n-2)$ and $n(\geqq 5)$ is odd,
(D) complex Grassmann $G_{2.6}(C)$ , where $0<r<\pi/4,$ $\cot^{2}2r=3/5$ and $n=9$ ,
(E) Hermitian symmetric space $SO(10)/U(5)$ where $0<r<\pi/4,$ $\cot^{2}2r=5/9$ and
$n=15$ .

Theorem $F$ ([8]). Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the follow-
ing are equivalent:
(i) $M$ is locally congruent to one of homogeneous ones of type $A_{1}$ and $A_{2}$ ,
(ii) $(\nabla_{X}A)Y=-\eta(Y)\phi X-g(\phi X, Y)\xi$ for any $X,$ $Y\in TM$ .

Proposition A ([8]). Assume that $\xi$ is a principal curvature vector and $thr$

corresp0nding principal curvature is $\alpha$ . If $AX=rX$ for $ X\perp\xi$ , then we have

$A\phi X=((\alpha r+2)/(2r-\alpha))\phi X$ .

\S 2. Characterizations of geodesic hyperspheres in $P_{n}(C)$

We have the following

Theorem 1. Let $M$ be a real hypersurface of $P_{n}(C)$ . Then the following
are equivalent:
(i) The Ricci tensor $S$ of $M$ satisfies

(2.1) $(\nabla_{X}S)Y=c(g(\phi X, Y)\xi+\eta(Y)\phi X)$ for any $X,$ $Y\in TM$,

where $c$ is a non-zero constant.
(ii) $M$ is locally congruent to a geodesic hypersphere in $P_{n}(C)$ .

Proof. Suppose that the condition (i) holds. First of all we shall show that
the vector $\xi$ is principal. From (2.1), (1.4) and (1.5), we have

(2.2) $(\nabla_{W}(\nabla_{X}S))Y-(\nabla_{\nabla_{W}X}S)Y=c\{\eta(X)g(AW, Y)\xi-2\eta(Y)g(AW, X)\xi$

$+g(\phi X, Y)\phi AW+g(\phi AW, Y)\phi X+\eta(X)\eta(Y)AW\}$ .

Exchanging $X$ and $W$ in (2.2), we see
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(2.3) $(\nabla_{X}(\nabla_{W}S))Y-(\nabla_{\nabla_{X}W}S)Y=c\{\eta(W)g(AX, Y)\xi-2\eta(Y)g(AX, W)\xi$

$+g(\phi W, Y)\phi AX+g(\phi AX, Y)\phi W+\eta(W)\eta(Y)AX\}$ .
It follows from (2.2) and (2.3) that

(2.4) $(R(W, X)S)Y=c\{\eta(X)g(AW, Y)\xi-\eta(W)g(AX, Y)\xi$

$+g(\phi X, Y)\phi AW-g(\phi W, Y)\phi AX+g(\phi AW, Y)\phi X$

$-g(\phi AX, Y)\phi W+\eta(Y)(\eta(X)AW-\eta(W)AX)\}$ ,

where $R$ is the curvature tensor of $M$.
Let $e_{1},$ $\cdots$ , $e_{2n-1}$ be local fields of orthonormal vectors on $M$. From (2.4)

and (1.3), we find

(2.5) $\ell 1\sum_{=}^{2n-1}g(R(e_{\ell}, X)S)Y,$
$e_{i}$ ) $=c\{\eta(X)\eta(AY)-2\eta(Y)\eta(AX)$

$-g(A\phi Y, \phi X)+h\eta(X)\eta(Y)\}$ ,

where $h=traceA$ .
Now note that the left hand side of (2.5) is symmetric with respect to $X$,

Y. (In fact, we see that

(the left hand side of $(2.5)$) $=\Sigma g(R(e_{\ell}, X)(SY),$ $e_{\ell}$ ) $-\Sigma g(R(e_{i}, X)Y,$ $Se_{\ell}$)

$=g(SX, SY)-\Sigma g(R(e_{i}, X)Y,$ $Se_{i}$)

and
$-\sum g(R(e_{i}, X)Y,$ $Se_{i}$) $=\Sigma g(R(X, Y)e_{i},$ $Se_{i}$) $+\Sigma g(R(Y, e_{\ell})X,$ $Se_{t}$)

$=trace(S\cdot R(X, Y))-\Sigma g(R(e_{\ell}, Y)X,$ $Se_{\ell}$)

$=-\Sigma g(R(e_{i}, Y)X,$ $Se_{i}$ ) $.$ )

And hence Equation (2.5) yields

$c\{\eta(X)\eta(AY)-2\eta(Y)\eta(AX)\}=c\{\eta(Y)\eta(AX)-2\eta(X)\eta(AY)\}$ .
Since $c\neq 0$ , the above equatlon shows

(2.6) $\eta(X)\eta(AY)=\eta(Y)\eta(AX)$ for any $X,$ $Y\in TM$ .
Equation (2.6) implies that $\xi$ is principal. (In fact, let $A\xi=a\xi+\beta U$ , where $U$ is
a unit vector orthogonal to $\xi$ . Putting $X=U$ and $Y=\xi$ in (2.6), we get $\beta=0.$ )

Moreover, Equation (2.1) shows that the Ricci tensor of our real hyper-
surface $M$ is $\eta$ -parallel. Therefore Theorem $D$ asserts that $M$ is one of homo-
geneous real hypersurfaces of type $A_{1},$ $A_{2}$ and B. Next we shall check (2.1)

for homogeneous real hypersurfaces of type $A_{1},$ $A_{f}$ and $B$ one by one:
Let $M$ be of type $A_{1}$ . Setting $t=\cot r(0<r<\pi/2)$ , so that the shape operator

$A$ is as (cf. [12]):
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(2.7) $ AX=tX-(1/t)\eta(X)\xi$ for $X\in TM$ .
Substituting the condition (ii) in Theorem $F$ and (2.7) into (1.9), we can see
that our real hypersurface $M$ satisfies (2.1), that is,

(2.8) $(\nabla_{X}S)Y=-2nt\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ .
Let $M$ be of type $A_{2}$ . Setting $t=\cot r(0<r<\pi/2)$ , so that our real hyper-

surface $M$ has three distinct constant principal curvatures $t$ (with multiplicity
$2p)$ , $-1/t$ (with multiplicity $2q$) and $t-(1/t)$ (with multiplicity 1), where $P+q$

$=n-1$ and $pq\neq 0$ . Let $X$ be a principal curvature (unit) vector orthogonal to
$\xi$ with principal curvature $t$ . Note that $\phi X\in V_{t}$ (see, Proposition A). Substitut-
ing the condition (ii) in Theorem $F$ into (1.9), we find

(2.9) $(\nabla_{X}S)\phi X=\{-2(p+1)t+2q/t\}\xi$ .
Now let $Y$ be a principal curvature (unit) vector orthogonal to $\xi$ with principal
curvature $-1/t$ . By a similar computation we see
(2.10) $(\nabla_{Y}S)\phi Y=\{-2pt+2(q+1)/t\}\xi$ .
From (2.9) and (2.10), we conclude that our manifold does not satisfy (2.1).

Let $M$ be of type B. Setting $t=\cot r(0<r<\pi/4)$ , so that our real hyper-
surface $M$ has three distinct constant principal curvatures $(1+t)/(1-t)$ (with
multiplicity $n-1$), $(t-1)/(t+1)$ (with multiplicity $n-1$ ) and $t-(1/t)$ (with multi-
plicity 1). Suppose that the manifold $M$ satisfies (2.1). And hence, in parti-
cular, the manifold $M$ satisfies the hypothesis of Theorem E. Therefore we
have only to consider the case of $t=\sqrt{n-1}+\sqrt{n-2}$ . Let $X$ be a principal
curvature (unit) vector orthogonal to $\xi$ with principal curvature $(1+t)/(1-t)$ .
Note that $\phi X\in V_{(t-1)/(t+1)}$ (see, Prop. A). From (1.9) we find (cf. (2.4) in [5])

(2.11) $(\nabla_{X}S)\phi X=\{4n-2+2\sqrt{n-1}+4(n-1)\sqrt{n-1}\}/\sqrt{n-2}\cdot\xi$ .
Now let $Y$ be a principal curvature (unit) vector orthogonal to $\xi$ with principal
curvature $(t-1)/(t+1)$ . By a similar computation we see (cf. (2.5) in [5])

(2.12) $(\nabla_{Y}S)\phi Y=\{4n-2-2\sqrt{n-1}-4(n-1)\sqrt{n-1}\}/\sqrt{n-2}\cdot\xi$ .
From $(2.1l)$ and (2.12) we conclude that our manifold does not satisfy (2.1),
which is a contradiction. Q. E. D.

Motivated by Theorem 1, we prove the following

Theorem 2. Let $M$ be a real hypersurface with constant mean curvature in
$P_{n}(C),$ $n\geqq 3$ . Then the following inequality holds:

(2.13) $\Vert\nabla S\Vert^{2}\geqq 4n/(n-1)\cdot(h-\eta(A\xi))$ { $n(h-\eta(A\xi))-$ trace $(\phi A\nabla_{\xi}A)$ },
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where $S$ is the Ricci tensor of $M$ and $h=traceA$ .
Moreover, the equality of (2.13) holds if and only if $M$ is locally congruent

to a geodesic hyPersphere of $P_{n}(C)$ provided that $\eta(A\xi)$ is constant.

Proof. Equation (2.8) shows that the derivative of the Ricci tensor $S$ of
a geodesic hypersphere is as:

(2.14) $(\nabla_{X}S)Y=-n/(n-1)\cdot(h-\eta(A\xi))\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ .
$J$

Let $e_{1},$ $\cdots$ , $e_{2n-1}$ be local fields of orth\’onormal vectors on $M$. Making use of
(2.14), we define the following tensor on $M$ as:

(2.15) $T(X, Y)=(\nabla_{X}S)Y+n/(n-1)\cdot(h-\eta(A\xi))\{g(\phi X, Y)\xi+\eta(Y)\phi X\}$ .
Now we shall calculate the length of $T$ . From (1.3) we have

(2.16) $\Vert T\Vert^{2}=\Vert\nabla S\Vert^{2}+4n^{2}/(n-1)\cdot(h-\eta(A\xi))^{2}$

$+2n/(n-1)\cdot(h-\eta(A\xi))\sum_{\ell=1}^{2n-1}g((\nabla_{e_{i}}S)e_{j}, g(\phi e_{\ell}, e_{j})\xi+\eta(e_{j})\phi e_{\ell})$ .

It follows from (1.3), (1.7) and (1.9) that

(2.17) $\Sigma g((\nabla_{e},S)e_{j},$ $g(\phi e_{i}, e_{j})\xi+\eta(e_{f})\phi e_{\ell})$

$=-4n(h-\eta(A\xi))+2\eta(A\phi(gradh))+2$ trace $(\phi A\nabla_{\xi}A)$ .
Therefore Inequality (2.13) follows from (2.16) and (2.17) provided that $h$ is
constant. Now we consider the equality of (2.13), so that the derivative of the
Ricci tensor $S$ is given by (2.14). Here we suPpose that $\eta(A\xi)$ is constant and
$n\geqq 3$ . Then $h-\eta(A\xi)$ is a nonzero constant (cf. [2]). Hence, Theorem 1
shows that the equality of (2.13) holds if and only if $M$ is locally congruent to
a geodesic hypersphere. Q. E. D.

Remarks.
(1) In general, “Both trace $A$ and $\eta(A\xi)$ are constant” does not imply $\xi$ is

a principal curvature vector” (cf. \S 3 of [4]).
(2) $\xi$ is principal“ always implies $\eta(A\xi)$ is constant” (cf. [8]).

(3) SuPpose that both trace $A$ and $\eta(A\xi)$ are constant. Then the following

holds:
trace $(\phi A\nabla_{\xi}A)=3/2\cdot\eta(A\xi)$ tr $A^{2}-1/2$ . tr $A\cdot\Vert A\xi\Vert^{2}-g(A^{S}\xi, \xi)$

$+tr(A\phi A\phi A)+2$ tr $A-(n+1)\eta(A\xi)$ ,

which shows that the right hand side of (2.13) is expressed in terms of the
shape operator $A$ .
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\S 3. Characterization of $\eta$ -Einstein real hypersurfaces in $P_{n}(C)$

Our aim here is to prove the following

Theorem 3. Let $M$ be a real hypersurface of $P_{n}(C),$ $n\geqq 3$ . Then the fol-
lowing holds:

(3.1) $\Vert S\Vert^{2}\geqq(\eta(S\xi))^{2}+(\rho-\eta(S\xi))^{2}/2(n-1)$ ,

where $\Vert S\Vert$ is the length of the Ricci tensor $S$ of $M$ and $\rho$ is the scalar curva-
ture of M. The equality of (3.1) holds if and only if $M$ is $\eta$ -Einstein.

Proof. We first remark that the following are equivalent:

(3.2) $ SX=aX+b\eta(X)\xi$ for any $X\in TM$ ,

(3.3) $g(SX, Y)=\lambda g(X, Y)$ for any $X,$ $Y\perp\xi$ ’ and $\xi$ is an eigenvector of $S’$ .
We here rewrite the condition “$g(SX, Y)=\lambda g(X, Y)$ for any $X,$ $Y\perp\xi$ ’ as follows:

$g(SX, Y)=\lambda g(X, Y)$ for any $X,$ $Y\perp\xi$ .
$\Leftrightarrow g(SX, Y)=\rho_{0}g(X, Y)$ for any $X,$ $Y\perp\xi$ , where $\rho_{0}=1/(2n-2)\cdot(\rho-g(S\xi, \xi))$ .
$\Leftrightarrow g(SX-\eta(X)S\xi, Y-\eta(Y)\xi)=\rho_{0}g(X-\eta(X)\xi, Y-\eta(Y)\xi)$ for any $X,$ $Y\in TM$.
$\Leftrightarrow SX-\rho_{0}X-\eta(X)S\xi-\eta(SX)\xi+(\rho_{0}+\eta(S\xi))\eta(X)\xi=0$ for any $X\in TM$.

Now we dePne the tensor $T$ as follows:

$T(X, Y)=g(SX, Y)-\rho_{0}g(X, Y)-\eta(X)g(S\xi, Y)-\eta(SX)\eta(Y)$

$+(\rho_{0}+\eta(S\xi))\eta(X)\eta(Y)$ for any $X,$ $Y\in TM$ .
Calculating the length of $T$ , we find

(3.4) $\Vert T\Vert^{2}=\Vert S\Vert^{2}-(\rho-\eta(S\xi))^{2}/2(n-1)-2\Vert S\xi\Vert^{2}+(\eta(S\xi))^{2}$

Note that for any real hypersurface $M$ the following inequality holds

(3.5) $\Vert S\xi\Vert^{2}\geqq(\eta(S\xi))^{2}$ .

Hence (3.1) follows from (3.4) and (3.5). Of course the equality of (3.5) holds
if and only if $\xi$ is an eigenvector of the Ricci tensor $S$ . Then we assert that
the equality of (3.1) holds if and only if $M$ is $\eta$ -Einstein. Q. E. D.
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