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§ 0. Introduction

Let P,(C) be an n-dimensional complex projective space with Fubini-Study
metric of constant holomorphic sectional curvature 4, and let M be a real
hypersurface of P,(C). M has an almost contact metric structure (9, & 7, )
induced from the complex structure J of P,(C) (see, §1). Many differential
geometers have studied M (cf. [3], [9], and [13]) by using the structure
(9, ¢, 7, ).

Typical examples of real hypersurfaces in P,(C) are homogeneous ones.
R. Takagi ([11]) showed that all homogeneous real hypersurfaces in P,(C) are
realized as the tubes of constant radius over compact Hermitian symmetric
spaces of rank 1 or 2. Namely, he showed the following:

Theorem A ([111). Let M be a homogeneous real hypersurface of P,(C).
Then M is a tube of radius r over one of the following Kaehler submanifolds:
(A1) hyperplane P,_,(C), where 0<r<m/2, '
(A;) totally geodesic P(C) (1£k<n—2), where 0<r<m/2,

(B) complex quadric Q,-,, where 0<r<m/4,

(C)  P(C)XPin152(C), where 0<r<=/4 and n(=5) is odd,

(D) complex Grassmann G, C), where 0<r<=m/4 and n=9,

(E)  Hermitian symmetric space SO(10)/U(5), where 0<r<m/4 and n=15.

Due to his classification we find the number of distinct constant principal
curvatures of a homogeneous real hypersurface is 2, 3 or 5.

It is well-known that there does not exist a totally umbilic real hyper-
surface M in P,(C) (cf. [13]). We here recall Cecil and Ryan’s work. The
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statement is as follows:

Theorem B ([1]). Let M be a real hypersurface in P,(C), n=3, with at
most two distinct principal curvatures at each point. Then M is locally congruent
to a homogeneous real hypersurface of type A,.

Theorem B tells us that a geodesic hypersphere M in P,(C) (that is, a
homogeneous real hypersurface M of type A, in P,(C)) can be considered as
the simplest one in the class of real hypersurfaces.

The main purpose of this paper is to provide some characterizations of
geodesic hyperspheres in P,(C) in terms of Ricci tensors S. Now note that
P,(C) (n=3) does not admit a real hypersuface M with parallel Ricci tensor S
(cf. [2]). We characterize geodesic hyperspheres in P,(C) in terms of the
derivative of S (cf. [Theorem 1). In consequence of [Theorem 1, we obtain an
estimate of ||VS| (that is, the length of the derivative of the Ricci tensor S), .
which characterizes geodesic hyperspheres in P,(C) (cf. [Theorem 2).

Here we review the work of Kon, Cecil and Ryan. They determined 7-
Einstein real hypersurfaces M in P,(C). As a matter of course the condition
“p-Einstein” is weaker than “Einstein”. The statement is as follows:

Theorem C ([1], [7]). Let M be a connected real hypersurface in P (C),
n=3, whose Ricci temsor S satisfies the identity SX=aX+bn(X)E, for some
smooth functions a and b on M. Then M is locally congruent to one of the fol-
lowing : ’

(1) a geodesic hypersphere,

(2) a tube of radius r over a totally geodesic Py(C), 0<k<n—1, where
0<r<n/2 and cot’r==~k/(n—k—1),

(3) a tube of radius r over a complex quadric Q,.,, where 0<r<=n/4 and
cot?2r=n—2.

In §3, we characterize »-Einstein real hypersurfaces in P,(C) by using an
estimate of the length of the Ricci tensor S (cf. [Theorem 3).

§1. Preliminaries

Let M be an orientable real hypersurface of P,(C) and let N be a unit
normal vector field on M. The Riemannian connections V in P,(C) and V in
M are related by the following formulas for any vector fields X and ¥ on M:

(1.1) VY =YY +g(AX, Y)N,
(1.2) VeN=—AX,

where g denotes the Riemannian metric of M induced from the Fubini-Study
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metric G of P,(C) and A is the shape operator of M in P,(C). An eigen-
vector X of the shape operator A is called a principal curvaiure vector. Also
an eigenvalue 2 of A is called a principal curvature. In what follows, we
denote by V, the eigenspace of A associated with eigenvalue 4. It is known
that M has an almost contact metric structure induced from the complex struc-
ture J on P,(C), that is, we define a tensor field ¢ of type a vector field
¢ and a 1-form 7 on M by g(¢X, Y)=G(JX, Y) and g(&, X)=5(X)=G(J X, N).
Then we have

(1.3) P*X=—X+9(X)§, g H=1, $§=0.
It follows from that

(1.4) (V@)Y =np(Y)AX—g(AX, Y)§,

(1.5) Vxé=¢AX.

Let B and R be the curvature tensors of P,(C)and M, respectively. Since the
curvature tensor f has a nice form, we have the following Gauss and Codazzi
equations :

(1.6) g(R(X,Y)Z, W)=g(Y, Z)g(X, W)—g(X, Z)g(Y, W)+g@Y, Z)g($X, W)

+g(AY, Z)g(AX, W)—g(AX, Z)g(AY, W),

1.7) (Vx A)Y —(Vp A)X=7(X)PY — (Y )p X—2g(¢ X, Y )§ .
From [(1.3), (1.5), (1.6) and we get

(1.8) SX=02n+1)X-39p(X)e+hAX—-A*X,

(1.9) (VxS)Y =—3(g(pAX, Y)§+n(¥)pAX)+(Xh)AY

+(hI=A)VxA)Y —(Vx AAY ,

where h=trace A, S is the Ricci tensor of type (1, 1) on M and [ is the identity
map.

We here recall the notion of an 7-parallel Ricci tensor S of M, which is
defined by g((VxS)Y, Z)=0 for any X, Y and Z orthogonal to &.

In the following, we use the same terminology and notations as above unless
otherwise stated. Now we prepare without proof the following in order to
prove our results:

Theorem D ([10]). Let M be a real hypersurface of P,(C). Then the Ricci
tensor of M is n-parallel and & is principal if and only if M is locally congruent
to one of homogeneous real hypersurfaces of type A,, A, and B.
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Theorem E ([6]). Let M be a real hypersurface with constant mean cur-
vature in P,(C). Suppose that & is a principal curvature vector and the corre-
sponding principal curvature is non-zero. If N.S=O0 (that is, the Ricci tensor S
is parallel in the divection of §), then M is a tube of radius r over one of the
following Kaehler submanifolds:

(A,) hyperplane P,_(C), where 0<r<r/2 and r+n/4,

(A;) totally geodesic Pi(C) (1=k=<n—2), where 0<r<r/2 and r+r/4,

(B) complex quadric Q,-,, where 0<r<m/4 and cot?’2r=n—2,

(C)  PUC)YXPin-1y(C), where 0<r<m/4, cot?2r=1/(n—2) and n(=5) is odd,
(D) complex Grassmann G, (C), where 0<r<m/4, cot’2r=3/5 and n=9,

(E) Hermitian symmetric space SOQ0)/U(5) where 0<r<r/4, cot’2r=5/9 and
n=15.

Theorem F ([8]). Let M be a real hypersurface of P,(C). Then the follow-
ing are equivalent:
(i) M is locally congruent to one of homogeneous ones of type A, and A,,
(i) (VxAY =—n¥)pX—g(@X, V)& for any X, Y =T M.

Proposition A ([8]). Assume that & is a principal curvature vector and thr
corresponding principal curvature is a. If AX=rX for X 1§, then we have
Ap X=((ar+2)/@2r—a)p X .

§2. Characterizations of geodesic hyperspheres in P,(C)

We have the following

Theorem 1. Let M be a real hypersurface of P,(C). Then the following
are equivalent :
(i) The Ricci tensor S of M satisfies

(2.1) (VxS)Y =c(gp X, Y)5+9()pX) for any X, YeTM,

where ¢ is a non-zero constant.
(ii) M is locally congruent to a geodesic hypersphere in P,(C).

Proof. Suppose that the condition (i) holds. First of all we shall show that
the vector & is principal. From [2.1), [1.4) and [1.5), we have

2.2) (Ww(VxS)Y —(Vv,xSY =c{n(X)g(AW, Y)s—29(Y )g(AW, X)§
+2($X, YIPAW +g(@AW, Y)g X+9(X)n(¥)AW}.
Exchanging X and W in (2.2), we see
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2.3) (vx(WwS)Y —(VyzwS)Y =c{nW)g(AX, Y)§—29(Y)g(AX, W)§
+g(@W, Y)pAX+g(@ AKX, Y)W +9(W)n(Y )AX}.
It follows from (2.2) and (2.3) that
(2.4) (RW, X)S)Y =c{n(X)g(AW, Y)§—n(W)g(AX, Y)§
+2(@ X, Y)pAW —g(¢W, Y)pAX+2(9 AW, Y)p X
—8(@AX, Y)W + (Y Yn(X)AW —y(W)AX)},

where R is the curvature tensor of M,
Let ey, -+, esn-, be local fields of orthonormal vectors on M. From

and (1.3), we find
(2.5) B g(Riew, XS, ey=c{n(X)n(AY)— 20X )n(AX)

—8(AgY, ¢ X)+hn(X)n(Y)},
where h=trace A.
Now note that the left hand side of is symmetric with respect to X,
Y. (In fact, we see that

~ (the left hand side of (2.5))=3 g(R(e;, X)(SY), e))—3 g(R(es, X)Y, Sey)
=8(SX, SY)—21g(R(es, X)Y, Se,)

and
—> g(R(e;, X)Y, Se)=3g(R(X, Y)e;, Se))+3 g(R(Y, e))X, Se,)

=trace (S:- R(X, Y)—2 g(R(e;, V)X, Se,)
=—3 g(R(e;, V)X, Sey).)
And hence Equation yields
c{n(X)n(AY)—29(Y)n(AX)} =c{n(Y)n(AX)—29(X)n(AY)}.
Since ¢+#0, the above equation shows
(2.6) P(X)p(AY )= n(AX) for any X, YeTM.

Equation implies that & is principal. (In fact, let A§=a&+BU, where U is
a unit vector orthogonal to & Putting X=U and Y =¢ in [2.6), we get §=0.)
Moreover, Equation shows that the Ricci tensor of our real hyper-
surface M is 7-parallel. Therefore Theorem D asserts that M is one of homo-
geneous real hypersurfaces of type A,, A, and B. Next we shall check
for homogeneous real hypersurfaces of type A,;, A, and B one by one:
Let M be of type A,. Setting t=cot» (0<r<=m/2), so that the shape operator

A is as (cf. [12]):
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(2.7) AX=tX—-1/tp(X)§  for XeTM.

Substituting the condition (ii) in Theorem F and [2.7) into [(1.9), we can see
that our real hypersurface M satisfies [2.1), that is,

2.8) (VxS)Y =—2nt{g(@ X, Y)i+9(¥)pX}.

Let M be of type A,. Setting t=cotr (0<r<=z/2), so that our real hyper-
surface M has three distinct constant principal curvatures ¢ (with multiplicity
2p), —1/t (with multiplicity 2¢) and ¢t—(1/t) (with multiplicity 1), where p-+g¢q
=n—1 and pg+0. Let X be a principal curvature (unit) vector orthogonal to
& with principal curvature . Note that ¢ XV, (see, Proposition A). Substitut-
ing the condition (ii) in Theorem F into we find

(2.9) (VxS X={—2(p+1t+29/1}§ .

Now let Y be a principal curvature (unit) vector orthogonal to § with principal
curvature —1/¢t. By a similar computation we see

(2.10) (VeS)PY = {—2pt+2(g+1)/8}§ .

From and [2.10), we conclude that our manifold does not satisfy [(2.1).
Let M be of type B. Setting t=cotr (0<r<x/4), so that our real hyper-
surface M has three distinct constant principal curvatures (1+2)/(1—t) (with
multiplicity n—1), (¢(—1)/(¢t+1) (with multiplicity n—1) and ¢t—(1/¢t) (with multi-
plicity 1). Suppose that the manifold M satisfies [2.I). And hence, in parti-
cular, the manifold M satisfies the hypothesis of [Theorem E. Therefore we
have only to consider the case of t=+n—1++n—2. Let X be a principal
curvature (unit) vector orthogonal to § with principal curvature (1+42)/(1—1%).

Note that ¢ XV ;-15/t+1> (see, Prop. A). From we find (cf. in [5))
(2.11) (VxS)p X= {dn—2+2v/n—1+4(n—1)vn—1} /v/n—=2-¢ .

Now let Y be a principal curvature (unit) vector orthogonal to § with principal
curvature (¢—1)/(t+1). By a similar computation we see (cf. in [5])

(2.12) (VpS)PY = {dn—2—2vn—1—4(n—1)v'n—1} /vV/n—2-¢.
From (2.11) and [2.12) we conclude that our manifold does not satisfy [2.1),
which is a contradiction. Q.E.D.

Motivated by [Theorem 1, we prove the following

Theorem 2. Let M be a real hypersurface with constant mean curvature in
P.(C), n=3. Then the following inequality holds:

(2.13) IVS|*z4n/(n—1)-(h—n(A8)) {n(h—n(AE))—trace ( AV A)},
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where S is the Ricci tensor of M and h=trace A.
Movreover, the equality of (2.13) holds if and only if M is locally congruent
to a geodesic hypersphere of P,(C) provided that n(A§) is constant.

Proof. Equation shows that the derivative of the Ricci tensor S of
a geodesic hypersphere is as: /

2.14) (Ve S)Y =—n/(n—1)-(h—n(AEN{g(@ X, Y )i+ 7Y )p X} .

Let ey, -+, esn-, be local fields of orttfénormal vectors on M. Making use of
(2.14), we define the following tensor on M as:

(2.15) T(X, Y)=xS)Y +n/(n—1)-(h—n(AE){g(¢ X, Y)E+ (V)P X}.
Now we shall calculate the length of 7. From we have

(2.16)  [ITI*=IVS|*+4n"/(n—1)-(h—7(A&)*

+2n/(n—1)-(h—7(A8) T 8(Vo,Sess g(es, ee+nleiges.
It follows from [1.3), [1.7) and [1.9) that

(2.17) 2 8((Ne;S)ey, gldes, e)s+nlesde;)
= —4n(h—n(A&)+2n(Ad(grad h))+2 trace (pAV:A) .

Therefore Inequality follows from (2.16) and provided that & is
constant. Now we consider the equality of [(2.13), so that the derivative of the
Ricci tensor S is given by [2.14). Here we suppose that 7n(A§) is constant and
n=3. Then h—xn(Ag) is a nonzero constant (cf. [2]). Hence,
shows that the equality of holds if and only if M is locally congruent to
a geodesic hypersphere. Q.E.D.

Remarks.
(1) In general, “Both trace A and »n(A¢§) are constant” does not imply “§ is
a principal curvature vector” (cf. §3 of [4]).
(2) “¢ is principal” always implies “5(A§) is constant” (cf. 8.
(3) Suppose that both trace A and 7n(A§) are constant. Then the following
holds : _
trace (P AV A)=3/2-n(Aé) tr A*—1/2-tr A-| A§|*—g(A%, &)

+tr (ApAdA)+2 tr A—(n+1)n(Af),

which shows that the right hand side of is expressed in terms of the
shape operator A.
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§3. Characterization of 7-Einstein real hypersurfaces in P,(C)

Our aim here is to prove the following

Theorem 3. Let M be a real hypersurface of P.(C), n=3. Then the fol-
lowing holds:

3.1) ISI* = (9(SE)* +(o—3(SE)*/2(n—1),

where ||S|| is the length of the Ricci tensor S of M and p is the scalar curva-
ture of M. The equality of (3.1) holds if and only if M is y-Einstein.

Proof. We first remark that the following are equivalent:
(3.2 SX=aX+bnp(X)é for any XeTM,
(3.3) “g(SX,Y)=2ag(X,Y) for any X,Y 1&” and “¢ is an eigenvector of S”.
We here rewrite the condition “g(SX, Y)=21g(X, Y) for any X, Y 1 &” as follows:
g(SX, Y)=2g(X,Y) for any X,Y 1¢.
& g(SX, Y)=pog(X,Y) forany X,Y | & where po=1/2n—2)-(p— g(S¢, S)).
= g(SX—=n(X)SE, Y —p(Y)E)=pog(X—n(X)§,Y —(¥)§) for any X,Y =TM.
& SX—poX—1(X)SE—9(SX)E+(pa+7(SENN(X)E=0 for any X=TM.
Now we define the tensor T as follows: |
T(X, Y)=g(SX, Y)—pog(X, Y)—n(X)g(S§, Y)—n(SX)n(Y)
+(po+7(SEN( X)) for any X,YTM.
Calculating the length of T, we find

(3.4) ITI1>=1SI*—(p—n(S§))*/2(n—1)—2||SE|*+(n(SE))* .
Note that for any real hypersurface M the following inequality holds
(3.5) 1S&N2=(n(SE))* .

Hence follows from [(3.4) and [(3.5). Of course the equality of holds
if and only if & is an eigenvector of the Ricci tensor S. Then we assert that

the equality of holds if and only if M is »-Einstein. Q.E.D.
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