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Abstract. We give an upper bound for the absolute regularity coefficient of
.a stationary renewal process in terms of the total variation of the difference
between the corresponding Palm and the usual renewal measure.

1. Introduction and main result

There is a huge and scattered literature on limit theorems for partial sums
(integrals or other functionals) of discrete and continuous time random processes
satisfying certain mixing conditions, see, for example, the review paper by
Bradley [1]. The assumed mixing conditions ensure asymptotic independence
between such parts of the random process whose index sets are separated far
enough. To make this idea precise for a certain dependence structure we need
measures of dependence expressed by so-called mixing coefficients. Let 2, g, P)
be a fixed probability space. An important and in many situations quite natural
measure of dependence between two arbitrary sub-g-fields A and @CF is the
absolute regularity (or B-mixing or weak Bernoulli) coefficient

B(A, B):=E sup | P(B/A)—P(B)|
Be3

which was first studied by Volkonskii and Rozanov [7] who attributed this
measure of dependence to Kolmogorov. As has been shown in B(A, 8)
can be described in a different way. Let P.eg be the restriction to the product-
g-field A® B of the measure on 2% £ induced by P and the diagonal mapping
oM (0, ) and P4, Pg denote respectively the restrictions to 4 and 8 of P.
Then we have

(1) B(A, B)= sup |Pea(C)—(PuXPg)C)]
ce®B

=3su 3 3 | P(ANB)—P(APB),
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where the latter sup is taken over all pairs of finite partitions {4,, ---, A,;} and
{B,, -+, By} of £ such that A,=4, i=1, -, [ and B, 8, j=1, -, J. Now,
let X={X(), t=0} be a real-valued random process on (2, ¥, P) and for
0<a=<b=oo the notation F4 will mean the ¢-field generated by the family
{X(#), a<t<b}. The random process X is then said to be absolutely regular
(or B-mixing or weak Bernoulli) if

(2) B(r):= sup B(FE, F8r) —> 0

as r—oo. Indeed much research has been done in the last years to study the
structure of stationary absolutely regular processes and to find conditions
(imposed on the moments and the rate of decay of B(r)) to hold the CLT, see
[81, 2], and references therein. However there is still a conspicious lack
of models which satisfy (2) because bounds of 8(r) are rather difficult to obtain.
The purpose of this note is to establish an appearentlyr sharp estimate of B(r)
for renewal processes which enables to derive rates of decay based on the
well-known convergence rates in Blackwell’s renewal theorem, see e.g. [3], [5]
and [6]. The proving technique used here is quite elementary and therefore
it might be of own interest. Let X;, X;, --- be independent and identically
distributed random variables on (2, ¥, P) with distribution function F satisfying

(3) F(0+)=1—F(c0)=0, m:=SR xdF(x)<oo,

where R,=(0, ). Further, let X, be a positive random variable on (2, &, P)
independent of X,, X,, --- with distribution function £. Set

So=§o::0y S :=t§1 X, §" :=X1+1§z X

for n=1, and consider the counting measure N respectively N given by
Ma, b]:=#{n: S,=(a, b]} and N(a, bl:=#{n:S.<(a, b]}

for 0<a<b<c. The connection between the counting measure N and the
partial sums S,, n=0 can be expressed by the following identity:

(4) {N(O; t1]=n1, N(tl: tZ]:nB’ ) N(tk—l: tk]:‘_nk}
={Sn,§t1<sn1+1, Sn1+n2§t2<sn1+n2+1, T Sn1+-~-+nkétn<snl+u-+nk+l}

for ny, -+, 1,20, 0<t,< - <tp<oo, k=1. An analogous relation holds between
N and the partial sums S,, n=0. Finally, we define the Palm renewal measure
H by

H(B):=EN(B)= ;::l P(S,=B),
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and the usual renewal measure H by
H(B):=ENB)= 3, P(S,<B)

for any Borel set BCR,. It is well-known from renewal theory that in case

the renewal process N is stationary, i.e. F(x)=—;TS:(1—F (t))dt, we have

(5) H(B)=L(B)/m, BCR.,

where L denotes the Lebesgue measure on R,. For brevity we introduce the
signed ¢-finite measure AH on R, by

(6) (AHYB):=H(B)—L(B)/m, BCR,.

We are now in a position to formulate the main result of this note.

Theorem. Let X(#)=N(0, t], t=R., be a stationary renewal process on
(2, &, P) as defined above such that (3) is satisfied. Then we have

c~-

(7) Bas, #p=2 sup | IAH)dx)]
osysaJb-y

for every a, b, cc R, with a<b<c.

2. Proof of Theorem

A monoton class argument shows that for the absolutely regularity coefficient
on the left side of (7) it is enough to consider the expression

Aoty =

1 .\ N N .
o E P(N(O; 31:|=n1,"',N(Sk—l,Sk]=nk, N(tO’tl]=m1"")N(tl—lytl]=ml)
2 mpimass

' —P(N(O, sid=ny, -, N(sg, s,,]=n,,>P(N(t.,, t,]=m,, -, Nt,-s, t;]=m,)|

and to find an upper bound of it which does not depend on the partitions
0=s,<5,< -+ <sp=a, b=t,<t,< - <t;=c for k,!=1. With the abbreviation
max(n,, -+, ng)=:n;V--Vn, we may write
(N, s:]=0}=8\ \J {NQ, s;J=ny, -, N(ss-1, Ss1=n4}
nqV-Vn gzl

and so together with (4) and

{Sn1+---+nk§ a <Sn1+-~+nk+l b= {Sn1+---+nk§ a }\{Sn1+---+n,,+1§ a}

the number Af9:f1:::4% is less than or equal to
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{ (N(O si]=ny, -, N(Sk—za Sk-1]=ns-y, §n1+---+nk§a:

nzo0

Sn1+ +nk+nsto<sn1+ Hngp+n+ls 7T Sn1+---+n,,+n+ml+---+mlétl

<§n1+---+nh+n+m|+-~-+m1+‘)—P(N(O’ siJ=ny, oo, N(sk-'z' Se-1]=n-s, S"l+"‘+”k§a’
§n1+---+n,,+n§t0<§nl+---+n,,+n+1)P(N(to; tl._.l:ml: Tty N(tz—n tl]=ml)H

-+

n1Ve- Vnk
"ll"i mie

=T1+Tg .

7E{-nvvith event {S, i.4n,+:1=<a} instead of {§,,1+...+,.,,§a}}l

We shall first treat the sum 7', in some detail. From the total probability rule using
the independence between (Si, -, Su ssn,) @0d (Snittnzeo—Sn ttng D21
and the stationarity of the renewal process X(f) we obtain that T, is equal to

v By 2 [ P(RO, sid=m, -, Nsaesy s-1=14-1/8npvecem,=t)
my, e, Mmy20
X{P(Sngto_t<sn+h ) Sn+m1+---+ml.$_tl"‘t<Sn+m1+---+ml+1>
—P(Sn§to_t<sn+1>P<N(to_t: tl-—tj=m1, Tty N(tl-x—t; tl_t]=ml)}
XP(S"X+"'+nkedt)|
= S P(N(O, Si]=ny, -, N(Sk-z, 3k—1]=nk-1/§n1+'--+nk=t>
nyv Vgl e

Xao'ml""'ml(to_t’ tLi—t, - ’ tl_t)P<§n1+...+nhEdt)ls
where 5°-’"1r"-.m1(t0‘;t: t,—t, .-+, t;—t) denotes the sum
1]
nEz:o {P<¢Q) {Sn+m0+m1+...+mq§tq—t< S"+mo+m1+m+mq+1})
! & A
_P(Q, {Sn+mo+ml+m+mqétq_t<Sn+mo+m1+...+mq+l}>}

with m,=0. In the same way T; can be shown to be equal to

nLv- Vn S:P(N(O' 81]=n1, T N(s*-% sk—l]:'nk-1/§n1+...+nh+l=t)
R

Xao,ml_..._ml(to“"t, tl'—'t’ teey, tl—t)P<§"1+"'+"k+1€dt)l'

In view of (4) and by definition of H and H we find that
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(8) 50,0,...,0(%—1‘, t,—t, -, ti—t)
= S {P(Sasti—t, i—t<Spus)—P(Sast—t, ti—t<San )}
S COE B S O R o)

+ nzgl {P<t0_t<sm Sn+1§tl—t)—P(tq—t<§n, S‘n.ﬂét;—t)}

[ @rxds- [ @Hxds+ | P(Sisti—t=s)aHXd

t
to

=—{"" (N0, ti—t—s1=0)aHXds).

to-

Next we consider [-tuples (m,, ---, m;) for which m,V---Vm,21. Let, for
example, m,=1 for some p<{l, ---,!} and m,=0 for ¢g<p. In this case
0o, my, .. my(to—t, t,—t, ==+, t,—t) can be rewritten as

EO{P(Snéto_t’ tp-l_t<Sn+l’ Sn+mp§tp—t<sn+mp+l’ ey,
Sn+mp+---+mlgtl_t<Sn+mp+...+ml+1)
—P(Sasti—t, tp—t<Snis, Snim, Sty—t<Snim i, -,
§”+mp+"'+ml§tl—t<§7‘+mp+~-7+ml+1)}
= Ea {P(tp—l'—t<sn+h s""'"‘pét?—t<sn+m‘p+1, e,
Sn+mp+-.-+ml_$_tl—t§Sn-{-mp-}-..‘.;.ml*.l)
_P<tp~l_t<§n+h §"+mp§tp_t<§ﬂ+mp+1, e,
§n+mp+...+m;gtl—t<§n+mp+.u+ml+1)}
— S {P(t—t<Sastyi—t, tp1—t<Snsr, Snam,Sty—t<Snsmpri o,
nz1
Sn+mp+...+ml§tl—t< S"+mp+---+ml+l)
—P(ts—t<SaStyi—t, tp i —t<Snss, Snim,Sto—t=Snam s
§n+mp+...+ml§tl"“t<§n+mp+...+ml+1)}
— El {P(tp—l—t<Sm S”+mp§tp—t<sn+mp+1, T
S‘n+mp+-..+1nlétl—t<Sn+mp+...+ml+1)
—P(tp-1—t<S, Snim, Sty—t<Snimyer

P

sn+mp+---+mz_S_tl_t<§n+mp+m+mz+1)} .

Again taking into account (4) and the definition of the renewal measures
H and H we may proceed the latter equality as follows:
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=S: P(SmpiSty—t—5<Sm,, -,
p-1-
Smprotmim1 St =< S pv..om, JAH)dS)
Ly -t
——Stp : P(tp-l—t—s<sl, Smp_tp‘_t S<S p'”’ ety
o
Sn m g+ - —t—s<Sn mpt +m,+1)(AH)(d3)
t,-t
=7 P(Smysts—t—5<Smpu, -,
p-1-
Smp+---+ml§_~tl”“t"'“3<Smp+...+m;+1)(AH)(ds)
t,-t
::Stp _¢P(N(0, tp—t'—S]=mp'—1, e, N(tl—l_t_s’ tl"'t_S]:ml)(AH)(dS)

—S p-i” P(N(o tpoa—t—s1=0, N{tpos—t—s, t,—~t—s]=m,, -,
Nty —t—s, t,—t—s]=m,)(AH)<ds>
—S‘”" P(NQ, ty—t—s1=m,, =, Nttii—t—s, ti—t—s]=m; AHXdS).
tp_y-t

In the next step we estimate the sum
lao.m,.---,m,(to_t, t,—t, -, tl'—t)l
myVv--Vmyz1

which is less than or equal to

{

El m?zl lao_...,o'mp'...’ml(to'— tp t tp+1 tl_t)l
Mpprs e M0

From the foregoing integral representations of 4, ... o.mp e my(bo—t, o+, tp—1,

tps1—t, -, t;—t) the latter sum is easily seen to be less than or equal to the

following expression:

2 [P P(NQ, tymi—t=51=0, Ntpoi—t—s, t,—t—s121)I(AHXds)|

to-t

+ " 1@amxas+ 5 (7

0~

P(NO, t,—t—s121)|(AH)(ds)]

p 17

=2{ " 1amxds)| | P(Mo, c—t—s]zO)I(AH)(ds)] .

Combining this with (8) we arrive at

(9) S 180, mpmto—t, ti—t, - —mszg I(AH)(ds)|.
my, o, mp20
Hence
T1§2n1\/ vnksz P(N(O S1]=n,y, -, N(Sk—z, Sk-1]=nk—1/§n,+---+nk=t)

x| 1 QHXdS) P(Supven )
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c-t -~
<2 supS (@HYXd) 5 P(RO, sJ=n,, -,
0stsa)b-t niVeVn Rzl
N(Sk—z, Sk-1]=MNg-1, §n1+--~+nk§a)

c-t N
s2gup, [GHXA9] B P(NGsi-, a12ns)
and in the same way we find that

Tus2sup | [AHXdS)| 5 P(N(ssos, alZns).

b
Finally, the definition of H and (5) yield

0stsa

c-t
(10) atg <2 sup | |AH)XA|(1+2(a—ss-0).
Since, for any s&(s;-;, a) (which can be chosen arbitrarily close to a),
A Bon i S ARl
the estimate can in fact be strengthened to

atgtytrsz sup [ |AH)ES)]
0stsaJb-t

for arbitrary partitions 0=s$,<$,< - <s,=a and b=t,<t,;< - <t;=c with

k, I=1. But this provides exactly the desired inequality (7) and so our

is completely proved.

3. Rates of decay of the absolute regularity coefficient

In this section we discuss some consequences of (7) which follow immediately
from the error estimates in Blackwell’s renewal theorem as they were obtained
by Stone and Wainger [6] (see also or [3]). In what follows an important
role will play the notion a distribution function F on R, is spread-out which
means that some convolution power of F has a non-trivial absolutely continuous
component with respect to the Lebesgue measure L. Assuming that the condi-
tions of are satisfied we obtain from (2) and (7) that

ﬁ(ﬂgzgj (AH)ds)|

and consequently
(11) lim ¢()B(r)=0

provided that the function ¢|R.»> R, is non-decreasing and
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(12) [ 66 AH)ds) <o

Corollary. Let X(@)=NQ, t], teR, be a stationary renewal process as in
the above Theorem directed by a distribution function F which is spread-out and
satisfies (3). Further, let p=0, 0<a=1 and ¢>0. Then

(13) SR xP*dF(x)<oo implies lim r®B(r)=0
+ T 00

and

(14) SR = dF(x)<oo implies lim e’ *B(r)=0
+ T =00

for some b, 0<b=c.

Proof. Both implication [(I3) and follow from Theorems 3.16 and 3.18
in which say that the assumption ‘F is spread-out’ and the conditions
resp. are sufficient to hold

SR sP|(AH)(ds)| <oo resp. SR 2" |(AH)(ds)| < oo

for some b, 0<b<c. Thus, combining this with [10) and proves the
Corollary|.

In conclusion it should be noted that already Matthes and Nawrotzki
stated the absolute regularity of a stationary renewal process, i.e. lim,..8(r)=0,
whenever F is spread-out and satisfies (3). However, the technique employed
there is not suitable for obtaining quantitative bounds for the rate of B(r).
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