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Summary. Matusita’s r-metric on the set of probability measures on a measur-
able space is extended to the set of signed measures. Special cases are $r=1$

and $r=2$ which coincide with the total variation and Hellinger metric respec-
tively. Inequalities between these metrics are presented. As a consequence
it is obtained that the topologies induced by the total variation norm and the
r-metric are equivalent.

1. Introduction

In statistics and probability theory frequent use is made of two well-known
metrics on the space $R_{1}(X, \mathcal{F})$ of probability measures on the measurable space
(X, $\mathcal{F}$ ), namely the total variation metric $d_{v}$ and the Hellinger metric $d_{H}$ . These
metrics are used for instance in Kakutani [6], Kraft [7], LeCam [8], Dacunha-
Castelle [3], and Reiss [12]. The total variation and Hellinger metric are ob-
tained as special cases of the so-called r-metric $d_{r}$ taking $r=1$ and $r=2$, respec-
tively. The metric $d_{r}$ plays a nice part in the study of the affinity of several
probability distributions. These notions were introduced by Matusita $[9, 10]$ .

If the probability measures $P$ and $Q$ on (ee, 9) are dominated by the $\sigma-$

finite measure $\lambda$ , and $P$ and $q$ respectively are nonnegative versions of the
Radon-Nikodym derivatives of $P$ and $Q$ with respect to $\lambda$ , then

$d_{r}(P, Q)=[\int_{x}|p^{1/r}-q^{1/r}|^{r}d\lambda]^{1/r}$ (1.1)

In fact Matusita [9] uses this metric only for $r=1,2,$ $\cdots$ . We have

$ d_{v}(P, Q)=d_{1}(P, Q)=\int_{x}|p-q|d\lambda$ (1.2)

and
$d_{H}(P, Q)=d_{2}(P, Q)=\sqrt{2-2\rho(P,Q)}$ , (1.3)

where

$\rho(P, Q)=\int_{x}p^{1/2}q^{1/2}d\lambda$ , (1.4)
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which is called the Hellinger affinity of $P$ and $Q$ . Kraft [7] established the
following fundamental inequality

$d_{H}^{l}(P, Q)\leqq d_{v}(P, Q)\leqq 2(1-\rho^{2}(P, Q))^{1/2}\leqq 2d_{H}(P, Q)$ . (1.5)

The Hellinger affinity defined in (1.4) is a nice tool in deriving e.g. an inequality

needed for estimating the total variation distance between two product measures
in terms of distances between the separate components. For $i=1,$ $\cdots$ , $k$ let
$(X_{\ell}, \mathcal{F}_{\ell})$ be a measurable space and $P_{\ell}$ and $Q_{\ell}$ probability measures on $(X_{\ell}, \mathcal{F}_{\ell})$ ,

then

2–2 $\exp(-8^{-1}\sum i_{=1}d_{v}^{g}(P_{i}, Q_{\ell}))\leqq d_{v}(\times:_{=1}P_{\ell}, \times_{i\approx 1}^{i}Q_{\ell})$

$\leqq\sum i_{\approx 1}d_{v}(P_{\ell}, Q_{\ell})$ . (1.6)

With regard to this inequality reference should be made to [5], [2], [1], [13],

and [12]. Inequalities like (1.6) can be applied in order to derive so-called
zero-one laws or equivalence-orthogonality dichotomies of products of probability

measures. We refer to e.g. [6], [2], [11], [13], and [4].

In order to obtain an asymptotic expansion of the joint distribution of order
statistics Reiss [12] needed an inequality like (1.6) for finite signed measures:

$d_{v}(\times i_{\fallingdotseq 1}\mu_{i}, \times_{\ell\Leftrightarrow 1}^{\iota}\nu_{\ell})\leqq\sum i_{=1}(\Pi_{f=1}\ell-1\Vert\mu_{f}\Vert)(\Pi j.\ell+1\Vert\nu_{j}\Vert)d_{v}(\mu_{\ell}, \nu_{\ell})$ , (1.7)

where $\mu_{\ell}$ and $\nu_{i}$ are finite signed measures on the measurable space $(X_{\ell}, \mathcal{F}_{\ell})$ ,
$\Vert\mu_{\ell}\Vert=d_{v}(\mu_{\ell}, 0)$ and $\Vert\nu_{f}\Vert=d_{v}(\nu_{f}, 0)$ . (Products in (1.7) with empty index-set are
defined to be equal to one.) The question arose whether a lower bound could
be obtained for the total variation distance between two products of finite signed
measures, having (1.6) as a special case. Note that the right part of (1.6) fol-
lows from (1.7). Since the derivation of (1.6) heavily depends on (1.3) and (1.5),

a first task is to extend the concepts Hellinger affinity and metric to finite
signed measures. This is done in [14] with the following consequence:

$d_{v}(\times k\ell=1\mu_{\ell}, \times ki=1\nu_{\ell})\geqq\Pi_{t\Rightarrow 1}^{k}\Vert\mu_{\ell}\Vert+\Pi i_{=1}\Vert\nu_{i}\Vert+$

$-2[\Pi_{i=1}^{k}\Vert\mu_{\ell}\Vert\cdot\Vert\nu_{\ell}\Vert]^{1/2}$ exp $(-8^{-1}\Sigma_{i=1}^{k}d_{v}^{2}(\tilde{\mu}_{i},\tilde{\nu}_{i}))$ , (1.8)

where $\tilde{\mu}_{i}=\Vert\mu_{\ell}\Vert^{-1}|\mu_{\ell}|$ and $\tilde{\nu}_{\ell}=\Vert\nu_{\ell}\Vert^{-1}|\nu_{i}|$ for $i=1,$ $\cdots$ , $k$ . Recall that $|\mu_{i}|$ and
$|\nu_{i}|$ are the total variation measures associated with $\mu_{\ell}$ and $\nu_{i}$ .

Another question arises. Can Matusita’s r-metric be extended to finite
signed measures for arbitrary $r\geqq 1$ ? (Matusita [9] considered $r=1,2,$ $\cdots$ for
probability measures.) In section 2 we answer this question affirmatively.
Section 3 presents extensions of some results from [9]. The proofs are simpler
for the cases where Matusita assumes that $r$ is a natural number.
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2. The r-metric for signed measures

Let .St $=\ovalbox{\tt\small REJECT}(X, \mathcal{F})$ denote the space of finite signed measures on the meas-
urable space $(nc, \mathcal{F})$ , and $\ovalbox{\tt\small REJECT}_{1}$ the subset of all probability measures. For $\tau\in\ovalbox{\tt\small REJECT}$

let $|\tau|$ denote the total variation measure associated with $\tau$ . $\ovalbox{\tt\small REJECT}$ is a Banach
lattice with respect to the total variation norm $\Vert\cdot\Vert$ defined by $\Vert\tau\Vert=|\tau|(X)$ .
This norm has the extra property that $\Vert\mu+\nu\Vert=\Vert\mu\Vert+\Vert\nu\Vert$ for $\mu,$

$\nu\geqq 0$ (see [15],
369-370). The total variation metric $d_{v}$ on .St is the metric induced by this
norm. For $\mu,$

$\nu\in\ovalbox{\tt\small REJECT}$ , let $\lambda$ be a a-finite measure on $(X, \mathcal{F})$ such that $\mu,$
$\nu\ll\lambda$

and let $f\in d\mu/d\lambda,$ $ g\in d\nu/d\lambda$ , then

$ d_{v}(\mu, \nu)=\Vert\mu-\nu\Vert=\int_{x}|f-g|d\lambda$ . (2.1)

Matusita [9] introduced the r-metric for probability measures. We extend
Matusita’s definition to arbitrary finite signed measures and generalize the re-
striction $r=1,2,$ $\cdots$ to $r\geqq 1$ . This is done by defining

$d_{r}(\mu, \nu)=[\int_{x}|f_{+}^{1/r}-g_{+}^{1/r}|^{r}d\lambda+\int_{x}|f_{-}^{1/r}-g_{-}^{1/r}|^{r}d\lambda]^{1\prime r}$ , (2.2)

where $x_{+}=\max(x, 0)$ and $x_{-}=-\min(x, 0)$ . Note that the definition of $d_{r}(\mu, \nu)$

does not depend on the choices of $\lambda$ and $f\in d\mu/d\lambda,$ $ g\in d\nu/d\lambda$ . Since $f,$ $g\in X_{1}$ ,

we have that $f_{+}^{1/r},$ $g_{+}^{1/r},$ $f_{-}^{1/r},$ $g_{-}^{1/r}\in x_{r}$ . Hence $|f_{+}^{1/r}-g_{+}^{1/r}|,$ $|f_{-}^{1/r}-g_{-}^{1\prime r}|\in \mathcal{L}_{r}$

and thus $d_{r}(\mu, \nu)$ is well-defined.
Let $\Vert\cdot\Vert_{r}$ denote the r-norm on $R^{2}$ : $\Vert(x, y)\Vert_{r}=(|x|^{r}+|y|^{r})^{1/r}$ . Then

$d_{r}(\mu, \nu)=\Vert(d_{r}(\mu_{+}, \nu_{+}),$ $d_{r}(\mu-, \nu_{-}))\Vert_{\tau}$ , (2.3)

where $\mu_{+}(B)=\int_{B}f_{+}d\lambda$ for any $B\in \mathcal{F}$ , etc. In establishing that $d_{r}$ is a metric,

the triangle inequality follows from (2.3) and Minkowski’s inequality:

$d_{r}(\mu, \tau)\leqq\Vert(d_{r}(\mu_{+}, \nu_{+})+d_{r}(\nu_{+}, \tau_{+}),$ $d_{r}(\mu-, \nu_{-})+d_{r}(\nu_{-}, \tau_{-}))\Vert_{r}$

$\leqq\Vert(d_{r}(\mu_{+}, \nu_{+}),$ $d_{r}(\mu-, \nu_{-}))\Vert_{r}+\Vert(d_{r}(\nu_{+}, \tau_{+}),$ $d_{r}(\nu_{-}, \tau_{-}))\Vert_{r}$

$=d_{r}(\mu, \nu)+d_{r}(\nu, \tau)$ .
For $r=1$ we obtain the total variation metric $d_{v}$ . Taking $r=2$ the Hellinger
metric $d_{H}$ is found. For probability measures this metric is well-known, see
e.g. [6]. In [14] it was generalized to finite signed measures. It can easily be
seen that

$d_{H}(\mu, \nu)=[\Vert\mu\Vert+\Vert\nu\Vert-2\rho(\mu, \nu)]^{1/2}$ (2.4)

$\rho(\mu, \nu)=\int_{x}f_{+}^{1/2}g_{+}^{1/2}d\lambda+\int_{x}f_{-}^{1\prime 8}g_{-}^{1\prime 8}d\lambda=\int_{A}|fg|^{1/g}d\lambda$ , (2.5)

where $A=\{fg>0\}$ . The quantity $\rho(\mu, \nu)$ is called the Hellinger affinity between
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$\mu$ and $\nu$ . Matusita [9] and [10] consider affinities between more than two pro-
bability measures.

3. Inequalities for the r-metric

The total variation distance between two finite signed measures can be
estimated by using r-metrics. We need the following lemma which is an im-
mediate consequence of H\"older’s inequality.

Lemma 3.1. Let $a,$ $b,$ $c,$ $d\geqq 0$ . If $r,$ $s>1$ with $r^{-1}+s^{-1}=1$ , then a $b^{1/s}+$

$c’/rd^{1/*}\leqq(a+c)^{1/r}(b+d)^{1/S}$ .

The next theorem extends the results contained in the Theorems 4 and 5 of
[9]. The upper bound presented is believed to be new.

Theorem 3.2. Let $\mu,$
$\nu\in\ovalbox{\tt\small REJECT}$ , then $d_{r}^{r}(\mu, \nu)$ is decreasing in $r$ on $[1, \infty$ ). If

$r,$ $s>1$ with $r^{-1}+s^{-1}=1$ , then

$d_{r}^{r}(\mu, \nu)\leqq d_{v}(\mu, \nu)\leqq\Vert\mu\Vert^{1/s}d_{\tau}(\mu, \nu)+\Vert\nu\Vert^{1/r}d_{*}(\mu, \nu)$ . (3.1)

Proof. Note that the function $\varphi(x)=|a^{1/x}-b^{1/x}|^{x}$ , where $a,$ $b>0$ , is decreas-
ing on $(0, \infty)$ . Using this fact, formula (2.2) and the relation $|x-y|=|x_{+}-y_{+}|$

$+|x_{-}-y_{-}|$ , $x,$ $y\in R$ , we obtain the first inequality of (3.1). The second one
is established as follows. By aPplying H\"older’s inequality we derive

$ d_{v}(\mu_{+}, \nu_{+})=\int|f_{+}-g_{+}|d\lambda$

$\leqq\int|f_{+}^{1\prime r}-g_{+}^{1/r}|f_{+}^{1/s}d\lambda+\int|f_{+}^{1/s}-g_{+}^{1/\epsilon}|g_{+}^{1\prime r}d\lambda$

$\leqq\Vert\mu_{+}\Vert^{1/S}d_{r}(\mu_{+}, \nu_{+})+\Vert\nu_{+}\Vert^{1/r}d_{\iota}(\mu_{+}, \nu_{+})$ .
Analogously we obtain

$d_{v}(\mu-, \nu_{-})\leqq\Vert\mu_{-}\Vert^{1/*}d_{r}(\mu-, \nu_{-})+\Vert\mu_{-}\Vert^{1/r}d_{\iota}(\mu-, \nu_{-})$ .
Lemma 3.1 provides

$d_{v}(\mu, \nu)=d_{v}(\mu_{+}, \nu_{+})+d_{v}(\mu_{-}, \nu_{-})$

$\leqq(\Vert\mu_{+}\Vert+\Vert\mu_{-}\Vert)^{1/\iota}(d_{r}^{r}(\mu_{+}, \nu_{+})+d_{r}^{r}(\mu-, \nu_{-}))^{1/r}$

$+(\Vert\nu_{+}\Vert+||\nu_{-}\Vert)^{1/r}(d\$(\mu_{+}, \nu_{+})+d_{*}^{l}(\mu-, \nu_{-}))^{1/S}$

$=\Vert\mu\Vert^{1/*}d_{r}(\mu, \nu)+\Vert\nu\Vert^{1/r}d.(\mu, \nu)$ . $\square $

Taking $r=2$ we obtain from Theorem 2 an upper and lower bound of $d_{v}$ in
terms of $d_{H}$ . However, in this special case the upper bound can be sharpened,
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by using the Hellinger affinity defined in (2.5):

$d_{v}(\mu, \nu)\leqq[(\Vert\mu\Vert+\Vert\nu\Vert)^{2}-4\rho^{2}(\mu, \nu)]^{1/2}\leqq(\Vert\mu\Vert^{1/2}+\Vert\nu\Vert^{1/2})d_{H}(\mu, \nu)$ .
This result is an extension of Lemma 1 of [7] and it is established in [14].

The following result provides another upper estimate for the total variation
distance in terms of only one r-metric instead of two as was the case in
Theorem 3.2. It generalizes Matusita [9], Theorem 3, which contains the
result for probability measures in the case that $r>1$ is a natural number.

Theorem 3.3. For $r,$ $s>1$ with $r^{-1}+s^{-1}=1$ ,

$d_{v}(\mu, \nu)\leqq\max(1, r/2)(\Vert\mu\Vert^{1/*}+\Vert\nu\Vert^{1/*})d_{r}(\mu, \nu)$ . (3.7)

Proof. Define $C=\max(1, r/2)$ . Using the inequality

$t^{\tau}-1\leqq C(t-1)(t^{r-1}+1)$ , $t\geqq 1$ ,

we obtain according to Lemma 3.1 that

$|f-g|=|f_{+}-g_{+}|+|f_{-}-g_{-}|$

$\leqq C\{|f_{+}^{1/r}-g_{+}^{1/r}|(f_{+}^{1/S}+g_{+}^{1/*})+|f_{-}^{1\prime r}-g_{-}^{1\prime r}|(f_{-}^{1\prime*}+g_{-}^{1\prime*})\}$

$\leqq C(|f_{+}^{1\prime r}-g_{+}^{1\prime r}|^{r}+|f_{-}^{1\prime r}-g_{-}^{1\prime r}|^{r})^{1/r}$

$\times((f_{+}^{1\prime*}+g_{+}^{1/\ell})^{\iota}+(f_{-}^{1\prime*}+g_{-}^{1\prime\iota})^{*})^{1/s}$

$\leqq C(|f_{+}^{1\prime r}-g_{+}^{1\prime\tau}|^{r}+|f_{-}^{1\prime r}-g_{-}^{1\prime r}|^{r})^{1/r}(|f|^{1/*}+|g|^{1/})$ .
The result follows by applying the inequalities of H\"older and Minkowski.

The following result is suggested by Prof. Dr. A. J. Stam. It follows from
the Theorems 3.2 and 3.3.

Theorem 3.4. The toPologies on ,.fin induced by $\Vert\cdot\Vert resP$ . $d_{r}(r>1)$ are
equivalent.

Proof. Let $s$ satisfy the relation $r^{-1}+s^{-1}=1$ . Let $\mu\in R$ and consider the
sequence $t\mu_{n}$ } in $\ovalbox{\tt\small REJECT}$ . If $d_{v}(\mu_{n}, \mu)\rightarrow 0$ , then according to Theorem 3.2 it follows
that $d_{r}(\mu_{n}, \mu)\rightarrow 0$ . Conversely suppose that $d_{r}(\mu_{n}, \mu)\rightarrow 0$ . Note that $\Vert\mu_{n}\Vert=$

$d_{r}^{r}(\mu_{n}, 0)$ , hence the sequence $\{\Vert\mu_{n}\Vert\}$ is bounded. From Theorem 3.3 it now
follows that $d_{v}(\mu_{n}, \mu)\rightarrow 0$ . $\square $
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