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Abstract. Yoshihara [10] derived bounds for the concentration functions for
partial sums of strictly stationary sequences of random variables with the
absolutely regular Property present. In this work, bounds for uniform and
strong mixing sequences of random variables are obtained. They are algebrai-
cally simple, and are of the known asymptotic form. Properties of the
characteristic function are utilized here.

1. Introduction

The aim of this study is to assess the asymptotic performance order for the
concentration function of the partial sums of strictly stationary random variables
satisfying some of the usual mixing properties. In recent years, concentration
functions have been proposed in a variety of approximation problems (Petrov,

1975, Arak and Zaitsev, 1983). Particular attention has been paid to partial
sums of independent variables, as can be seen in Doeblin and $b^{\prime}vy[4]$ , Kolmo-
gorov [8], Rogozin [9] and a decade later in Kesten [7] and Ess\’een [5]. This
is due to the close relationship between distances in the space of probability
distributions and concentration functions. The main tool used to determine the
concentration function’s asymptotic form is properties of convolution functions,

and for infinitely divisible distributions, the use of the L\’evy spectral measure.
Now, if independence is replaced by strictly stationary sequences of random
variables, then the results of convolution functions are invalid. Even so, Yo-
shihara [10] has been able to provide a lower and upper bound for the con-
centration function for strictly stationary sequences (s.s.) of random variables
satisfying the absolutely regular property. The attention of this work is focused
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on obtaining inequalities for the concentration function, but with a uniform and
strong mixing property present. The proposed method is based on characteristic
functions (c.f.).

2. Notations and main results

Consider a strict sense stationary sequence $X_{1},$ $X_{2},$ $\cdots$ of real valued random
variables (r.v.) on some probability space $(\Omega, 3, P)$ , with $EX_{n}=0$ and $ EX_{n}^{2}<\infty$ .
Let $F_{X}(t),$ $t\in R$ , denote the characteristic function $(c.f.)$ of a r.v. $X$ and let
$Q(X;\lambda)=\sup_{x}P(x\leqq X\leqq x+\lambda)$ denote its concentration function for every $\lambda\geqq 0$ .
For $-\infty\leqq j<t\leqq\infty$ , let $\mathfrak{J}_{f}^{t}$ denote the a-field generated by $X_{j},$ $X_{j+1},$ $\cdots$ , $X_{t}$ .
Two kinds of measures of mixing are considered here. Allow $\varphi:N\rightarrow[0,1]$ to
be a non-increasing sequence, and call the sequence $\{X_{j} ; j\in N\}$ uniform mixing
(u.m.) if, for all $n,$ $m\in N$,

(2.1) $\varphi(n)=\sup_{A\in \mathfrak{J}_{n+m}^{\infty}}\Vert P(A|\mathfrak{J}_{-\infty}^{m})-P(A)\Vert_{\infty}\downarrow 0$ as $ n\uparrow\infty$ ,

where $\Vert\cdot\Vert_{p}$ denotes the norm for $x^{p}(\Omega, 3, P)$ . And let $\alpha:N\rightarrow[0,1]$ be a non-
increasing sequence. The sequence $\{X_{j} ; j\in N\}$ is called strong mixing (s.m.)

with mixing coefficient $\alpha(J)$ , if

(2.2) $\alpha(n)=1/2\sup_{A\in \mathfrak{J}_{n.m}^{*}}\Vert P(A|\mathfrak{J}_{-\infty}^{m})-P(A)\Vert_{1}\downarrow 0$ as $ n\uparrow\infty$ .

In the statements and expressions below, some notations are required. The
partial sums of $\{X_{j} ; j\in N\}$ are denoted by $S_{n}$ $:=X_{1}+\cdots+X_{n}$ , $n\leqq 1$ . For the
situations given in the conditions, theorems and in the proofs, the Bernstein’s
blocking decomposition is required. Define $\xi_{m}$

$:=\sum_{f}X$ , $\eta_{m}$ $:=\sum_{j^{2m}}X_{j}$ , $m=$

$0,1,$ $\cdots$ , $k-1$ and $\eta_{k}\S$ , where $\sum_{j}1m$ denotes summation over $j$ from
$m(p+q)+1$ to $m(p+q)+p,$ $\sum_{j}2m$ denotes summation over $j$ from $m(p+q)+p+1$

to $(m+1)(p+q)$ and $\Sigma_{S}$ denotes summation over $j$ from $k(p+q)+1$ to $n$ . Then,
$S_{n}=S_{n}^{\prime}+S_{n}^{\prime\prime}$ , where $s_{n^{=\sum\xi_{j}}}^{j,k-1}$ and $S_{n}^{\prime\prime}=\sum\eta_{j}h$ The standardized form is presented

$j=0$ $f=0$

by $Z_{n}=Z_{n}^{\prime}+Z_{n}^{\prime\prime}$ , where $Z_{n}=S_{n}/s_{n},$ $Z_{n}^{\prime}=S_{n}^{\prime}/s_{n},$ $Z_{n}^{\prime\prime}=S_{n}^{\prime\prime}/s_{n}$ and $s_{n}^{2}=Var(S_{n})$ .
Prior to stating the sufficient conditions of the results of this study, the

following notations and comments are in order.
$i$ . The measure $L(x, n)$ depends on $\xi_{0}/s_{n}$ ; it is non-decreasing in the inter-

vals $(-\infty, 0)$ and $(0, \infty)$ , and satisfies the conditions $L(-\infty, n)=0,$ $L(\infty, n)$

$=0$ and $\oint_{|x|\leq\delta}x^{2}dL(x, n)<\infty$ , for any finite $\delta>0$ . The existence of the
measure $L(x, n)$ is secured from the fact that the c.f. of $\xi_{0}$ is infinitely
divisible and from Theorem 5, p. 32 in Petrov (1975).

ii. The symbol $\oint signifies$ that the point zero is excluded from the domain of
integration.
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iii. $k=[n/(p+q)]$ and $[x]=\max$ { $1$ , max $\{j\in N:j\leqq x\}$ }.
iv. The symbol $\ll$ was initiated by Vinogradov, which is used instead of the

usual O-symbol whenever it is found convenient.

We shall consider the following set of conditions:

A. The sequence $\{X_{j} ; j\in N\}$ is strictly stationary with $EX_{n}=0$ and $ EX_{n}^{2}<\infty$ .
For the partial sums $S_{n}$ and the r.v.’s $\xi_{f}’ s$ , we suppose that:
a) $s_{n}^{2}/n\rightarrow\sigma^{2}$ as $ n\uparrow\infty$ , for some $\sigma>0$ , where $\sigma^{2}=EX_{1}^{2}+2\sum_{j=1}^{\infty}EX_{1}X_{f+1}$ ,

b) $\inf_{n\in N}s_{n}^{2}/n>0$ ,
c) $sup\{E(S_{m+n}-S_{n})^{2}/n;m, n\in N\}<\infty$ ,
d) $\sup_{n\geqq 1}Q(\xi_{0}/s_{n} ; \lambda)=N<1$ , for $N$ some constant.

B. The sequence defined in A satisfies the following conditions:
a) $\xi_{0}$ has an infinitely divisible characteristic function,

b) for any $r^{2}>0,$ $\inf_{n\geqq 1}\{r^{2}+\oint_{Ix1\leq\lambda}x^{2}dL(x, n)\}=M>0$ , for $M$ some constant.

C. The sequence defined in A is a uniform mixing. With respect to integer
$p,$ $q$ and $k$ , and the uniform mixing coefficient, we impose the following:
a) $p,$ $q,$

$k$ and $p/q$ tend to infinite as $ n\uparrow\infty$ ,
b) $n^{-1\prime 4}\ll\max\{k^{-1/2}, \sqrt{q/p}, \sqrt{p/n}, k\varphi(q), \{\sum_{j\geq P}\varphi^{1/2}(j)\}^{1/2}\}\ll n^{-1/4}$ .

D. The sequence defined in A is a strong mixing, with
a) for any $\beta\in(2, \infty$] and $\gamma=2/\beta,$ $\sup_{i\leq n}\Vert X_{\ell}\Vert_{\beta}^{2}<\infty$ ,
b) $p,$ $q,$

$k$ and $ p/q\uparrow\infty$ as $ n\uparrow\infty$ ,
c) $n^{-1/4}\ll\max\{k^{-1/2},$ $\sqrt{q/p},$ $\sqrt{p/n},$ $k\alpha(q),$

$\{\sum_{j\geqq p}\alpha^{1-\gamma}(j)\}^{1/2}\ll n^{-1/4}$ .

The aim of this paper is to develop Yoshihara-type results with uniform
and strong mixing properties present. Our findings can be summarized as
follows:

Theorem 1. SuPpose that the sequence $\{X_{j} ; j\in N\}$ satisfies the set of condi-
tions in A and C. Then, for any $\lambda>0$

(3.1) $Q(S_{n}/s_{n} ; \lambda)\ll n^{-1/4}$ .
Further, if the set of conditions in $B$ is satisfied, then for any $\lambda>0$

(3.2) $n^{-1/4}\ll Q(S_{n}/s_{n} ; \lambda)$ .

Theorem 2. SuPpose that $\{X_{j} ; j\in N\}$ satisfies the set of conditions in A and
$D$ , then (3.1) holds. Further, if the set of conditions in $B$ is satisfied, then (3.2)

holds.
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Variations of these theorems are also possible. For example, one may relax
some of the conditions given above. In particular, strict stationary assumptions
may be substituted by weak stationary assumptions. Of course, this may be
done at the expense of algebraic simplicity. Or one may allow stable distribu-
tions with some specified exponent, as is seen in [10].

3. Auxiliary results

In establishing Theorems 1-2, we are aided by using a series of Lemmas.
Specifically, the following two Lemmas are consequences of some well known
results. The first was extracted from [2] (p. 17) for the uniform mixing and
the second is from [3] for the strong mixing.

Lemma 1. Let $\{X_{j} ; j\in N\}$ be a sequence of $s.s$ . $r.v$ . $s$ satisfying the uniform
mixing property. Then, for all $k,$ $j\in\{1,2, \cdots , n\}$ with $k\neq j$ the following in-
equality holds:

$|EX_{k}X_{f}|\leqq 2\varphi^{1/r}(|k-j|)\Vert X_{j}\Vert_{r}\Vert X_{k}\Vert_{\iota}$

for $\gamma,$ $s>1$ and $r^{-1}+s^{-1}=1$ .

Lemma 2. Let $\{X_{j} ; j\in N\}$ be a sequence of $s.s.r.v’ s$ satisfying the strong
mixing property. Let $\beta\in(2, \infty$] and $\gamma=2/\beta$ . Then, for all $k,$ $j\in\{1,2, \cdots , n\}$

with $k\neq j$ , the following inequality holds:

$|EX_{k}X_{j}|\leqq 12\alpha^{1-\gamma}(|k-j|)\Vert X_{k}\Vert_{\beta}\Vert X_{j}\Vert_{\beta}$ .

The Lemma presented below can also be found in [1] (p. 41).

Lemma 3. Suppose $X$ and $Y$ are real-valued independent variables. Then,

for any $\lambda\geqq 0$ ,

$Q(X\pm Y ; \lambda)\leqq\min\{Q(X;\lambda), Q(Y ; \lambda)\}$ .

Lemmas 4 and 5 relate concentration functions and characteristic functions
through inequalities. Both of them are restatements of Lemmas 3 and 4 in
Petrov (1975, pp. 38, 41).

Lemma 4. For any real-valued random variable, with $c.f$ . $p(t),$ $t\in R$ and
concentration function $Q(X;\lambda),$ $\lambda\geqq 0$ , we have that

$Q(X;\lambda)\leqq(\frac{96}{95})^{\mathfrak{g}}$ max $(\lambda, 1/a)\int_{|t|\leq a}|fl(t)|dt$

for every $a>0$ .
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Lemma 5. For any real-valued random $X$, with $c.f.\hat{F}(t),$ $t\in R$ and concen-
tration function $Q(X;\lambda),$ $\lambda\geqq 0$ , we have that

$Q(X;\lambda)\geqq\frac{95\lambda}{256\pi(1+2a\lambda)}\int_{|t|\leq a}|fi(t)|dt$

for every non-negative $a$ .

The following Lemma can also be found in [1].

Lemma 6. SuppOse that $G(\cdot)$ is a probability measure related to a symmetric
random variable $X$ satisfying

$\int_{-\infty}^{\infty}\frac{x^{2}}{1+x^{2}}G(dx)<\infty$ ,

then, for any $r^{2}\geqq 0$ and $\lambda\geqq 0$ , it yields

$\int_{|t|\leq\lambda-1}$ exp $(-r^{2}t^{2}/2-(\int_{-\infty}^{\infty}$ (1– cos $tx$ )$G(dx)$)) $dt\leqq c(r^{2}+D(X;\lambda))^{-1/2}$ ,

where $D(X;\lambda)=\int_{|x|\leqq\lambda}x^{2}G(dx)+\lambda^{2}\int_{|x|>\lambda}G(dx)$ , and $c>0$ .

4. Proofs

This segment of our work investigates how some arguments used for in-
dependence are also engaged for the dependence case. Specifically, we show
some key expressions employed for s.s. sequences of $u$ .m.r.v.’s to pursue the
analysis using some classical results. The same ideas can also be carried out
for s.m. sequences of r.v.’s. It can be seen that the use of truncated arguments
is not required here ([10]). The symbol $c$

’ denotes a generic positive constant,
not necessarily the same at each appearance, while $c_{j},$ $j=1,2,$ $\cdots$ denotes par-
ticular versions of $c$ . We shall begin with the proof of Theorem 1.

Proof of Theoorem 1. From the definition of $Z_{n}$ it is not hard to see that

(4.1) $||E$ exp $(itZ_{n})|-|E\exp(itZ_{n}^{\prime})||\leqq E|\exp(jtZ_{n}^{\prime\prime})-1|=2E|$ sin $(tZ_{n}^{\prime\prime}/2)|$ .
Calling upon Lemma 4 for $a=\lambda^{-1}$ and (4.1), one obtains that

(4.2) $Q(Z_{n} ; \lambda)\leqq c_{1}\lambda\int_{|t|\leq\lambda-1}|E$ exp $(itZ_{n}^{\prime})|dt+2c_{1}\lambda\int_{|t|\leqq\lambda-1}E|$ sin $(tZ_{n}^{\prime\prime}/2)|dt$ .

The verification of the second assertion being of order $n^{-1/4}$ will be accomplished
by noting that since $|$ sin $x|\leqq|x|$ and since $\Vert\cdot\Vert_{r}\leqq\Vert\cdot\Vert_{*}$ for $r\leqq s$ , it yields

(4.3) $ 2c_{1}\lambda\int_{|t|\leq\lambda-1}E|\sin(tZ_{n}^{\prime\prime}/2)|dt\leqq 2c_{1}\Vert Z_{n}^{\prime\prime}\Vert_{2}/\lambda$ .

In conjunction with A(a), A(b), A(c) and Lemma 1, for $r=2$ , it is quite apparent
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that if $C$ holds,

(4.4) $EZ_{n^{J2}}^{\prime}\leqq s_{n}^{-2}\sum_{j=0}^{k}E\eta_{f}^{2}+2s_{\overline{n}}^{2}\sum_{1\leq t\leq n}\sum_{t+p\leqq j\leq n}|EX_{t}X_{f}|$

$\leqq c_{g}s_{n}^{-2}(kq+p+q)+4ns_{n}^{-8}\sum_{J>p}\varphi^{1/2}(j)\sup_{f\leq n}\Vert X_{j}\Vert_{2}^{2}$

$\ll n^{-1/2}$ .
The completion of showing that (4.3) is bounded above by an expression of
order $n^{-1/4}$ is thus achieved. The proof that the first assertion is of the same
order as (4.3) is slightly more complex. We proceed as follows: Via the sta-
tionary property and the arguments on p. 318 of [6], where instead of the
strong mixing coefficient $\alpha(\cdot)$ we substitute the uniform mixing coefficient $\varphi(\cdot)$ ,

it can be seen that

(4.5) $||E\prod_{f=0}^{k-1}\exp(it\xi_{j}/s_{n})|-|E\exp(it\xi_{0}/s_{n})|^{k}|\leqq 16k\varphi(q)$ .
By inserting (4.5) into the first assertion of (4.2), it follows that

(4.6) $c_{1}\lambda\int_{|t|\leq\lambda-1}|E\exp(itZ_{n}^{\prime})|dt\leqq c_{1}\lambda\int_{|t|\leq\lambda-1}|E$ exp $(it\xi_{0}/s_{n})|^{k}dt+16c_{1}k\varphi(q)$ .
Referring to condition $C$ , the proof of the first part of Theorem 1 will be ac-
complished by showing that only the first term in the right hand side of (4.6)

is of order $n^{-1/4}$ . Define $\xi_{0}^{*}=\xi_{0}-\xi_{0}^{\prime}$ , where $\xi_{0}^{\prime}$ is an independent and equiprobable
random variable to $\xi_{0}$ . Since $x\leqq e^{x-1}$ and from Lemma 6, it follows that

(4.7) $ c_{1}\lambda\int_{|t|\leq\lambda-1}|E\exp(it\xi_{0}/s_{n})|^{k}dt\leqq c_{1}\lambda\int_{|t|\leq\lambda-1}\exp$ ( $-(k/2)E(1-$ cos $(t\xi_{0}^{*}/s_{n}))$) $dt$

$\leqq c_{2}\lambda(kD(\xi_{0}^{*}/s_{n} ; \lambda))^{-1/2}$ .
Now, because $D(\xi_{0}^{*}/s_{n} ; \lambda)$ is a non-decreasing function with respect to $\lambda$ , we
have that

$D(\xi_{0}^{*}/s_{n} ; \lambda)\geqq D(\xi_{0}^{*}/s_{n} ; \lambda/2)\geqq(\lambda^{2}/4)P(|\xi_{0}^{*}|>\lambda s_{n}/2)$ .
From Lemma 3, one also observes that

$P(|\xi_{0}^{*}|\leqq\lambda s_{n}/2)\leqq Q(\xi_{0}^{*}/s_{n} ; \lambda)\leqq Q(\xi_{0}/s_{n} ; \lambda)$ .
Hence the proof of the first part of the Theorem is completed from A(d) and
$C(b)$ . In obtaining the lower bound, we are aided by certain ideas used in
Petrov (1975, p. 42). Employing (4.1), (4.5), Lemma 5 and condition $B$ , then,

as in Petrov, it follows that for $\gamma^{2}>0$

(4.8) $Q(Z_{n} ; \lambda)\geqq c_{\theta}\lambda\int_{|t|\leq\lambda- 1}$ exp $(-kr^{2}t^{2}-2k\int_{-\infty}^{\infty}$ (1– cos $tx$ ) $dL(x, n))dt$

$-16k\varphi(q)-2c_{s}\lambda\int_{|t|\leq\lambda- 1}E|$ sin $(tZ_{n}^{\prime\prime}/2)|dt$ .
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Proceeding in exactly the same fashion as Petrov (1979, p. 42), it can be obtained
that for $\lambda\geqq 0$ , and fixed,

(4.9) $Q(Z_{n} ; \lambda)\geqq c_{4}M^{-1/2}n^{-1/4}-16k\varphi(q)-2c_{3}\lambda\int_{|t|\leqq\lambda-1}E|\sin(tZ_{n}^{\prime\prime}/2)|dt$ .
This completes the proof of Theorem 1.

Next we continue with the proof of Theorem 2.

Proof of Theorem 2. To Prove Theorem 2, it only remains to show
equivalent inequalities to (4.4) and (4.5) for strong mixing sequences of r.v.’s.
The rest of the proof is exactly the same as Theorem 1, except instead of
using condition $C$ , we operate with condltion D. Noting that if condition $D$ is
satisfied, it immediately follows from A(a), A(b), A(c) and Lemma 2 that, as
in (4.4),

(4.10)
$EZ_{n}^{\prime\prime 2}\leqq c_{5}s_{n}^{-g}(kq+p+q)+2ns_{n}^{-2}\sum_{J>p}\alpha^{1-\gamma}(j)\sup_{j\leq n}\Vert X_{j}\Vert\beta\ll n^{-1/2}$ .

The Iast statement yields from $D(c)$ . Applying the same arguments as in [6]
p. 318, it is clear that

(4.11) $||E\prod_{j=0}^{k-1}$ exp $(\iota t\xi_{f}/s_{n})|-|\prod_{f=0}^{k-1}E$ exp $(it\xi_{f}/s_{n})||\leqq 16k\alpha(q)$ .
This completes the proof of Theorem 2.
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