YokoHAMA MATHEMATICAL
JourNAL VoL. 40, 1992

LIMITING BAHAVIOR OF GENERALIZED QUADRATIC
FORMS GENERATED BY REGULAR SEQUENCES III

By
KEN-ICHI YOSHIHARA
(Received November 17, 1990; Revised October 6, 1991)
Abstract. In this paper, we consider the limit distributions of sums of

XX Wa(é:,6;) when {&;} is strongly mixing and for each n, W,(x, ) admits
the eigenvalue expansion.

1. Main results

Let {§;} be a strictly stationary sequence of random variables which are
defined on a probability space (2, #, P) and take values on a measurable space
(X, A), We say that {&,;} satisfies the strongly mixing condition if

(1.1) a(n)= sup |P(AB)—P(A)P(B)] —> 0 as n—oo

AeHO ., Be HE

and that {§,} satisfies the absolute regularity condition if

(1.2) B(n)=E{ sup |P(B| MHu)—P(B)|} —> 0 as n—o.
BEMY
Here M} denotes the o-algebra generated by &,, -+, &. It is obvious fhat if

{&:} is absolutely regular, then it is strongly mixing since B(n)<a(n).

In this paper, we consider only the strongly mixing case. Of course, the
results obtained remain valid when {&;} is absolutely regular.

Next, let F be the distribution of &. Let L, be the space of all Borel
measurable functions which are defined on X and are square-integrable with
respect to F. For each n(=1) let W,(x, y) be a symmetric kernel, i.e., a sym-
metric square-integrable function with respect to FXF. Suppose that for all
n(=1) and for all x& X

(1.3) EW 4(&:, x)=0.
For each n(=1), let A, be a linear operator mapping from L, into L, such that

(1.4) Ant h —> EWa(61, -)h(ED).
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Let {h, i} (with h, «(x)=1) and {4,,.:} be eigenvectors and eigenvalues of this
operator, respectively. Then, it is obvious that for each n and each i{A, «§)):
j=1} satisfies the same mixing conditions as that of {§;}.

We assume that for all n(=1) and for all 7(=0) the following relations hold :

(1.5) {An. 51 2|20 jaal,

(1.6) Eh, 60=0, Eh; §)=n"",
1 if i=j,

(L.7) Eh,.,i(eohn.j(e,)={ o
0 if i#7,

(1‘8) EWn(El: x)hn,j(el)z'zn.jhn,j(x)-

Then, we have

(1.9) 2Fm14p, <0

and

(1.10) Wa(x, )=27u14n. sha. {X)ha, ().
Define processes U,={U,{): 0<t<1} by

(L.11) Unty=,_ 3 WaEaé) OSt<D).

- The following theorem is a generalization of a result in [2].

Theorem. Let {&;} be a strongly mixing strictly stationary sequence of random
variables taking values in (X, A). Suppose there exist two positive numbers p
and 86(0<d<1) such that '

(1.12) Ko=sup Sjl;?E|nmhn,j(&)l“’”a<°°,

nz1
(1.13) Seointteltadl et (py oo,

Further, suppose the following relations hold:

(1.14) Limin,,z,l, uniformly in 7,
(1.15) S%DE?=1|2n,j]<0° and 2?=1|21|<?°,
(1.16) limn 3350, Ehn, §)hn. (§)=a; uniformly in j.

Finally, suppose that for each j(=1)
(1.17) {Z2P ha, (§0: 0t}

D
—> B;={B,#): 0<t<1} in D[0,1] (n—oo),



GENERALIZED QUADRATIC FORMS 3

where Bjs are Wiener processes such that

(1.18) E 311(8)312(1‘)=}‘i_{2 ST SRA Ehy, 5,(81)ha. 1,(51,)
Then, we have

D ¢
(1.19) Up—> U={37., z,(SoB,(s)dB,(s)+ ait): 0st<1}

in D[0, 1] (n—ooo).

As a special case, we consider the case where W,(x, y) is irrelevant to n,
ie.,
(1.20) Walx, y)=G(x, y) for all n(=1).
Define px; and g;(x) by
An.s=ps, ha (X)=g«(x)

and put

(1.21) 0i=1+2 3271 Eg4§)8,(&s41) .
Assume that

(1.22) ' 1};? a5>0.

Let V,={V,(t): 0=t<1} be the element of D[0, 1] defined by

(1.23) V=~ S GEn &) e, 10).

N 1sijscnt]

Let Bj={Bjt): 0=t<1} (j=1, 2, ---) be Wiener processes such that

DY PR Egu§)gf &) (s, te(0, 11).
Let V={V(t): 0<t<1} be the element of D[0, 1] defined by

(1.24) EB&S)B;}(t):LlEl;]° p——
’ 1

(1.25) V() =5 Aab{(Bit))—tax®} (t<[0, 1]).
Then, can be written as follows.

Corollary. Let {§;} be as in Theorem. Suppose (1.4)-(1.8) and (1.21) hold
and there exist two positive numbers p and & (0<d<1) such that

(1.26) SUP 1 2E0)1+psa< o

and (1.12) holds. Then

D
Vo—>V in D[0, 1] as n—oc,
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2. Auxiliary results

In what follows, ¢, with or without subscript, denotes an absolute constant,
and put [|é]z=E|&|"(r=2) when the expectation of [£|" is finite. For a given
triangular array {&. ;}, let M{" be the g-algebra generated by &, ; (h<j<k)
where n=1 is an integer and 1<h<k<N,. Put

ax(R)=sup 2 aMfh, M{% n,)—>0 (k—o).
nzl1shsNp-k

Lemma 2.1. Let {9, :: 1<i<N,, n=1} be a triangular array of strictly
stationary strongly mixing sequences of zero-mean random variables. Suppose
there exist two positive numbers r(22) and 6(0<d<1) such that

(2.1) sup E|5,] <00,

(2.2) e n 2y T (n)< oo,

Put

(2.3) K,=max{n||ga. 53 n" 2190, 1343} .

Then, the following inequalities hold:

(2.4) E| 2104l "ScKy,
. ' b ) clrye
(25) Ellsigjsnﬂn'lnn'” <cK,.

Proof. is easily proved by modifying the proof of in [3].
is obtained from [2.3) since

El X2 ﬂn.tﬂn.j|”2=2_-”2E{(2?=1 ﬂn,t)zf‘zi;l I

15i<jsn

<27 RE|(Zicana, T P=2"TPE | B P T O
By the methods in [6] and we can prove the following lemma.

Lemma 2.2. Let {9, :: 1<i<N,, n=1} be a triangular array -of strictly
stationary strongly mixing sequences of zero-mean random variables. Suppose
there exist two positive numbers p and & (0<3<1) such that -

26 sup B[ NY*p| 00 <o,
2.7 201?=1nl+p/2{a(n)}5’(4+"+5)<oo,
Suppose

(2.8) - a=1ni_{£1°Nn 2?;1{ Eﬂn,l’?n.i-kl
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exists. Finally, suppose that

D
(2.9) {2299, 0St<1} — (B@®): 0=t<1} in D[O, 1]

as n—oo .,
Then, we have that as n— oo

(2.10) { 2 Nty Nn. iy - 0=t=1}

1511<igs(N pt]

D (e
i {SOB(s)dB(s)+at: 0st1} in DO, 1].
Lemma 2. 2 can be easily extended to the multidimensional case as follows.
Lemma 2.3. Let {(n, -+, 9i): 1<7<N,, n=1} be a triangular array of
strictly stationary strongly mixing sequence of d-dimensional zeromean random
vectors. Suppose for each | (1<I<d) {n¥;, 1< N,, n=1} satisfies conditions
(2.6)-(2.9). Suppose further

(2.11) a;=lim N, ;2 EpipPi (ISISd) (n—)
m J=1EYn7

exist. Then, we have that as n—oo

(2.12) {2

D :
> {z‘,;al=lgij(s)dBj(s)+a,t: 0<t<1} in DO, 1]

¥ by, 0<t<1)

1581<igs[Npt]

where p,, -+, pg are arbitrary canstants and {B1): Ogtél}(j-—-,l,_---_,rd) are a
collection of Wiener processes such that : '

(2.13) EBy(s)B;#t)=1lim X > Epipde.

n—oo 1SIS[N 8] 15l S[N ]

3. Proof of Theorem -

We use the method in [7].

Lemma 3.1. Suppose conditions of Theorem are satisfied. Then, for any
e(>0) and any t(0<t<1) - - R

3.1 lim P(| 20n An ki x(EDha, 1 (65| >€)=0

py
1siLfsnt]
holds uniformly in n.

Proof. We note that

In=E| 3 2%ninthnEdha(Ep]?

1gijs[nt]
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ST AnaEl 2 hn.a(&)hn.k(&)l2+2k,>ZkLN [An. &l 1 4n, x|

13i<fs[nt]
XIE{,_ 3 has@hns@) 3 hos@edhnw@ll.
Since by (with r=4), (1.12) and
E|lsigtmhn,k(&)hn.k(&)Izéc
for all ¢ (0<t<1) and n, we have
3.2) InZc(Zen|2n )

for all n. Now follows from (1.14) and [3.2) O
Lemma 3.2. For any ¢(>0) and for any t (0<t<1)
t
3.3) lim P( | ey z,,{SOB,,(s)dB,,(s)+a,,t}‘ >¢)=0
holds.

Proof. Since

E| S aa([. Ba9)dBuo)+ aut)|

4
<Sev 4 {E|| Bi9)dBus)| +las S Siwlaul
follows from (1.14). O

Lemma 3.3. Suppose conditions of Theorem are satisfied. Let N be fixed
arbitrary. Then, for each t (0<t<1)

(3~4) 2 2’:1 zn.khn,k(ei)hn.k(ej)

1siLjsnt)

i pI zk{S: Bi(s)dB(s)+ akt} (n—oc0).

Proof. is easily obtained from (1.13), and O

Lemma 3.4. Suppose conditions of Theorem are satisfied. Then, for each
t (0<t<1)

3.4 Unt) — U@t) (n—c0).

Proof. Let t (0<t=1) be fixed. Let &, and ¢, be arbitrary small positive
numbers. Then, by Lemmas 3.1 and we can choose N so that

3.5 POl 2 2%nAnahn x(E0ha ()| >e2)<e:1/2

1stjsrnt]
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holds uniformly in n and
(3.6) P( | DI Zk{S:Bk(s)dBk(s)—l— a,,t}| >e)<ei/2.

Therefore, we have

21 An, khn x(EDha, (E)<u —&3)

15i<fsnt]
__P(Zi‘il XE{S:B;.(s)dB;.(s)+ a,,z‘}<u_|-&2)._5l

3.7 SPU.<u)—PU®<u)
s=P( X2 321?;121;,khn.k(ft)hn,k(51)<u+52)

1siLfsint
—P(Sia{|, B} Bao1+ asth<u—sr)te.

So, using (with N fixed) we have
3.8 LI_IE |PU ) <u)—PU@®)<u)|

<ot P(u—es DI 4{[ Bis)dBao)I+ art}Sutes).

‘Now, the desired conclusion follows from [3.8), the continuity of the distribution
t
of SoBk(S)dB»(SH-akt and the arbitrariness of &, and &,. [

Lemma 3.5. Suppose conditions of Theorem are satisfied. Then, {U,} is
tight.

Proof. Since for any s and ¢t (0=s<t=1)

UnO—~U ()= Do o S8 i 460 3T a6

in € 18D}

[n8]+1silis[nt]

to prove that {U,} is tight, it suffices to show that for all n sufficiently large

(nt] 24p0/2

3.9) E| S d o{ S0P R s@) 33 has@f|  sclt—syrer
j=[n8]+1 .

and

(B10)  EISfidnsl B hea@ha @O Sct—s) e

[ns]+isi<fs{nt]

(cf. [I]). Let n be fixed and put A, x(§)=7s: (1=i<n, k=1). Further, put
%21l4n xl=d, [ns]=m and [nt]=I. Then, by the Schwarz inequality, the
Jensen inequality and Lemma 2.1 (with r=4+p) we have
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LHS of
SE{(Z%a Zn a1 2800, N0 An, 0 | | Zhamar e, g1 B PHO1
SHE{Sl An el | 280 me, o 212072 E{Z5e1 | An, | | Zhamer o, 51 220721
=d*™P[E{Zad ™" | An, 1| | DT, o|2} 2002

3.11) CEAZ d7  An s | | Djemer ma, g | P}2FP2]H2
SAWPRE{D5.d ™ An, sl | SRans. 14}
B2 d 7  An, 0 | 2 emia a1 )]
Sclsup £ S8y 7, o “#TAISUP Bl Dhemes 71,4141

< Cn—2—p/2m1+p/4(l__m)l+p/4éc(t__s)l+p/4 .

Similarly, by the Jensen inequality and [Lemma 2.2
LHS of (3.10)<Sd***2E{Z5d M Anall 3 Defes12H0?
msiljsl

(3.12) Sdz‘“"”ZSUIZ)EI 2 NN, g2t

k21 msiljsl

éCn—2—p/Z(l_m)2+p/2§c(t_S)2+p/2’
which implies [3.10). Thus, we have the desired conclusion. [J
Proof of Theorem. By Lemma 3.4 we can easily show that each finite

dimensional distribution of U, converges weakly to that of U. Hence, from

Lemma 3.5 [Theorem follows. [

Acknowledgement. [ would like to express my thanks to the refree for his
careful reading of an earlier version of the manuscript leading to the correction
of errors.
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