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Abstract. Locally symmetric K-contact manifolds, or semi-symmetric Sasakian
manifolds, are of constant curvature 1 (cf. [10],[4],[®)). The main purpose
of this paper is to extend these results and that of considering semi-
symmetric contact Riemannian manifolds satisfying one condition which
generalizes the K-contact condition. Finally we extend some result of
and considering contact Riemannian manifolds satisfying R(X,£)-S=0
where S is the Ricci tensor.

1. Introduction

Let M be a contact Riemannian manifold and (o, g, @, & its contact Rie-
mannian structure. If the characteristic vector field & is of Killing, then M is
called a K-contact Riemannian manifold. Further, if the curvature tensor R
satisfies R(X, Y)e=w(Y)X —w(X)Y, then M is called a Sasakian manifold.
Tanno [10], generalizing the corresponding result of Okumura for Sasakian
manifolds, proved that a locally symmetric K-contact manifold is of constant
curvature 1. Takahashi [9] proved that a Sasakian manifold satisfying
R(X,Y)-R=0 for any X and Y, where R(X, Y)acts on R as a derivation, is of
constant curvature 1. However, we know few about geometry of an arbitrary
contact Riemannian manifold satisfying VR=0 or R(X, Y)-R=0.

The Riemannian manifolds satisfying R(X, ¥)- R=0 are called semi-symmetric
spaces and can be considered as a direct generalization of the notion of locally
symmetric spaces (cf. [8]). In it is proved that a three-dimensional locally
symmetric contact Riemannian manifold is either flat or of constant curvature 1.
Moreover recently Blair has classified the locally symmetric contact Rieman-
nian manifolds which are tangent sphere bundles; in particular the tangent
sphere bundle of the Euclidean space is a locally symmetric contact Riemannian
manifold but it is not of constant curvature.

In this paper we consider semi-symmetric contact Riemannian manifolds
satisfying one condition on the operator I=R(-, §)§ which generalizes the K-
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contact condition /=—¢?. On the other hand the set of all contact Riemannian
structures associated to a fixed contact form is huge (in fact it is infinite di-
mensional), so it is natural to consider on the operator [ conditions which
generalize the K-contact condition. More precisely our result, which generalizes
the above results of [3], [9] and [10], is the following (cf. section 3):

Let M be a contact Riemannian manifold satisfying R(X, &)- R=0.

a) If dim M >3 and [=—k¢® for some function % defined on M, then either
M is Sasakian and of constant curvature 1 or [=0;

b) if dim M=3 and V/=0, then either M is flat or is of constant curvature 1.
Finally in the section 4 we extend some result of and considering
contact Riemannian manifolds satisfying R(X, £)-S=0, where S is the Ricci
tensor.

Remark. After I obtained the results of the present paper, it come to my
knowledge the paper [7]. We observe that our taking account
of the Remark 2.4, is a considerable improvement of Theorem 1 of where
it is shown that if a locally symmetric contact metric manifold has sectional
curvature K(X, &)=const.=c¢, then either c=0 or M is a Sasakian manifold of
constant curvature 1. Also the Theorem 3 of [7] is a consequence of. our
Theorem 4.1,

2. Some remarks on contact Riemanian manifolds

A contact manifold is a differentiable (2n-+1)-manifold M equipped with a
global 1-form ® such that oA(dw)"#0 everywhere on M. It has an underlying
contact Riemannian structure, (o, g, ¢, §) where § is a global vector field (called
the characteristic vector field), ¢ a global tensor of type (1, 1) and g a Rieman-
nian metric (called associated metric). These structure tensors satisfy

o(§)=1, ¢’ =—I1+0%5, w=g§, *),
do(X, Y)=g(X, ¢Y), and g(¢X, ¢Y)=g(X, ¥)—aX)(Y).

The tensors g and ¢ are created simultaneously by polarization of dw evaluated
on a local orthonormal basis of an arbitrary metric on the contact distribution
B defined by Kero.

From now on we assume M is a contact Riemannian manifold with contact
Riemannian structure (o, g, ¢, £&). Denoting by L and R, Lie differentiation
and curvature tensor respectively we define the tensors 7, h and [ by

r=Leg, h=%Le¢ and I(X)=R(X, &)&.

The tensors ¢, & and [ are symmetric and satisfy (cf. [2])
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(X, Y)=2g(¢X, hY),

2.1)
7§, )=h@)=(&=0, Trh=Tre=0, h¢=—¢h.

Moreover the following formulas hold (see for example [1], [2]):

(2.2) . Vxb=—¢X—ghX,
(2.3) Veh=¢—ph*—gl,
(2.4) I=glg—2h*+¢?),
(2.5) Vep=0,

where V is the Riemannian connection of g.

If £ is a Killing vector field with respect to g, then M is said to be K-
contact manifold. Clearly M is K-contact iff z=0 (or equivalently A =0).
Moreover from above formulas it follows easily that M is K-contact if and only
if [I=—¢*. If the almost complex structure J on M X R defined by J(X, fd/dt)
=(¢X—f§, o(X)d/dt), where f is a real-valued function, is integrable, the
contact structure is said to be normal and M is called Sasakian. A Sasakian
manifold may be characterized by R(X, V)¢=w(Y)X—(X)Y. Moreover a
Sasakian manifold is of K-contact but the converse holds only when dim M=3.

~ Now we give some propositions of which we need in the sequel.

Proposition 2.1. In a contact Riemannian manifold M, the following - four
conditions are equivalent :

(i) Veh=0, (ii) V=0, (iii) V=0, (iv) lp=6¢l.
Proof. From (2.1) and we have
(ii) (VerX( X, Y)=2g(9 X, (V:h)Y)
and hence (i) is equivalent to (ii). Assuming (i), from we have
P+hi=—
Differentiating this equation with respect to &, using we have
— Vel =Veh®*=(V¢h)- h+h-(Neh)=0.

Now assume (iii). Then differentiating [(2.4) and (2.3) with respect to &, using
we have

Veh2=0=VeV5h .
Consequently
2(Veh?=Ne{h -Veh+(Veh)- h} =VV:h?*=0

and hence, since V.4 is symmetric, we get V.2=0.
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Finally, from 2.3) and [(2.4), one obtains
(2.6) 2Veh=lp—ol

and hence (i) is equivalent to @iv).

Proposition 2.2. In a contact Riemannian manifold M, the following three
conditions are equivalent :

(i) I=—k¢"
(ii) Vel=0 and h*=(k—1)¢’,
(iii) K¢, X)=k=K(¢,Y) fqr any X, Y in B,

" where K denotes the sectional curvature and k is a function on M.
Moreover, when dim M=3, the condition (ii) becomes simply Vd=0.

Proof. From [(2.3) and [2.6), using Prop. 2.1, one obtains that (i) is equi-
valent to (ii). Now assume (iii). Fixed an arbitrary Z in B, |[Z|=], let
{¢, Z, E;}; be an orthonormal basis. Since X,=(Z+E;)/~2 and Y=
(Z—E;)/v/2 are in B with |X,|=|Y.|=1, we have g(X,, X)=g(lY Yy,
from which, because [ is symmetric, we get g((/Z, E;)=0 for any i. On the
other hand g(/Z, £)=0, therefore will be [Z=FkZ for any Z in B and for some
function £ on M. Consequently /X=—Fk¢@*X for any X in TM. So we have
(i). The implication (i)=(iii) is trivial. Finally, if dim M =3, the second part
of the condition (ii) is always satisfied. In fact, from [3.4) of [6] we have

(VerX X, X)=|X|*{K(, ¢X)—K(&, X)}  for any X in B

and, since dim B=2, the condition (iii) is equivalent to the condition
K¢, X)=K(¢, ¢X) for any X in B,
Therefore in dimension 3, the condition V,z=0 (and hence V./=0) is equivalent
to (iii).
Proposition 2.3 ([6] p. 97). Let M be a 3-dimensional contact Riemannian
manifold. Tnen S(§, -)| =0 if and only if the Ricci tensor is given by
1 r 1 r 3
s=—-2—ver+(7—1+§|r|2)g—(7-—3+§quz)a@w
where r denotes the scalar curvature.

Remark 2;4. By a proof similar to the prdof of Prop. 2.2, it is not difficult
to see that the following three properties are equivgllent:

(i) h*=(k—1)é?

(ii) I=—ke¢*+¢N:h,

(iii) K(X, &+K($X, &)=2k for any X in B,
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where. b is a function on M,

Remark 2.5. Given a contact Riemannian structure (w, g, ¢, &), by a B-
homothetic deformation (often called a D-homothetic deformation) [12], we mean
a change of the structure tensors of the form

d=aw, g=ag+a(a—1oRo, = %E, ¢=¢

where a is a positive constant. Then the operator ! transforms in the follow-
ing manner

@2.7) I=1+((1—a%)/a®)¢Veh+((a*—1)/a®)h*+(2a—1)/a®h .

In fact, computing 4 and V:% we get

h
2.8) ﬁ:%h and Vehi=(21—a)/a®)ph+(1/aVch ,

then by we have [2.7).

Now as an application of the formula [2.7), we can see that there exist
contact Riemannian structures which satisfy the conditions of Remark 2.4 but
with K(X, §) not constant. In fact if assume /=0 then, using (2.8), becomes

i=—kg$’+g$Vgﬂ,

where k=1—1/a*. So we obtain the condition (ii) of Remark 2.4; moreover
(=0 implies that the eigenvalues of h» are +1 and denoting by [+1] the cor-
responding eigenspaces, from we have

R(X, &)=(a—1)*/a® for Xe[—1],

and " -
K(X, §)=(a+3)a—1)/a? for Xe[+1],

therefore K(X, &) is not constant for X in B=B8.

3. Semi-symmetric contact Riemannian manifolds

In this section we consider semi-symmetric contact Riemannianm manifolds
(i.e. R(X,Y)-R=0) and give the main results of the paper.

Theorem 3.1. Let M be a contact Riemannian manifold with R(X, &)-R=0.

a) If dim M >3 and moreover holds one of the following conditions:

(i) l=—ke® for some function k on M ;

(ii) V=0 and h*=(k—1)¢® for some function k on M;

(iti) K, X)=k=K(&,Y) for any X,Y in B and for some function k on M ;
then either M is Sasakian and of constant sectional curvature 1 or [=0.
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b) If dim M=3 and V=0, then either M is flat or it is of constant sectional
curvature 1.

The condition VR=0 implies R(X, Y)-R=0 and also, since V:£=0, Vel =0.
So, from we get the following

Corollary 3.2. Let M be a locally symmetric contact Riemannian manifold.

a) If dim M =3, then either M is flat or it is of constant sectional curvature 1.

b) If dim M >3 and h*=(k—1)g* for some function k on M, then either =0
or M is Sasakian and of constant sectional curvature 1.

Proof (of [Theorem 3.1). Assume
3.1 R(X, &)-R=0 for any X.

Moreover, by [Proposition 2.2, we can assume

(3.2) IX=—k@*X=R{X—w(X)§}

for any X and for some function 2 on M. We assume 10, i.e. £3£0. In(3.1)
R(X, &) acts as a derivation, so we have

3.3 R(X, OR(Y, Z)V—-R(R(X, §)Y, Z)V
—R(Y, R(X, 8)Z)V—R(Y, Z)R(X, §)V=0
for any X, Y, Z, V. Putting Z=V=¢ in we get
R(X, &)Y —IR(X, &)Y —R(Y, IX)6—R(Y, §) X=0
which, using becomes
(3.4) ER(X, Y)E+ERE, V)X=R{a(Y)X—2:XX)Y +8(X, Y)E}.
Moreover, using the first Bianchi’s idendity, the yields |
3.5) 2bR(Y, X)e+ERE, V) X=kH{a(X)Y —20(Y)X+8(X, Y)§}.
Substracting from we get '
(3.6) ER(X, Y)e=k{o(Y)X—a(X)Y}.
Now, putting V=¢§ in and multiplying for %k, we have
ER(X, &) R(Y, Z)6—kR(R(X, 8)Y, £)§
—kR(Y, R(X, §)Z)6—kR(Y, Z)X=0,
from which, using two times [(3.2) and [(3.6), we obtain
3.7 R*R(Y, Z)X=Fk*{g(X, Z)Y —8(X, Y)Z}.
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Since the function % is not identically zero, k(x)#0 holds at some point x, then
it holds on some open neighborhood U of x. So, from we have R(Y, Z)X
=k{g(X, Z)X—g(X,Y)Z} on U and by Schur’s theorem # will be constant on
U and thus on M. Therefore M is of sectional curvature k=const. #0. Then
by and [3], we can conclude that M is Sasakian with k=const. =1.

Taking account of the Prop. 2.2, remain to consider the case dim M=3 with
{=0. In this case the (3.1) is equivalent to

(3.8) R(X, §)-S=0

where S is the Ricci tensor. From we have

3.9 S(R(X, )Y, £)=0 for any X and Y.
Moreover

R(X, Y =S¢, Y)X+o(Y)QX)—S(X, Y)§—g(X, Y)Q)
—(r/20o(Y)X—g(X, Y)§}

(3.10)

where Q is the Ricci operator and » the scalar curvature. Now we show that

(3.11) S=(/2)(g—wQRw).

Put ¢=S(, -)|s. If =0, since also /=0, (3.11) follows easily from Prop. 2.3.
If suppose ¢.+#0 in some point x, then we can consider a vector E<T (M)
such that |E|=1, ¢.(E)=0 and ¢,(¢E)=|g|. Then from (3.10) we have

R(E, §)E=—S(E, E$—Q(&)+(r/2)§
which together with gives

S(Q®), £)=S&, &){(»/2)—S(E, E)}
where S(&, §)=Tr/=0. Consequently

la|*=S(¢, |o|gE)=S(§, Q(¢)N=0.
So we have which together with (3.10) gives

R(X, &)Y =0 for any X and Y,
and by the first Bianchi’s identity

R(X, Y)e=0 for any X and Y.

So by the proof of a theorem of Blair (cf. p. 121) we obtain that M is
locally the Riemannian product of a flat 2-dimensional manifold and an 1-dimen-
sional manifold. Therefore M is locally flat.
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Question. In dimension 3 we have proved that R(X, &)-R=0 and [=0 imply

R(X, Y)¢=0. Now, in arbitrary dimension, we pose the following question:
?
R(X, &)-R=0 (or VR=0) and [=0=— R(X, Y)¢=0.

Note that, when dim M=2n+1>3 and R(X, Y)£=0, a theorem of Blair ([2] p.
121) says that M is locally the tangent sphere bundle of a flat manifold, i.e.
locally the Riemannian product E™*'xS™(4) of the Euclidean space with the
sphere of constant sectional curvature 4.

4. Contact Riemannian manifolds with R(X, &)-S=0

Let M be a contact Riemannian manifold of dimension 2n+1>3. Tanno
[11] (resp. Okumura [4]) proved that if the following two conditions hold :

a) (M, g) is Einstein (resp. V5=0),

b) & belongs to the k-nullity distribution for some real number & (resp.

k=1), i.e. R(X, Y)=k{w(Y)X—(X)Y},

then M is Einstein-Sasakian.

In this section we extend these results. In fact we consider in a) the more
general condition R(X, §)-S=0 and in b) we consider % as a function on M.
More precisely our result is the following.

Theorem 4.1. Let M be a contact Riemannian manifold. If
a) R(X, §)-S=0, and
b) : R(X, VY§6=k{a(Y)X—a(X)Y'}

for some function k on M, then either M is locally isometric to the Riemannian
product E"+*'xS™(4) or M is a Einstein-Sasakian manifold.

Proof. If k is identically zero, by a result of Blair ([2] p. 121) we have
the first part of the theorem. So assume k0. By b) we have

4.1) S(X, 8§)=2nka(X) for any X.
Moreover a) is equivalent to
4.2) S(R(X, 8)Y, Z)=—S(Y, R(X, §)Z) for any X, Y, Z.

Put Z=¢, by and (4.1) we have

) 2nka(R(X, §)Y)=—5(, IX),
i.e. :

4.3) S, IX)=2nkg(Y, lX).

Since the condition b) implies /=% (I—w®¢), the equation (4.3), using (4.1),
becomes
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(4.4) RS(X, YV)=2nkg(X,Y)

for any X, Y. Since the function % is not identically zero, k(x)#0 holds at
some point x, then it holds on some open neighborhood U of x. So we have
S=kg on U, then % will be constant on U and hence on M. Therefore M is
of Einstein. So applying Theorem 5.2 of [11] we conclude that M is Einstein-
Sasakian,
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