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Abstract. Locally symmetric K-contact manifolds, or semi-symmetric Sasakian
manifolds, are of constant curvature 1 (cf. [10], [4], [9]). The main purpose
of this paper is to extend these results and that of [3] considering semi-
symmetric contact Riemannian manifolds satisfying one condition which
generalizes the K-contact condition. Finally we extend some result of [4]
and [11] considering contact Riemannian manifolds satisfying $R(X, \xi)\cdot S=0$

where $S$ is the Ricci tensor.

1. Introduction

Let $M$ be a contact Riemannian manifold and $(\omega, g, \phi, \xi)$ its contact Rie-
mannian structure. If the characteristic vector field $\xi$ is of Killing, then $M$ is
called a K-contact Riemannian manifold. Further, if the curvature tensor $R$

satisfies $R(X, Y)\xi=a(Y)X-\omega(X)Y$ , then $M$ is called a Sasakian manifold.
Tanno [10], generalizing the corresponding result of Okumura [4] for Sasakian
manifolds, proved that a locally symmetric K-contact manifold is of constant
curvature 1. Takahashi [9] proved that a Sasakian manifold satisfying
$R(X, Y)\cdot R=0$ for any Xand $Y$ , where $R(X, Y)$ acts on $R$ as a derivation, is of
constant curvature 1. However, we know few about geometry of an arbitrary
contact Riemannian manifold satisfying $\nabla R=0$ or $R(X, Y)\cdot R=0$ .

The Riemannian manifolds satisfying $R(X, Y)\cdot R=0$ are called semi-symmetric
spaces and can be considered as a direct generalization of the notion of locally
symmetric spaces (cf. [8]). In [3] it is proved that a three-dimensional locally
symmetric contact Riemannian manifold is either flat or of constant curvature 1.
Moreover recently Blair [1] has classified the locally symmetric contact Rieman-
nian manifolds which are tangent sphere bundles; in particular the tangent
sphere bundle of the Euclidean space is a locally symmetric contact Riemannian
manifold but it is not of constant curvature.

In this paper we consider semi-symmetric contact Riemannian manifolds
satisfying one condition on the operator $ l=R(\cdot, \xi)\xi$ which generalizes the K-

1 Supported by funds of the M. U. R. S. T.
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contact condition $1=-\phi^{2}$ . On the other hand the set of all contact Riemannian
structures associated to a fixed contact form is huge (in fact it is infinite di-
mensional), so it is natural to consider on the operator $l$ conditions which
generalize the K-contact condition. More precisely our result, which generalizes

the above results of [3], [9] and [10], is the following (cf. section 3):

Let $M$ be a contact Riemannian manifold satisfying $R(X, \xi)\cdot R=0$ .
a) If dim $M>3$ and $l=-k\phi^{2}$ for some function $k$ defined on $M$, then either

$M$ is Sasakian and of constant curvature 1 or $l=0$ ;
b) if dim M$=3and\nabla_{\xi}l=0$ , then eitherM is flat or is of constant curvature l.

Finally in the section 4 we extend some result of [4] and [11] considering

contact Riemannian manifolds satisfying $R(X, \xi)\cdot S=0$ , where $S$ is the Ricci
tensor.

Remark. After I obtained the results of the present paper, it come to my

knowledge the paper [7]. We observe that our Corollary 3.2, taking account

of the Remark 2.4, is a considerable improvement of Theorem 1 of [7] where

it is shown that if a locally symmetric contact metric manifold has sectional

curvature $K(X, \xi)=const.=c$ , then either $c=0$ or $M$ is a Sasakian manifold of

constant curvature 1. Also the Theorem 3 of [7] is a consequence of our
Theorem 4.1.

2. Some remarks on contact Riemanian manifolds

A contact manifold is a differentiable $(2n+1)$-manifold $M$ equipped with a
global l-form $\omega$ such that $\omega\wedge(d\omega)^{n}\neq 0$ everywhere on $M$. It has an underlying

contact Riemannian structure, $(\omega, g, \phi, \xi)$ where $\xi$ is a global vector field (called

the characteristic vector field), $\phi$ a global tensor of type $(1, 1)$ and $g$ a Rieman-

nian metric (called associated metric). These structure tensors satisfy

$a\langle\xi)=1$ , $\phi^{2}=-I+\omega\otimes\xi$, $\omega=g(\xi, )$ ,

$da\langle X,$ $Y$ ) $=g(X, \phi Y)$, and $g(\phi X, \phi Y)=g(X, Y)-oXX)a(Y)$ .

The tensors $g$ and $\phi$ are created simultaneously by polarization of $ d\omega$ evaluated

on a local orthonormal basis of an arbitrary metric on the contact distribution
$B$ defined by Ker $\omega$ .

From now on we assume $M$ is a contact Riemannian manifold with contact

Riemannian structure $(\omega, g, \phi, \xi)$ . Denoting by $L$ and $R$ , Lie differentiation

and curvature tensor respectively we define the tensors $\tau,$
$h$ and $l$ by

$\tau=L_{\xi}g$ , $ h=\frac{1}{2}L_{\xi}\phi$ and $1(X)=R(X, \xi)\xi$ .

The tensors $\tau,$
$h$ and 1 are symmetric and satisfy (cf. [2])



CONTACT RIEMANNIAN MANIFOLDS 143

$\tau(X, Y)=2g(\phi X, hY)$ ,
(2.1)

$\tau(\xi, )=h(\xi)=l(\xi)=0$ , Trh $=Tr\tau=0$ , $h\phi=-\phi h$ .
Moreover the following formulas hold (see for example [1], [2]):

(2.2) $\nabla_{X}\xi=-\phi X-\phi hX$ ,

(2.3) $\nabla_{\xi}h=\phi-\phi h^{2}-\phi l$ ,

(2.4) $l=\phi l\phi-2(h^{2}+\phi^{2})$ ,

(2.5) $\nabla_{\text{\’{e}}}\phi=0$ ,

where $\nabla$ is the Riemannian connection of $g$ .
If $\xi$ is a Killing vector field with respect to $g$, then $M$ is said to be K-

contact manifold. Clearly $M$ is K-contact iff $\tau=0$ (or equivalently $h=0$).
Moreover from above formulas it follows easily that $M$ is K-contact if and only
if $l=-\phi^{2}$ . If the almost complex structure $J$ on $M\times R$ defined by $J(X, fd/dt)$

$=(\phi X-f\xi, a\langle X)d/dt)$ , where $f$ is a real-valued function, is integrable, the
contact structure is said to be normal and $M$ is called Sasakian. A Sasakian
manifold may be characterized by $R(X, Y)\xi=a\langle Y$)$X-0\langle X$) $Y$ . Moreover a
Sasakian manifold is of K-contact but the converse holds only when dim $M=3$ .

Now we give some propositions of which we need in the sequel.

Proposition 2.1. In a contact Riemannian manifold $M$, the following four
conditions are equivalent:

(i) $\nabla_{\xi}h=0$, (ii) $\nabla_{\xi}\tau=0$, (iii) $\nabla_{\xi}1=0$, (iv) $1\phi=\phi 1$ .
Proof. From (2.1) and (2.5) we have

(ii) $(\nabla_{\xi}\tau)(X, Y)=2g(\phi X, (\nabla_{\xi}h)Y)$

and hence (i) is equivalent to (ii). Assuming (i), from (2.3) we have

$\phi^{2}+h^{2}=-l$ .
Differentiating this equation with respect to $\xi$, using (2.5), we have

$-\nabla_{\xi}l=\nabla_{\text{\’{e}}}h^{2}=(\nabla_{\xi}h)\cdot h+h\cdot(\nabla_{\xi}h)=0$ .
Now assume (iii). Then differentiating (2.4) and (2.3) with respect to $\xi$, using
(2.5), we have

$\nabla_{\xi}h^{2}=0=\nabla_{\text{\’{e}}}\nabla_{\xi}h$ .
Consequently

$2(\nabla_{\xi}h)^{2}=\nabla_{\xi}\{h\cdot\nabla_{\xi}h+(\nabla_{\xi}h)\cdot h\}=\nabla_{\xi}\nabla_{\xi}h^{2}=0$

and hence, since $\nabla_{\xi}h$ is symmetric, we get $\nabla_{\xi}h=0$ .
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Finally, from (2.3) and (2.4), one obtains

(2.6) $2\nabla_{\text{\’{e}}}h=l\phi-\phi l$

and hence (i) is equivalent to (iv).

Proposition 2.2. In a contact Riemannian manifold $M$, the following three
conditions are equivalent:

(i) $l=-k\phi^{2}$ ,

(ii) $\nabla_{\xi}l=0$ and $h^{2}=(k-1)\phi^{2}$ ,

(iii) $K(\xi, X)=k=K(\xi, Y)$ for any $X,$ $Y$ in $B$ ,

where $K$ denotes the sectional curvature and $k$ is a function on $M$.
Moreover, when dim $M=3$, the condition (ii) becomes $simPly\nabla_{\text{\’{e}}}l=0$ .
Proof. From (2.3) and (2.6), using Prop. 2.1, one obtains that (i) is equi-

valent to (ii). Now assume (iii). Fixed an arbitrary $Z$ in $B,$ $|Z|=1$ , let
$\{\xi, Z, E_{\ell}\}_{i}$ be an orthonormal basis. Since $X_{i}=(Z+E_{i})[\sqrt{2}$ and $Y_{i}=$

$(Z-E_{i})/\sqrt 2^{-}$ are in $B$ with $|X_{\ell}|=|Y_{\ell}|=1$ , we have $g(lX_{i}, X_{\ell})=g(lY_{i}, Y_{\ell})$,

from which, because $l$ is symmetric, we get $g(lZ, E_{i})=0$ for any $i$ . On the
other hand $g(lZ, \xi)=0$, therefore will be $lZ=kZ$ for any $Z$ in $B$ and for some
function $k$ on $M$. Consequently $lX=-k\phi^{2}X$ for any $X$ in $TM$. So we have
(i). The implication $(i)\Rightarrow(iii)$ is trivial. Finally, if dim $M=3$ , the second part
of the condition (ii) is always satisfied. In fact, from (3.4) of [6] we have

$(\nabla_{\xi}\tau)(X, X)=|X|^{2}\{K(\xi, \phi X)-K(\xi, X)\}$ for any $X$ in $B$

and, since dim $B=2$ , the condition (iii) is equivalent to the condition

$K(\xi, X)=K(\xi, \phi X)$ for any $X$ in $B$ .
Therefore in dimension 3, the condition $\nabla_{\xi}\tau=0$ (and hence $\nabla_{\text{\’{e}}}l=0$) is equivalent

to (iii).

Proposition 2.3 ([6] p. 97). Let $M$ be a 3-dimensional contact Riemannian
manifold. Tnen $S(\xi, \cdot)|_{B}=0$ if and only if the Ricci tensor is given by

$ S=-\frac{1}{2}\nabla_{\text{\’{e}}}\tau+(\frac{r}{2}-1+\frac{1}{8}|\tau|^{2})g-(\frac{r}{2}-3+\frac{3}{8}|\tau|^{t})\omega\otimes\omega$

where $r$ denotes the scalar curvature.

Remark 2.4. By a proof similar to the proof of Prop. 2.2, it is not difficult
to see that the following three properties are equivalent:

(i) $h^{g}=(k-1)\phi^{2}$ ,

(ii) $l=-k\phi^{g}+\phi\nabla_{\xi}h$ ,

(iii) $K(X, \xi)+K(\phi X, \xi)=2k$ for any $X$ in $B$ ,



CONTACT RIEMANNIAN MANIFOLDS 145

where $k$ is a function on $M$,

Remark 2.5. Given a contact Riemannian structure $(\omega, g, \phi, \xi)$, by a B-
homothetic deformation (often called a D-homothetic deformation) [12], we mean
a change of the structure tensors of the form

$\tilde{\omega}=a\omega$, $\tilde{g}=ag+a(a-1)\omega\otimes\omega$, $\xi=\frac{1}{a}\xi$, $\phi=\phi$

where $a$ is a positive constant. Then the operator 1 transforms in the follow-
ing manner

(2.7) $\tilde{l}=l+((1-a^{8})/a^{2})\phi\nabla_{\xi}h+((a^{2}-1)/a^{8})h^{2}+(2(a-1)/a^{f})h$ .
In fact, computing $\tilde{h}$ and $\tilde{\nabla}_{\overline{\xi}}\tilde{h}$ we get

(2.8) $\tilde{h}=\frac{1}{a}h$ and $\forall_{\overline{\xi}}\tilde{h}=(2(1-a)/a^{2})\phi h+(1/a^{2})\nabla_{\xi}h$ ,

then by (2.3) we have (2.7).

Now as an application of the formula (2.7), we can see that there exist
contact Riemannian structures which satisfy the conditions of Remark 2.4 but
with $K(X, \xi)$ not constant. In fact if assume $1=0$ then, using (2.8), (2.7) becomes

$i=-k\phi^{2}+\phi\forall_{\tilde{\xi}}\tilde{h}$ ,

where $k=1-1/a^{2}$ . So we obtain the condition (ii) of Remark 2.4; moreover
$1=0$ implies that the eigenvalues of $h$ are $\pm 1$ and denoting by $[\pm 1]$ the cor-
responding eigenspaces, from (2.7) we have

$\tilde{K}(X,\tilde{\xi})=(a-1)^{2}/a^{2}$ for $X\in[-1]$ ,
and

$\tilde{K}(X,\tilde{\xi})=(a+3)(a-1)/a^{2}$ for $X\in[+1]$ ,

therefore $\tilde{K}(X,\tilde{\xi})$ is not constant for $X$ in $\tilde{B}=B$ .

3. Semi-symmetric contact Riemannian manifolds

In this section we consider semi-symmetric contact Riemannianm manifolds
$(i.e. R(X, Y)\cdot R=0)$ and give the main results of the paper.

Theorem 3.1. Let $M$ be a contact Riemannian manifold with $R(X, \xi)\cdot R=0$ .
a) If dim $M>3$ and moreover holds one of the following conditions:
(i) $l=-k\phi^{2}$ for some function $k$ on $M$ ;
(ii) $\nabla_{\xi}1=0$ and $h^{2}=(k-1)\phi^{8}$ for some function $k$ on $M$ ;
(iii) $K(\xi, X)=k=K(\xi, Y)$ for any $X,$ $Y$ in $B$ and for some function $k$ on $M$ ;

then either $M$ is Sasakian and of constant sectional curvature 1 or $l=0$ .
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b) If dim $M=3$ and $\nabla_{3}1=0$ , then either $M$ is flat or it is of constant sectional

curvature 1.

The condition $\nabla R=0$ implies $R(X, Y)\cdot R=0$ and also, since $\nabla_{\xi}\xi=0,$ $\nabla_{\xi}l=0$ .
So, from Theorem 3.1 we get the following

Corollary 3.2. Let $M$ be a locally symmetric contact Riemannian manifold.
a) If dim $M=3$ , then either $M$ is flat or it is of constant sectional curvature 1.
b) If dim $M>3$ and $h^{2}=(k-1)\phi^{2}$ for some function $k$ on $M$, then either $l\equiv 0$

or $M$ is Sasakian and of constant sectional curvature 1.

Proof (of Theorem 3.1). Assume

(3.1) $R(X, \xi)\cdot R=0$ for any $X$ .
Moreover, by Proposition 2.2, we can assume

(3.2) $lX=-k\phi^{2}X=k\{X-\omega(X)\xi\}$

for any $X$ and for some function $k$ on $M$. We assume $l\not\equiv O,$ $i.e$ . $k\not\equiv O$ . In (3.1)

$R(X, \xi)$ acts as a derivation, so we have

(3.3) $R(X, \xi)R(Y, Z)V-R(R(X, \xi)Y,$ $Z$ ) $V$

$-R(Y, R(X, \xi)Z)V-R(Y, Z)R(X, \xi)V=0$

for any $X,$ $Y,$ $Z,$ $V$. Putting $ Z=V=\xi$ in (3.3), we get

$R(X, \xi)lY-lR(X, \xi)Y-R(Y, lX)\xi-R(Y, \xi)lX=0$

which, using (3.2), becomes

(3.4) $kR(X, Y)\xi+kR(\xi, Y)X=k^{2}\{\omega(Y)X-2oXX)Y+g(X, Y)\xi\}$ .
Moreover, using the first Bianchi’s idendity, the (3.4) yields

(3.5) $2kR(Y, X)\xi+kR(\xi, Y)X=k^{2}\{\omega(X)Y-2a\langle Y)X+g(X, Y)\xi\}$ .
Substracting (3.5) from (3.4), we get

(3.6) $kR(X, Y)\xi=k^{2}\{\alpha Y)X-oXX)Y\}$ .
Now, putting $ V=\xi$ in (3.3) and multiplying for $k$ , we have

$kR(X, \xi)R(Y, Z)\xi-kR(R(X, \xi)Y,$ $Z$ )$\xi$

$-kR(Y, R(X, \xi)Z)\xi-kR(Y, Z)lX=0$ ,

from which, using two times (3.2) and (3.6), we obtain

(3.7) $k^{2}R(Y, Z)X=k^{8}\{g(X, Z)Y-g(X, Y)Z\}$ .
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Since the function $k$ is not identically zero, $k(x)\neq 0$ holds at some point $x$ , then
it holds on some open neighborhood $U$ of $x$ . So, from (3.7), we have $R(Y, Z)X$

$=k\{g(X, Z)X-g(X, Y)Z\}$ on $U$ and by Schur’s theorem $k$ will be constant on
$U$ and thus on $M$. Therefore $M$ is of sectional curvature $k=const$ . $\neq 0$ . Then
by [5] and [3], we can conclude that $M$ is Sasakian with $k=const$ . $=1$ .

Taking account of the Prop. 2.2, remain to consider the case dim $M=3$ with
$1\equiv 0$ . In this case the (3.1) is equivalent to

(3.8) $R(X, \xi)\cdot S=0$

where $S$ is the Ricci tensor. From (3.8) we have

(3.9) $S(R(X, \xi)Y,$ $\xi$) $=0$ for any $X$ and Y.

Moreover

$R(X, \xi)Y=S(\xi, Y)X+a\langle Y)Q(X)-S(X, Y)\xi-g(X, Y)Q(\xi)$
(3.10)

$-(r/2)\{\omega(Y)X-g(X, Y)\xi\}$

where $Q$ is the Ricci operator and $r$ the scalar curvature. Now we show that

(3.11) $S=(r/2)(g-\omega\otimes\omega)$ .
Put $\sigma=S(\xi, \cdot)|_{B}$ . If $\sigma=0$, since also $1=0,$ $(3.11)$ follows easily from Prop. 2.3.
If suppose $\sigma_{x}\neq 0$ in some point $x$ , then we can consider a vector $E\in T_{x}(M)$

such that $|E|=1,$ $\sigma_{x}(E)=0$ and $\sigma_{x}(\phi E)=|\sigma|$ . Then from (3.10) we have

$ R(E, \xi)E=-S(E, E)\xi-Q(\xi)+(r/2)\xi$

which together with (3.9) gives

$S(Q(\xi), \xi)=S(\xi, \xi)\{(r/2)-S(E, E)\}$

where $S(\xi, \xi)=Trl=0$ . Consequently

$|\sigma|^{2}=S(\xi, |\sigma|\phi E)=S(\xi, Q(\xi))=0$ .
So we have (3.11) which together with (3.10) gives

$R(X, \xi)Y=0$ for any $X$ and $Y$ ,

and by the first Bianchi’s identity

$R(X, Y)\xi=0$ for any $X$ and Y.

So by the proof of a theorem of Blair (cf. [2] p. 121) we obtain that $M$ is
locally the Riemannian product of a flat 2-dimensional manifold and an l-dimen-
sional manifold. Therefore $M$ is locally flat.
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Question. In dimension 3 we have pr0ved that $R(X, \xi)\cdot R=0$ and $1=0$ imply
$R(X, Y)\xi=0$ . Now, in arbitrary dimension, we pose the following question:

$R(X, \xi)\cdot R=0$ (or $\nabla R=0$) and
$l=0\Rightarrow^{?}R(X, Y)\xi=0$ .

Note that, when dim $M=2n+1>3$ and $R(X, Y)\xi=0$ , a theorem of Blair ([2] $p$ .
121) says that $M$ is locally the tangent sphere bundle of a flat manifold, $i.e$ .
locally the Riemannian product $E^{n+1}\times S^{n}(4)$ of the Euclidean space with the
sphere of constant sectional curvature 4.

4. Contact Riemannian manifolds with $R(X, e)\cdot S=0$

Let $M$ be a contact Riemannian manifold of dimension $2n+1>3$ . Tanno
[11] (resp. Okumura [4]) proved that if the following two conditions hold:

a) $(M, g)$ is Einstein (resp. $\nabla S=0$),

b) $\xi$ belongs to the k-nullity distribution for some real number $k$ (resp.

$k=1),$ $i.e$ . $R(X, Y)\xi=k\{\omega(Y)X-c\lambda X)Y\}$ ,

then $M$ is Einstein-Sasakian.
In this section we extend these results. In fact we consider in a) the more

general condition $R(X, \xi)\cdot S=0$ and in b) we consider $k$ as a function on $M$.
More precisely our result is the following.

Theorem 4.1. Let $M$ be a contact Riemannian manifold. If
a) $R(X, \xi)\cdot S=0$ , and

b) $R(X, Y)\xi=k\{a(Y)X-\omega(X)Y\}$

for some function $k$ on $M$, then either $M$ is locally isometric to the Riemannian
product $E^{n+1}\times S^{n}(4)$ or $M$ is $a$ Einstein-Sasakian manifold.

Proof. If $k$ is identically zero, by a result of Blair ([2] p. 121) we have
the first part of the theorem. So assume $k\not\equiv O$ . By b) we have

(4.1) $S(X, \xi)=2nkaXX)$ for any $X$ .
Moreover a) is equivalent to

(4.2) $S(R(X, \xi)Y,$ $Z$ )$=-S(Y, R(X, \xi)Z)$ for any $X,$ $Y,$ $Z$ .
Put $ Z=\xi$ , by (4.2) and (4.1) we have

$2nkoXR(X, \xi)Y)=-S(Y, lX)$ ,
$i.e$ .
(4.3) $S(Y, lX)=2nkg(Y, lX)$ .
Since the condition b) implies $l=k(I-\omega\otimes\xi)$ , the equation (4.3), using (4.1),

becomes
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(4.4) $kS(X, Y)=2nk^{2}g(X, Y)$

for any $X$, Y. Since the function $k$ is not identically zero, $k(x)\neq 0$ holds at
some point $x$ , then it holds on some open neighborhood $U$ of $x$ . So we have
$S=kg$ on $U$ , then $k$ will be constant on $U$ and hence on $M$. Therefore $M$ is
of Einstein. So applying Theorem 5.2 of [11] we conclude that $M$ is Einstein-
Sasakian.
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