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1. Introduction

Let M be an n-dimensional hypersurface in a unit sphere S*1). If M is
compact, minimal and 0<S<n, then Simons [9] proved S=0 or S=n, where
S is the square of length of second fundamental form. Chern, do Carmo and
Kobayashi proved that Clifford tori are the only minimal hypersurfaces with
S=n. Peng and Terng [8] studied the case S=constant and n=3, and proved
if S>3, then S=6. In Otsuki’s examples of minimal hypersurfaces in S™*+!(1),
Hu proved that there exist complete and non-compact minimal hypersurfaces in
S™*}(1). Hence it is interesting to research the complete minimal hypersurfaces
in S**(1). The author and generalized Chern, do Carmo and Koba-
yashi’s Theorem and Peng and Terng’s Theorem to complete case. The author
and Nakagawa [4] also studied the complete hypersurfaces with constant mean
curvature in S™+!(1).

In this paper, we generalize the result in [3] due to the author to complete
hypersurfaces with constant mean curvature in S*(1).

2. Preliminaries

Let M be an n-dimensional immersed hypersurface in an 7+ l-dimensional
unit sphere S™*!(1). We choose a local field of orthonormal frames e,, -, €ny,
in S™*(1) such that, restricted to M, the vectors e, ---, ¢, are tangent to M.
We use the following convention on the range of indices unless otherwise
stated: A, B, C, ---=1,2, -+, n+1; 4,5, k, ---=1,2, ---, n. We agree that the
repeated indices under a summation sign without indication are summed over
the respective ranges. With respect to the frame field of S™*!(1) chosen above,
let w,, ---, @wn42 be the dual frame. Then structure equations of S**!(1) are
given by

dws=3wss\ws, Wap+wpa=0,
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dwsp=2wac Nwcpt+ 245,
R45=—1/2)Z Kapcpwec Nwp .

Restricting these forms to M, we have the structure equations of M.

(2.1) Wn41=0,
2.2) - Wn+11=23040;,  hy;=hyu,
2.3) dw;=2w;, \w;, ®ij+0,;=0,
(2.4) dw;;=20ix ANWrj—(1/2)ZRijriwe Ny,
(2.5) Rijei=(04205:—0u0;0)+(hirhjui—hithj) .
The symmetric 2-form

h=2h;0:;0;
and the scalar
(2.6) H=3hy;

are called the second fundamental form and the mean curvature of M respec-
tively. If H=0, then M is said to be minimal. Define Ay, hije; and h;jei,
by, respectively,

2.7) Shipr=dhi+Shn0ni+Shinon;,

(2.8) Dhijrnr=Ahijz+2hmirOni+ 2 Rim e Onj+2RiimOme

2.9)  Shiruoe=dhipit+Shnni0nitShinsi@n+ZhimOns+Shinn0m: .
Exterior differentiating and using the structure equations, we obtain

Z}hmwj/\wk =0.
Hence

(2.10) hije=hrj.
Similarly, we obtain, by differentiating [(2.7) and [(2.8) respectively,

(2.11) higpi—hiin=DhmiRmiri+DhimRmjee

(2.12) hisrrs—hijea=2hmsxRmist+Zhime Rmjist+ZhijmRmets .
For any point p=M, we can choose a frame field e, -, e, SO that
(2.13) ' hiy=2:01; .

Let | |

(2.14) p=H/n—2;,
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(2.15) By=Xpt, fe=34.

Then |

(2.16) B,=0, B,=S—H?/n, B,=@HS)/n—(2H®)/n*—f,.

If both S and H are constant, by a simple and direct calculation, we can obtain

(2.17) —Hf=S(n—S)—H*+XZhi:,

(2.18) (1/2) ABht 5 =2n+3—S)Sh} ;i —3(SA2ht s —23:A5h% 1)
+3H ZAhipn+Zhin,

@19 —HAfy=AShi .

Especially, when n=3, we can also get

(2.20) Af3=624:h}j2—3Sf:+3Hf+9fs—3HS,

(2.21) Af =—A4Sf—A4Hf s+ 4Hf o+ 12f A8 2h % +45 A hdss

(2.22) fo=—H*S+H*/6+4Hf,/3+S%/2,

(2.23) fs=(8Sfs+5H*f,+H*—5H*S)/6 .

(2.24) S°—11H*S*/6—6S*+SH*+9S+6H*S—H*®/6—3H*—4H"*/3
=(S—H?/3(S—3H?/4—3+~H*+8H?*/4XS—3H?*/4—3— v H*+8H*/4).

Since X u;=0, we have

(2.25) (—1/~V6XS—H*/3)*<B,<(1/~'6 XS—H*/3)**,

and equality is reached if and only if two of g, g. and p, are equal. (cf.

Okumura [6])

Lemma 1. Let M be a 3-dimensional hypersurface in S*(1) with constant
mean curvature. If S=constant, then

1 2 1 3
(2.26) —B—AZh%j,,-——ZHZpihﬁj,,—(S——Q—HZ—S)Eh%ﬂ+(S—§Hz)(S~——ZH2—3

+%«/H‘+8H2)(S——2-H2~3_% AF8HY),
3(c 2

@2 Shiw=—- 5 Shin(pet prt )+ 8H Spihtyu+ 5 (S—5 H'—3)Shiys

2(5—“—1‘1‘)(5 —-H2 3+ «/H‘+8H’)(S——H’ 3———«/H‘+8H’)

Proof. By [(2.19) and [(_2_2'2)], we get
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(2.28) Af=g HAf\=— 5 AShln.

According to [2.21) and [(2.28), we obtain

(2.29) . 222§h§j_g+22¢2,h¥j»=-—%A2h%ﬂ. +Sf+Hfs—Hfs—3/1. .

implies

(230)  Sathtp+2SAdhin= b Sht—2H Skt 3 et ot .
From [2.14), [(2.19) and [(2.20), we have

2 .
(2.31) 2HZpihin= —3—H’Eh?n+-;—AZh%n—HSfa—-H25+H’f4+3Hfa .

Hence,

%—Ath,.=2HZpth¥n —v%HBZh%jk+HSf3+HQSstf‘—3Hf3

—2H Sl — o H*Ship+H'S+(S-3)HS,

—H{(—H'S+TH + S Hf s+ 5S)  (by
— 2 2 2 2 4 72 1 é 1 2Q2 4 2
=2H S pihip—gH Shipn+H'S+H*S—H'— 3 H'S +(S—3——3-H VH s
2 11 |
._—_ZHE[hh%j.—-s—Hazh%”+H‘S+st—' -G—Hs—iH’Sz

—(S-3— S H)ISB-S)—H'+Shtn]  (by [2IT)

=2’H2p;h%,;—(S—%H*—s)zh%ﬁ+H‘S+st —LH T HS

—(S—3~—%HZ)[S(3—S)——H”]

=2H2#‘¢hfﬂ—'(5—‘§‘ H2—3)Zh3u

(5= HY)(S—3H* 3+ 5 VHFRH)(S—FH*—3— VHFSH")

(by (2.24)),
that is, (2.26) is valid.
On the other hand, according to [(2.18), we have
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1
(2.32) Ehgnz=—2-AEh =N DAhi s +224A:h3 )+ 42D 25h 0+
DAAhi)+3HD puihtn +H(S—9—HE)I A

1
=‘2—A2h31k [ Shin—2HDpihin+—+ 2(ﬂt+ﬂj+ﬂh)2hijh]

1
FA(— EAS Y+ SF b HE = Hf =3 )+ 3H Spiblis (S —9— S
(by (2.29) and (2.30))
=— 3 St st )t + IBH S pehin— S AShL s

+(S—9— g H)Shin+4Sf +4Hf ,—4Hf 121,

———2(#t+#1+ﬂu)ah n+I13HZphipn+4S—3)f +4Hf,—4Hf,

~g[2H Bt~ (S~ 5 B =3) gt +(5—Fr7)(s- 313
+%VW)(S—%H”—3——1—W)]+(S—9——-§-H’)2h%j.
(by (2.26))

5
=— ‘52(#1'4‘#;*%'/11)2/1?1& +8H S pihij

—-25— S———H”)(S——-H” 34+ «/H‘+8H’)(S—-—H” 3——\/H‘+8H’)

+4(S~3)[—.H’S+-—l—

1
4 2

6 2
(by (2.22) and [2.23)

—4H(2 £+ TH e H =2 S)+ (T S—E‘H”——)Zh,ﬂ.

5
= "‘?3‘E(ﬂr‘l’ﬂr{'ﬂh)ahf;k+8H2p;hfﬂ,

_%(S—%H’)<S—%H’—3+-i—«/H‘+8H’)( f% 3——«/H‘+8H’)

+ (55— 2 2) Bhtyu+as—3)( - H"S+éH‘+%S’)

—4H(%—H‘—-%H”S)+(2S 12—-118)(3(5 —3)+H*—Sh%) (by (BT
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= — 3 Sttt ) i+ 8H Sppihts
——Z—(s-%m)(s—%m—ént-i-mé)
x(s--ﬁ—m—s—%VHTISW)+—2—(S—%H2—3)2M},.
+4(ss—652+9S—%H252+6H25+H‘s—%—syz_%m)

5 3 2
=—= i+ i+ pa)hie +8H D pshij+5(S— 5 H*—3 Zhije
3 2 3

+—§—(S—%H’-)(S—%H”'——3+%VW)(S—%H”—3—%—«/m’)
(by (2.24)).

Thus (2.27) is true.

Lemma 2 (cf. [1]). Let M be a hypersurface in S™*'(1) with constant prin-
cipal curvatures. Let A,, A, -+, Ap be the distinct principal curvatures of M and
My, -+, m, their multiplicities. Then :

1+4d;
J#i s 21—2]' —0.

Especially, when n=3, we have

S=H?%/3, 3H*/4—~ H*+8H*/4+3, 3H2/4-{—«/H‘+8H§/4+3 or H*+6.

Lemma 3 (cf. Omori [7] or Yau [10]). Let M be an n-dimensional complete
Riemannian manifold whose Ricci curvature is bounded from below. Let F be a
C?-function bounded from below on M, then there exists a sequence {pm} in M
such that

lim F(pn)=inf F, 5ﬂ|vp(pm)|=0 and ii_rg inf AF(pm)=0.

3. Theorems and their proofs

Theorem 1. Let M be a complete hypersurface in S*(1) with constant mean
curvature. If S=constant and

3H?/4—~H*+8H®*/4+3<S<3H*/4+~vH*'+8H*/4+3,
then S=3H?/4+~H*+8H*/4+3.

Theorem 2. Let M be a complete hypersurface in S*(1) with constant mean
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curvature. If S=constant and
3H?/A+~H*+8H?/4+3<S<H*+6,
then S=H®*+6 and M is an isoparametric hypersurface if H=+O.
Corollary. Let M be a complete hypersurface in S*(1) with constant mean

curvature. If S=constant and S<H*+6, then S=H?/3, 3H*/4—~ H*+8H?%/4+3,
3H?/4+~/H*+8H?/4+3 or H®+6.

Proof. According to [Theorem 1, [Theorem 2 and the result due to the
author and Nakagawa [4], is valid obviously.

Since H is constant, we may suppose H+0. In fact, if H=0, then M is
minimal. From the result in due to the author, we know that Theorems
1 and 2 are true. Without loss of generality, we may assume H >0.

Proof of Theorem 1. If f,=constant, then M is a hypersurface in S41)
with constant principal curvatures. Hence Theorem 1 is valid from Lemma 2.
Next we will only consider the case f,;#constant. Since S is constant, we
know that f,, 3hi;» and A%, are bounded from (2.17) and (2.27). And the
Ricci curvature of M is bounded from below. Let F=3Xh%;,. We can apply
Lemma 3 to F. Hence there exists a sequence {p,} in M such that

lim F(pm)=inf F, lim |VF(p,)|=0 and lim inf AF(p»)=0,
that is, |
(3.1) lim Shtu(pn)=inf Dhiu, lim |TShEl(pn)=0,

lim inf A A%x(pw)20.

M -sco

According to (2.16) and (2.17), we obtain

(3.2) lim fi(pu)=sup fs, lim|Vfy|=0,  (by H>0)
(3.3) Em By(pm)=inf B,, lim |VB,|=0.

If lim By(pm)=(1/~"6 XS—H?/3)"%, then By=(1/~6)S—H*/3)"* from (2.25) and
(3.3). Hence f, is constant. This is a contradiction. Thus |
(3.4) lim By(pm)<(1/~ 6 XS—H?/3)*?,

Next we will prove lim By(pm)=—(1/+/ 6 XS—H?*/3)*. In fact,

if lim By(pm)>—(1/+6XS—H?/3)*"%, then
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3.5) |lim By(pm)| <(1/~ 6 XS—H?/3)"*.

Because A;, hij» and hy; are bounded from S=constant, we may suppose

36) lim 2P =25
(37) lﬂiﬂhtﬁ(pm):h:ﬁ ,
(3.8 gg}ohuu(lbm)zh;nz ,

by taking subsequence of {p,} if necessary. Hence

3.9 lim p(pm)=H/3—A3=p5 .
Thus, from (3.5), we have
D=0,
S(pi)*=S—H*/3,
| S <L/~ EXS—HY3P .

From 2p=0, Jpi=S—H?*/3, we obtain

(3.10) Shir=0,
CRE I | Setchir=0.
(3.9) and [3.7) imply

(3.12) | Shin=0,
(3.13) Swihiu=0.

According to (3.3), we have

lim |VBs| =lim 3 (B pthua)’=0.
ki

Hence

(3.14) Zi}(;z‘;)zh;f;.:O.

Since p; are distinct from (3.5), and imply
(3.15) 2a2=0 for any 7 and k.

From (3.1), [(3.6), [3.7) and [3.8), we obtain
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(3.16) (S—2H*/3—-3)2h;}

gZHE,u:h:,f+(S—%—H‘-’)(S—3H’/4-—3+ VHFSH/4)

X(S—3H*/4—3— v H*+8H*%/4),

5 3 2 o
(3.17)  Dhih=—oD(pi+p5+m )l hi A +8H Spsh; i+ < (S—2H—3 Zhis
3 2 3

+%(S—31—H”)(S—3H”/4—3+\/TITISTI—f/4)(S—3H'/4—3—«/H‘+8H'/4).
From (3.15) and Ju;=0, we have
(3.18) Z(#?+#§+#2)’h2_1§=0, 2pihi=0.

On the other hand,

Shim %3#21 hfm'=3i§; (hijij_“(l/z)ttj)2+(3/4)‘§ tiss
where t};=(hs;—his)*=(A—2A;"(14+2,4,)". Hence
(3.19) Zhim 2@/ -2 (1+232;5)>0,
since 45, A3 and 23 are distinct. (3.17) and yield
(3.20) 2him=0 from S>3H%/4—~H*+8H®/4+3.
and are a contradiction. Hence
(3.21) 1}‘1_{1;1. By(pm)=—(1/+/6XS—H*/3)*2,
By [2.16) and [2.17), we obtain '
(3.22)  Zhip=S(S—3)+H*~Hlim fy(pn) (by and

—H/(2v'6)—~/(3/8)H*+3] (by [3.21) and [2.16)).
Since S>3H*/4—/ H*+8H®/4+3, we have

VS—H*/3—H/2v 6)+V@/BHF3>0, S—H"3>0.
Hence,
VS—H®/3—H/(2~6)—~v@B/OH+320 (by (3.22)).
Thus Sz3H*/4++/ H*+8H*/4+3. Therefore,
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S=3H?/A+~"H*+8H?/4+3.
This completes the proof of [Theorem 1.

To give the proof of at first, we show that the following two
propositions. - ‘

Proposition 1. Let M be a hypersurface in S*(1) with constant mean curva-
ture. If S=constant, inf Bs-sup B,=0 and
3H?/A+~H*+8H?*/4+3<S<H®*+6,
then S=H?+6 and M is an isoparametric hypersurface if H=O.

Proposition 2. Let M be a hypersurface in S%1) with constant mean curva-
ture. If S=constant, inf Bs-sup B;+#0 and

3H/A+H +8H?/4+3<S<H*+6,

then S=H®+6 and M is an isoparametric hypersur face if H+O0.

Proof of Proposition 1. If inf B,=sup B,=0, then B,=0, that is, fs=
constant. Hence M is a hypersurface with constant principal curvature.
2 implies that is true.

Next we only consider the case f,#constant. And we will prove that it
can not occur. In fact, without loss of generality, we may suppose inf B;=0.
According to there exists a sequence {p} in M such that

(3.23) lim By(pm)=inf B;=0, lim|VBy(p)|=0, lim inf ABs(pn)20.
By we have
lim fo(pm)=HS—2H?/9, lim|Vfs(pn)I=0, limsupAfs=0.
Making use of same proof as in [Theorem I, we obtain
lim 2(pm)=4%,
(3.24) lim hysa(pm)=hise,
lim hgpp(Pm)=hisne .
Hence
(3.25) Spi=0, (p:P=B=(S—H*/3) and 3(ui)*=0.
Thus |

(3.26) pi=—+B/2, p:=0 and pi=+~B/2.



COMPLETE HYPERSURFACES 135

Here we assume p,<p,<p,. Since p¢1, ps and p3 are distinct, by the same
proof as in [Theorem 1, we can get
(3.27) hi=0 for any 7/ and &,
(3.28) Seshi=0.
Because HAB,=AX h: 2 from and (2.26), (3.23) and H>0 imply
(3.29) 0<—(S—2H*/3-3)Zh: 2

+(3/2X(S—H*/3X(S—3H?*/4—3+~H*T8H*/4)

X(S—3H*/4 —3— VHTT8H/4).,
Since lim fy(pn)=HS—2H?*/9, we obtain

(3.30) 2 h;4=(S—H*/3X(S—2H?/3—3) (by (2.17)).
and imply

0§~(S——H2/3)(S—2H2/3—3)2+(S——H?‘/B)[(S—3H2/4—3)2-—(H4+8H2)/16:|
=(S—-H’/3)[—(S—2H2/3——3)H2/6+H4/122—(H“+8H’)/16]
=—(S—H?*/3)[(S—2H*?/3—3)H*/6+H?/2]<0.
This is a contradiction. Hence, is valid.

Proof of Proposition 2. If f s=constant, then M is a hypersurface with
constant principal curvature since H and S are constant. Hence
is valid from Lemma 2 Next we only consider the case f,+constant. And
we prove that it can not occur. In fact, since inf B;-sup B;#0, we have

(1) If inf By-sup B;<0, then, from the continuation of Bs;, we have that
there exists a point p=M such that

(3.31) By(p)=0.

(2) If inf By-sup By>>0, then inf B, and sup B; are same sign. We shall
prove that this cases doe not occur. In fact, without loss of generality, we
may assume inf B;>0. According to [2.25), we have

(3.32) 0<inf B,<(1/+/ 6 (S—H?/3)%*,

We apply to B,, then |

(3.33) lim By(pn)=inf B;, 1im|VBy(p»)|=0, liminf ABsy(pm)=0.
Therefore,

(3.34) lim fy(pm)=sup fs, Hm|Vfy(pn)|=0, limsupAfy(pa)=<O0.
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By the same proof as in [Theorem 1, we can get

(3.35) lim p(pn)=p1,

(3.36) lim hesa(pm)=h3sn

(3.37) g2+ ps+p3=0,

(3.38) y?’+p§”+p§’=3,

(3.39) pst+pst+ps=inf By .

(3.38) and imply that p3, p;’ and p; are distinct. By the
same proof as in we can obtain '

(3.40) hia=0 for any ¢ and &,

(3.41) Spihia=0.

By [(2.14), [(2.20) and [2.22), we get
(3-42) Afsz—621“1’1%!);+2H2h51k_38f8_3HS+9f3

+3H(—H*S +%H‘+%Hf,+—;—sg)

B 2 7 CHY
_—62#;%;»——3(S—-~§H'—3)f3+H(752—95+2H’-—3H”S+——2—-)
(by (2.17))

2H”)

g—ezm‘h%n—s(s—%m—s)(ys- 5

+H(%S'—QS+2H’—3H“S+—%—H‘) (by [2.16) and [(3.32).

and (3.42) imply
0=H(S—H?®/3)*>0.

This is impossible. Hence (2) can not occur.
Next we will prove that (1) can not also occur. From (1) we know By(p)
=0, that is,

(3.43) Fop)=HS—2H?*/9.

At point p, we have
1+ pet+ps=0,

pi+pi+ps=B=S—H"/3,
pit+pi+pi=0.
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Hence
S m=—VB/2, p=0, p=vBJ2.
(45 A=H/3+vBJ2, A=H/3, A=H/3—BJ2.

According to 334,=H and 2A?=S, we have.

2hie=0, DAthi=0.
Hence,

(3.46) hur=hsss, her=—2hy,  for k=1, 2, 3.

On the other hand,

(3.47) 2 hiss=B(S—2H®/3—3) (by (2.16) and Bs(p);O).
From [(3.46), we get

D hise=6h1es+16h},+(5/2)h3e+16hls=B(S—2H?/3—3).
Therefore,

(3-48) 2’1312:2’1%23"‘8,1%11 +(3/2)h322+8h§ss
=(1/3)2hi;n=(1/3)B(S—2H?*/3—3),
(3.49) i:"': 155=20(A— ¥ 1+ A:4,)

=2B(S*/2— H*S/2+4H*/21—25+4H*/3+3)  (by [3.45),
(3.50) ;;j(hijij""ttj/z)z 22[(hig12—115/2)*+(h 2323 —L23/2)%]

=[hiarethases—(troH126)/ 21+ [hazre— Raszs— (F1a—tes)/2]°
2 [hio1e— Rases—(t1a—tes)/2]?
=[his1e— hassa—tas—(t1a—12s)/2] .

By differentiating S=314%;, we obtain

2hirrdi+2h%,=0 for any k=1, 2, 3.
Hence - :

3.51) VB/Z hyss— hig)=S ki, (by (3.45),
(352)  tu—tw=HB/3, tu=~B/2+H*VB/Z/9—HB/6 (by (345),
(3.53) 3 hhi23 T (hou—ta/2HE/AH,
| >(3/2)B(S*/2— H*S/2+4H*/2T—2S+4H*/3+3)
+6B(S/3—1/2— H*/6)*
 (by [349), (350}, (35T} (3.52) and [3.48).
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(2.27), (3.47) and imply
(3/2)3(5’/2——I'I’~">'/2-{—4I"1"/27-—25—{-411”/3+3)--}-63(3/3—1/2——1‘1’/6)2
é(v—5/3)2(pi+#]‘+ﬂk)2h%jlz +8H S pihisn +(3/2)B(S—2H?*/3—3)

1(3/2)(S—H?/3)[(S—3H*/4—3)*—(H*+8H*)/ 16],
that is,

(3.54) 0< —(5/3)Spe+ g5+ pa )l hin+8H S pahise
+[195%/12—(17H*/6+13)S+37H*/36+9H*+21]B.
@) If —(5/3)(pet+ps+pa)hin-+8HDpshisn =0, then
19S*/12—(17H?*/6+13)S+37H*/364+-9H*+21=20.

According to S>3H*/4++v H*+8H 2/4+3, we obtain S>H®+6. This is a contra-

diction.
(b) Tf —(5/3)D e+ ps+ ) hin+8H Spehis 20, then, since

— Wit 5+ el hisn S — 12Bhiss, 8H D ptihisn <32H~/'B/2h}ss,
we obtain '
(3.55) 0<(5/3)(pret+ s+t hin+8H D pehis
<(32H—40~B/2)v'B/2h}ss
<(1/16)32H —40~/B/2)v/'B/2Z his
—(1/16)(32H —40~'B/2)~/'B/2B(S—2H*/3—3)
< B(H*+B/2—5B/4XS—2H?/3—3)
— B[—35%/4+9S/4+7H*S/A—5H*/6—15H*/4] .
We get, from (3.54) and (3.55),
(3.56) 55%/6—(13H?/12+43/4)S+7H*/36+21H®/4+21=20.

Let F(S)=55"/6—(13H2/12+43/4)S+7H‘/36+21H”/4+21. As a function of S,
F(S) reaches its minimum at S=(3/ 5)(13H?/12+4-43/4). Without loss of generality,
we may suppose

3H?/4+3+~ H*+8H?/4<(3/5X13H*/12+43/4)<H*+6 .

Since F(3H®/4+3++H*+8H®/4)<0, F(H®+6)<0 and F[(3/5X13H%/12+43/4)]
is only a minimum of F, we obtain F<0 when

3H?/4+3+~H*+8H*/4<S<H*+6.

This is a contradiction. Hence (1) can not also occur. Thus, we complete the
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proof of [Proposition 2,

Proof of Theorem 2. According to Propositions 1 and 2, Theorem 2 is
valid obviously.
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