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Summary. Let f,(x) be the recursive kernel estimators of an unknown
density function f(x) at a given point x. Also, let N(¢)(¢>0) be a family
of positive integer-valued random variables. We consider the sequential esti-
mators fx«,(x). In this paper, under certain regularity conditions on N(?)
we shall show that (N(2)h% ;))'2(fxey(x)—f(x)) is asymptotically normally
distributed as ¢ tends to infinity. Our conditions on N(t) generalize those

given by Carroll [2], Stute and Isogai [6].

1. Introduction

Let Xi, X, X,, -+ be a sequence of independent identically distributed p-
dimensional random vectors, defined on a probability space (2, ¢, P), and let
f denote their common probability density function with respect to Lebesgue
measure on the p-dimensional Euclidean space R?. Further, let N(@) ¢>0) be
a family of positive integer-valued random variables defined on (2, g, P) (i.e.,
stopping rules). Many authors have investigated the problem of nonparametric
density estimation based on X, ---, X,. This problem was summarized in the
books of Prakasa Rao and Devroye and Gyorfi [4]. On the other hand,
there are many situations in practice where the number of observations required
to compute density estimators is random. The problem of sequential density
estimation based on random number of observations also has been studied (for
example, see Srivastava [8], Carroll [2], Isogai [5] and [6] and Stute [9]).
The above authors, Davies and Wegman and Wegman and Davies
proposed stopping rules and investigated the asymptotic properties of the se-
quential density estimators and the stopping rules.

In this paper we consider the following sequential density estimators pro-

posed by Isogai [6]:
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(1.1) fFrae(x)=28PaBinarKix, X)+Bovwr K(x).
where
(1.2) Ku(x, y)=hz?K(x—»)/hn) for =x, yeR?,

K is a bounded, integrable, real-valued Borel measurable function on R? and
{h,} with h,=h, is a nonincreasing sequence of positive numbers converging
to zero,

(1.3) : a,=a/n for any fixed a<(0, 1]

and

Mims(1—ay)  if n>m=0,
(1.4) ﬂm,,z{

1 if n=m=0.

The aim of this paper is to show that, under certain regularity conditions
on N(t), (Nt)hB )V *(f v x(x)—f(x)) is asymptotically normally distributed as ¢
tends to infinity. The results like this were shown by Carroll [2], Stute 9]
and Isogai [5], [6] but our conditions on N(t) generalize those given by them.
This paper consists of three sections. In Section 2 the main theorem is given.
In the last section the theorem is proved.

2. Main Result

In this section we shall make some preparations and give the main theorem.

Set
7:=1 and 7,=2}.(1—a; for nz22,

where a, is defined in (1.3). It is known in that

2.1) Brn=VsTm  for nzmz=l
and
(2.2) Bmn ~ mén=® as n=m —> oo,

where “~” means the asymptotic equivalence. Throughout this paper the func-
tion K in Section 1 is assumed to satisfy the following.

Condition K :

[ Kadu=1, | JulP|K@ldu<e,

SpuJ((u)duzO for i=1, -, p with w=(us, -, up),
R

full?| K(u)] —> 0 as |lulf —> oo,
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where || denotes the Euclidean norm on RZ.
Assume the sequence {4,} in Section 1 satisfies the following.

Condition H: For a of (1.3)
(HI) nhlto as n-— o,
(H2)  a'"%%hl >0 as n— o,
(H3)  nm'2ehi3p, j**"Ph3? > B as n-—co for some constant 8>0,
(H4) nYESA RPN L PR 0 as n— oo,
(H5)  (n* A )'*37, /% A3 >0 as n— oo,
(H6)  For any ¢>0 there exists a positive constant 8 = 8(¢) such that

|[(n/m)—1| <8 implies |(h,/hn)—1]|<e.

Example. Let h,=n""'? with max{p/(p+4), 1—2a}<r<1. Then {h,}
satisfies (H1)~(H6) with 8=(2a+r—1)"'. We shall give two definitions con-
cerning conditions on f and N(2).

Definition 1. Let g be a real-valued function on R?. We say that the
function g belongs to the class M, (abbreviated as g=M,) if there exist bounded,
continuous second partial derivatives 9°g(x)/dx.0x; on R? for all 7, j=1, ---, p.

Definition 2. A family of positive integer-valued random variables N()(¢>0)
is said to satisfy Condition A if there exist a positive random variable 6 on
(2, &, P) and a family of positive numbers z(t) (>0) with z(f)—>o> as t—oo
such that N(t)/r(t)—p»ﬁ as t—oo (in probability).

Remark 1. The stopping rules considered by Carroll [2], Isogai [5], [6]
and Stute [9] satisfy Condition A. We shall now give the main theorem of
this paper.

Theorem. Assume f=M,. If N(t) satisfies Condition A, then for each point
x with f(x)>0
(N(f)h5u>)”z(fzv<z>(X)—f(x))T NQ, *(x)) as t— o (in law),
where

o¥(x)= a’,Bf(x)SRpK’(u)du .

Remark 2. Let ¢ in Condition A be a positive discrete random variable,
that is, there exists a sequence of positive numbers [, (k=1, 2, ---) (k may be
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finite or infinite) such that ¢, p.=1 where p,=P{#=I[:}>0. Then this
theorem was proved by Isogai [6].

3. Proof of Theorem

Throughout this section all of the conditions in are assumed
to be satisfied. Let [b] denote the largest integer not greater than b. Note
that b—1<[b]<b. For notational simplicity let N and r denote N(¢) and z(t)
respectively unless otherwise specified. For any fixed x set

Z,=Ku(x, Xa)—EKu(x, Xa), 0,=EKa(x, Xa)—f(x),

Sp=30 a;BiniKix, X)—f(x)},  Va=(mhp)'*S, for nzl,
where S,=V,=0 and K, is as defined by (1.2). Then it is clear from [(1.1) that
(3.2)  (NRIM(fw(x)—F(xN=V y+(NRZ)*Bon(K(x)—f(x))  for t>0.

One can easily verify that of holds for independent random varia-
bles, that is,

3.1

Lemma 1. Let {Y,} be a sequence of independent random variables. Also,
let {k,} and {m,} be sequences of positive integers tending to infinity, and Aa
an event depending only on Y, -+, Yn,. If A is any event, then

lim supP(A,| A)=lim supP(A,),

N=-+00

where the conditional probability P(A,|A)=P(A) if P(A)=0.
The following lemma is found in [6].

Lemma 2. Let {Y.} be a sequence of independent random variables such that
putting S,=(1/B)X1Y; with B,>0 being a constant tending to infinity, the
random variable S, converges in law to some random variable with the distribu-
tion function F. Then for any event A with P(A)>0 the conditional probability
P{S.<x|A} tends to F(x) for every continuity point x of F.

In the same manner as (A.9) in [6] we obtain

Lemma 3. Let C be an arbitrary given positive constant. Then for any
e>0 there exists a positive integer no=no(e, C) such that for all mznz=n, with
m/n<C

vmh%, max |3 aqBqi0,] <&.

Lemma 4. Under the assumptions of Theorem
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(N(t)hglm)”z(szv(n—Scorm]) —P) 0 as t—co.

Proof. Let any ¢, n€(0, 1) be fixed. First fix a sufficiently large constant
C>0 and a sufficiently small constant ¢>0, both of which do not depend on &
and 7. Here let ¢™* be far larger than C. Further let constants be denoted
as the same notation C and/or ¢, unless otherwise stated. Choose a positive
constant G satisfying

3.3) 1-9(G)+P(—G)<cy,

where @ denotes the distribution function of the standard normal random variable
N(0, 1). Taking account of the positivity of #, choose an integer m=1 and a
constant p<(0, 1/2) depending only on ¢ and 7 such that

3.4) P{O<(m—1)/2™}+P{0=m}<75/4 and m>max(Ce™%p~', CGe™)
and
3.5) 0<p<min(ce'y, C-'G'%).
Let an event A, be denoted as
Apmn={(k—1)/2"<6<k/2™} for m<k<m2™,
It follows from Condition A that
(3.6) P{{N—[0z]| zp[07]}<n/4 for large ¢.
By (3.4) and (3.6) we get

(3.7) P{~/NhE | Sy —Stor1| >e}
SR P{VNRE | Sy—Stpeal >¢, IN—[07]] <p[07], Arn}+7/2
for large ¢t. Fix any k=m, ---, m2™. Set

nm=n,t)=[(k—1)z/2™], ne=ny(t)=[kr/2™],
08 m=m@)=[(1—p)n.],  m=myt)=[1+p)n.].
It is easily verified that
limmy/m=1=p, Jim m/m=1—k",
(3.9) Hm B0, =(1—p)*21—p,
lim Bnn,=(1—k"")*21—m"",

It follows from (3.8) that
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1:@)=P{~/Nh3 | Sy—Stes1| >¢, IN—[07]| <p[87], Ain}
<P{+ih% |S;—S;| >¢ for some m,<i<m, and some n,<;j<n, Agm}
(3.10) <P(Asn) P{~ih% |S;—S,| >¢ for some m;<7{<n, and some nlgj_s_n;lA,.m}
+P{Vih% |S;—S;| >¢ for some n,<i, j<n,| Apnm}
+P{+/7h% |S;—S;| >¢ for some n,<i<m, and some n,<j<n,|Aen}]
=P(Ain)(J1+ ]2+ Js), say.

First we shall estimate the term J,. By the monotonicity of nhf we get

.I {'V/nlhgl max |Si m1|>'3/31Akm}

<isn
3.11) +P{/IhE, ma;; |S;— S, >e/3 Arn)
=Ju+/ 1 say.
It follows from (3.1) and the monotonicity of 7, that for />j
|Si=S1 SWs—7)1 D=1 617 Zo| +711 D1 8017 2|
| Do 8aBasbal + | Thor aaBesdel.
Since lim m,=co, by and we have

(3.12)

\/mm?;lias}gllzzgl agBqif,l <e/4  for large t.
Thus by the use of this relation and (3.12) we obtain that for large ¢
JnSP{VhE [(Vn,—Tn) | Sech aqTq‘ZqI+mfgias§17¢|23=ml+: agr7'Z,gl]
+2+/nhE, mrlr;?icnl | ey agBeifel >el Arm}
(3.13)  SP(VIRE, (In,—Tn )| Dot aal 7' Zol > /4] Am}
+P{~n.hE, mrlrégnlm}]zw,ﬂ a¥7' Zo| >€/4| Arm}

=Jin+Jue say.
It follows from that

(3.14)  lim sup Ju.=lim sup P{v nlhzlmmgtxn Vil Diamr1 a7 24| >¢/4}.
Using the inequality of (A.17) in [6], [(3.5) and [3.9) we have
R.H.S of (3.14)<Ce™® linzl sup{(n,/m)¥(1—m,/n,)}<4Ce %p.

Hence by [(3.5) we obtain
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(3.15) lirrllasup Jna<enm.

Put
Uw=ant7'Zn, Wo=3031U, and wi=30,alr;*EZ:.

Then in (2.5) and (2.6) of Isogai it is given that

(3.16) wh ~ o¥(x)(nhBri)* as n— o
and
3.17) Wa/wa T N@O,1) as n — oo,

By virtue of and the monotonicity of h, we have

VL (Tm,—Ta)wn,<Cp  for all ¢>0.
Hence it follows from this relation, Lemma 2, [3.3), [(3.5) and [(3.17) m that
' lun supijhmsup P{lel/wm1|>C ‘07 | Arm}

shm P{{Wn,/wn,|>G| Axn}=lm P{|Wau,/wm,|>GC}<cy,
which, together with (3.13) and implies that
(3.18) lim 1 Sup Ju<enp.

Replace m, and n, in J,, of [3.11) by #, and n, in J,, of [3.11) m reSpectlvely
Then in the same manner as - we obtain

(3. 19) ' lln"I sup J:.<cy.
Thus, combining (3.18) and we have
(3.20) linEl sup J.<ceym.

By the same argument as we get
lin;njoup J:<cm and lir?;iup Js<em,
which, together with (3.7), (3.10) and yields that
lim sup P{~/Nh% | Sw—Stor1| >e} ScpDiin P(Asm)+7/2Sen+9/2<7.
Therefore, as n—»O we have the lemma. This (i:ompletes'the proof,

We are now in the position to prove the theorem. It is given in of
Isogai [6] that 7,<Ln"° for all n with some constant L>0. Since by Condn-
tion A N - as t — oo, using (H2) and the above inequality we get that
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V' Nh% Bow ?0 as t — o. Thus, by taking account of (3.2), in order to prove
the theorem it is sufficient to show

3.21) -V —1:> N, o*x)) as t— oo,

Clearly,

(3.22) Vu=Vipe1+vVNhB (Sy—Sto:1)+ Vgl (N /[07]1h%6.2)!—1} .

It follows from Condition A that N/[6z] —;1 as t — o, which, together with
(H6), yields that Nh%/[07]h%e.; ~ 1 as ¢t — o. Hence, if

(3.23) Ve T NQ, o*(x)) as t— o,

then '
Vigea{(Nh%/[07]hRe: ' —1} —F 0 as t— o0,

Thus, by this result, (3.22) and in order to show (3.21) it is sufficient
to prove [3.23) In the remainder we shall show [3.23). Let F be the distribu-
tion function of N0, ¢%x)). If

3.24) lim P{V pn<y}=F(y) for any v,

t—co

then holds. Hence it suffices to prove [(3.24). Let any >0 and any y
be fixed. Fix a sufficiently small constant ¢>0, not depending on 7. Let
G=G(7)>0 be a constant such that 1—F(G)+F(—G)<cn. Choose a sufficiently
large integer m=m(%) such that all the relations depending on.m hold and that
P{e<(m—1)/2"}+P{§=m}<cn, and a constant e=¢(n)>0 satisfying that
|F(y+is)—F(y)| <n/4 for i=+1. Set

(3.25) pn=01(k/2M)I(k—1)/2" <O <k/27M),

where I(A) denotes the indicator function of A. Note that p., is a positive
discrete random variable. Thus, from (3.4) of we have

(3.26) Viamea —L—> N(0, o*(x)) as t— oo,

Since by virtue of of
| P{Vipn=y}—F(¥)I
S|PV asy+et—F(y+e)|+ 1 F(y+e)—F)I+ 1 PVipasy—¢}
—F(y—&)|+ | F(y—e)—FMI+P{|Vierr—Vippal >el,
it follows from that _
(3.27) -limsup|P{Vion=y} —F(y)| <lim sup P{ | Viger—Vippel >e}+10/2.
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Now, we shall estimate the first term of the right-hand side of (3.27). Using
the same relation as (3.22), we get
P{1Vtoe1—Vippuerl >} S P{(LO7IAR0:)"2 | Scoer—Stpper| >e/2}
(3.28) +PU((LO7]h%0c1/ [ptmT IR pye) P =DV 1y yea] >e/2)
=1,+1,, say.

Set n,=[[kr/2™]—7/2™] and n,=[kr/2™] for fixed k=m. By we note
that p,="rk/2™ if (k—1)/2"<6<k/2™ and that 0<pn. Then, taking account
of the monotonicity of nh2, we have '

Ilgzﬂle’{vnzh‘,’,,‘,ISnz———Sil>£/2 for some n,=i<n,| Apm}P(Arn)+cy
= z’-‘ﬁn'{‘P{vnzh’i.z 1'I<1?~$X lsi_‘snll>5/41Akm}P(Akm)+C7):
"1 Ny
where A, is as in the proof of Cemma 4. Hence, following a similar argu-
ment as we can prove that

(329 I,<cp  for sufficiently large ¢ .

Lastly, we shall estimate I,. By and the property of G we have
P{|Viy,e11>G}<cy for large t. Thus, we obtain that for large ¢

(3.30) L=P{|Viy, ol >Gl+1n<cn+l,,
where
Ly=P{|([071h%0:1/ [ tmT]h Y )2 —1]| > &/2G}.

Put 7,=min{(e/2G)?, 1}. Using the fact that 0 <pm and the simple inequality
that (va—1<|a—1| for all a=0, we have

I < P{|(hcoes/ htupe)?—11 |[01/Lptme] | + 1 (COTY/ Cptme D —1] > 11}
(33D SPUkeor/ hrppe)®— 1| >72/2}+P{I 01/ Ltz D—11 > 11/2)
E]1+]2» SaY-

From (H6) there exists a constant nginz(n)>0 such that |n/m—1l<1;2 implies
|hn/hm—1|<%,/27P*’, Hence, by the use of this relation and the fact that

xP—1=(x—1)2%=5x* and 33z3(1+%,/27*%)'<2?,
we have
(3.32) Ji= P (hcoer/ heppe) =1 D88 (heoer/ iy o) >11/2,

|Cheoer/ hip pe) =11 <91 /2P 42} 4 Jo= ],
where
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Js=P{|([07)/[ptmT])—1] 272}

Set 7s,=min(7,/2, 7s). It follows from (3.31) and that
(3.33) In 230 P07/ [pgmt])— 11 295, Akn}+cy.

‘'Since on the event A,, for k=m

[([07]/[pnt])—11 <1—=(07—1)/(pnT) <™ +77")/ ptm
SmTi(142™r 7)<, for large ¢,

it follows from that I,,<cyn for large ¢t. Thus, from this result,
(3.29) and we have

lirrltfgp P{IViger—Vip,nal >} <n/2.

Hence, by this relation and (3.27), {(3.24) holds. Therefore the theorem was
proved.
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