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Abstract. The density estimator fr (t)=T5;'57» R K((t—X;)/h;) is con-

Jj=1
sidered, where T, is a random index. A sharp rate of convergence for the
uniform distance between the probability of fr (t), when properly normed,
and the standard normal distribution is obtained. It is shown that for any
¢>0, the optimum order of the uniform estimate is 0(n-1/3+¢)_ Similar results
have been shown by other authors, but under different assumptions on Tj.

1. Introduction

The aim of this study is to show that the asymptotic performance order
for the uniform distance between the distribution function of randomly indexed
kernel estimators of a probability density function (when properly normed) and
standard normal distribution can be extended to include a wider family of
stopping rules than heretofore considered. This problem has a number of ap-
plications in sequential analysis and, thus, has attracted the attention of several
authors. Carroll [2] introduced Wolverton-Wagner-type random kernel esti-
mators to derive the conditions under which they fulfill the central limit theo-
rem. Later, Isogai [3] and Basu and Sahoo [1], by extrapolating the condition
on the stopping times proposed by Carroll, provided an exact approximation
order of the uniform distance. Our attention here focuses on obtaining the
rate of convergence in the central limit theorem for more general, yet realistic,
stopping rules.

Throughout this paper, we shall let {U i; 1€ N} be a sequence of real-valued
independently distributed random variables (i.d.r.v.’s) not necessarily identically
distributed on Ly«(Q, F, P, R), with E|U|°<c. Write S,=0 and Sa=31U,;.
We assume that EU;=0, EU’=g? El\U1*=8}, si=37}.EU=3"_,0% Bi=
27E|U;1*=37_,83, and L,=B:/si. Let {T.; neN} denote a sequence of
integer-valued r.v.s defined on the same probability space {2, F, P}, not neces-

Key words and phrases. Hausdorff-metric, random central limit theorem, independent
random variables, Berry-Esseen inequality, Wolverton-Wagner type estimator. ,
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sarily independent of the sequence {U:; =N}, and T is a positive r.v. also
defined on {2, F, P} and not independent of {U;; i=N}. The symbol “c” de-
notes a generic positive constant not necessarily the same at each appearance,
while ¢;, i=1, 2, -, denote particular versions of ¢.” Define a,=0b,) (bn=0),
if 3¢>0, such that |a.|Zcb, for all n. For x=R, we let [x]=], if x=<1and
[x]=max {ne&N:n<x}, if x>1. I(E) represents the indicator function of the
event E, and lg,x=max {1, log x}.

Given a sequence {X;; i=N} of independently and identically distributed
r.v.s with density function f(¢), define

(L) Fr )= SRR K~ X)/h)

as a random estimator for f(¢). Here, K(-) represents a kernel and {A; ne N},
a sequence of constants.

We shall deal here with univariate estimators; the extension to a multi-
variate case is straightforward. Rewriting the estimator given in using
the notations discussed above, it is clear that

(1.2) Tolfr,)— fO)=232Us+Zr,=Sr,+Z1, say,
where Uy=h7" K(t—X,;)/h))—Eh7' K(t—X;)/hj)
Zp,=Ta(fr, )= ()
fr,)=(1/T)SIHERT K(t—X))/hy).
The sequence {U;; j= N}, as defined in consists of only i.d.r.v.’s which
are not identical.

One of the objectives of this study is to introduce a certain class of stop-
ping rules such that under some sufficient conditions, the uniform distance be-
tween the distribution of the random kernel estimator of the density (when
properly normed) and standard normal distribution becomes the best possible.

When T is assumed to be constant, it is traditionally used to impose a
similar condition to

(1.3) P(|s#, stari—1| >e,)=00e¥?), where n~'<e,—0.

The reason we use s, and sf,r; here instead of T, and [nT] respectively,
is because U,s are just independently distributed not identical. On the other
hand, when T is non-constant, an additional assumption on it is required which
characterizes its dependence on the process {U;; i€ N}. Letting o(T) be the
g-field generated by T, define

P(U(T); Fn)=SUP4eacr)infBanP(AAB)

and
A(T ,)=supxer| P(Sr,+Zr,<x57,)—D(x)],

where @ is the cumulative standard normal distribution function.
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If, for some 0<a<1 and B,

(1.4) p(o(T), Fu)=0(sz*(Ig+ s,)°).
Then, as in Landers and Rogge [6], we shall show that
(1.5) A(T »)=0(ex*)+0(3),

where d, is defined in the following section.

It is worth mentioning that condition is legitimate in the form pre-
sented. Specifically, if EU;=0, E|U;|=a; and EU?=¢?<c and if the stopping
rule T satisfies EXI,a;<co and Esy<oo, for s3=37_,¢% then o(a(T), F,)<
SUpses > P(sE BA(stN (s, -, s2})=P(s}>s2)< si'Esr=0(s3'). Also, some
of the remarks pointed out by Landers and Rogge for justifying the use
of Hausdorff’s metric o(+, +), and the optimality of the rate in the uniform dis-
tance for the i.i.d. case, can be naturally extended to the i.d. case, which this
paper deals with.

The remainder of the paper is organized as follows. In section 2, we
extend the results of [6] to the sequences of i.d.r.v.s (not identical). The
method presented here has some similarities to that of [6]; however, the details
in the proofs are considerably different. Section 3 contains the proofs of the
results stated in Section 2, and the proofs of certain auxiliary lemmas are de-
layed to Section 5. The main results on the kernel type estimators are demon-
strated in Section 4.

2. The Order of Approximation of the Distribution of Sr,.

In this section, we first exhibit the sufficient conditions for estimating the
aniform distance between the distribution of the randomly indexed sum of

i.r.v.s and @(x).
Let {U;; i=N} be a sequence of i.r.v.’s and let S,=27%-1U;. The list of
conditions are:

Cl: EU;=0, EUj=a}, E|U,|*=Bi<oo, si=3703 Bi=37.,83
and L,=B3/s3.
C2: L,s, tends to infinity as »n tends to infinity.

Let the sequence of constants {e;; /= N} be such that sV/2> L, and let T,: Q
—N; neN, and T:02-[c, ) be F-measurable with ¢>0. We then assume
that

C3: P(|st,stiri—1]>e,)=0(e¥?),  where s} =3Inq?,

Ca: p(a(T), Fu)=0(s32(1g.s.))  for ac(0, 1], SR,
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C5: s,=0(n"), L,=0n"%  for 0<6=r<1

with 6<1/2 and 7(1—a)<d, where a is as defined in C4.
Our main result is now summarized in the following theorem.

Theorem 1. If condition C1-C5 are satisfied, then

(2.1) A(T,, T)=sup.er| P(Sr, < xstar)— P(x)| =0(e}/*)+08a), and .
(2.2) A(T ,)=sup.er| P(Sr,<xs7,)— P(x)| =0(e/*)+0(3x),
where '
Ln a=1, B<-3/2,
Llg.lg.s, a=1, p=-3/2,

3ula, B, 1, 8)=0,=
an<1g+s,.>ﬂ+3/2 a=1, B>—3/2,

L;,'_'r(l_a)/d(lg+8n)‘s+a+”2_7“““) a<1’ ﬁER
The following remarks are in order prior to moving on to the proof of the
Theorem.
(i) If we replace C3 by the strongest condition, i.e.,
P(| s}, star—1|>¢€a)=0,

then arguing essentially the same way as [6], we can conclude that a better
approximation order than 0(d,) for (2.1) or cannot be obtained.

(i) If we replace C3 with a weaker condition, i.e.,
P(| s}, stiri—11>e.)=0(e%*ax),

with a, tending to infinity, then, in general, we can no longer obtain approxi-
mation order 0(¢Y?)4-0(3,) for (2.1) and as stated in the Theorem.

(iii) If T is a constant, then p(a(T), F;)=0. We cannot obtain a better
approximation than 0(e/?) for (2.1) and [2.2) under assumption C3. If T isa
constant, our result falls into Isogai’s approach.

(iv) If s,L,=0(1), then the results still hold. This corresponds to the case
where the process is “almost identically distributed”. In the same class, of
course, falls the Landers and Rogge case (i.i.d.). '

3. Proofs

This segment of our work has considerable relationship to Landers and
Rogge [6], where similar results are proved for the i.i.d. case. For reasons
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of convenience, we operate with the same notations as in their work. As men-
tioned earlier, the proofs of some useful auxiliary lemmas are presented in
Section 5.

Proof of [2.2). It can be seen that
A(T»)=supzer| P(Sr,<x57,)—D(x)]
=Supzer| P(§nSt, < xStar)— O(x)],

where §,=s(,r;s7.. Consequently, from (2.1), (2.2) may be proved by using
and by showing that P(|st.zristh—1]>(2¢,)%)=0(c¥2). It is easy to
check that

P(|§n—1]>(2e2)"*)< P(| staris7i — 1] >2¢,)
= P(Ist,stari—1] >ea)=0(e®).
The proof of is now complete.

Proof of (2.1). To show (2.1), it is sufficient to obtain that

3.1 I=sup.er| P(StariS x5tnr0)—P(x)| =0(8,),  and
(3.2) I=sup.er(P(vln(@): SUO)= x5tar) = P(VwE () : SU®)S XStara))
=0(ex*)+0(3,),

where L(@)={veN: (1—e,)stir1=s:<(1+€,)stars}. For convenience, we set
R.(x) to be the event {Jvel(o): S w)<xstari} and Q,(x) to be the event
{(Vvel.(w): S Uw)S xscari).

From C3, it follows that P(T,&I.(w))=0(e}?) and [(nT]el(w). It can be
shown that

(3.3) P(Qn(x)+0(e¥*)< P(Sr, < xstar)) S P(Ra(x))+0(e?),  and
(3.4) P(Qua(x)=P(Stari=xStar) S P(Ra(x)).

It follows from and that

(35) A(Tm T)ésupzeklP(S[nTjéxs[nT])—¢(x)]

+SUDxER|P(SrnéXSCnrJ)—P(S[nTJ§7CS£nTJ)[_
<I+114-0(e¥?).
The proof is completed, provided (3.1) and are true.

Proof of (3.1). Let Ny={2¢;/=N}and N,={veN,;v<[n/(c log n)]}, where
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¢,>0 is a fixed constant. Set j(n)=max V,, and assume that s2=3, and let
¢, be such that L;2< Lz%/2, for any v€ N, and ne N, ‘

For any event B,=F; meN, we define Ba(W)={P(Bn|F)>1/2}€F,. Let
m=2. We partition the event B, as follows:

(3.6) I(Bm)=I(Bm)—I(Bm(j(m)))+Zyezvm(l(Bm(v))—I(Bm(v/Z)))+I(Bm(l)).
We define

3.7 D,=supser| E{I(Sn=<x5m)—O(x)HI(Bn(v) —I (Bu(v/2))}|
for y=1, 2, ---, j(m). With the above definitions in mind, it can be seen that
(3-8) Am=supxeR|P(Sm§x3m1 Bm)'—¢(x)P(Bm)|

<E|I(Bn)—I(Bn(j(m))|+Zsen zumn Dy
<d(Bm, Fim»)+Zen v Dy

The last inequality in follows from Lemma 1. Moreover, via
it turns out that .

3.9 Di=sup.ce| [(P(Snxml F— O XI(Batv)— [ Batv/DV4P |

ScsLa{s.P(BaWABn(v/D)+(s, L) | S,1dP}, and

By, (VABp (v/2)

(3.10) Dise,La{PBR+,  1UIdP}.

Bm

In conjunction with (3.9) and 3.10), yields

(1) AnSd(Ba, Fionm)resLn{PBa+(,  1U.1aP}

FerLnShenn|ssPBaABn(/D)+s.L) | |S.1P}

B »HABp (v/2)

<d(Bn, Frm oL PBm+(, | 1U1dP]

+202Lm2veNmsud(Bm, Fv/2)+CZLmEvENm(Sva)_IS |Su|dP

B (WABy (v/2)
The last inequality follows from the fact that

- P(Br(WABn(v/2)<2d(Bm, Fupa).

Next, we define Bo={[nT]=m}ca(T). For our purposes, we shall assume
that nc=3, for n= N, and that
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(3.12) I=sup:er| P(Star1< x5tar1)— O ()|
 =SUPsenl S end P(Sn S x5m, Ba)— B(x)P(B)|
=2mzncSUPzer| P(Sn=<x5m, Bn)—@(x)P(Bn))|.
Invoking (3.11), it is seen as in [6], that for any event G,={w=Q: | Sy(w)| >
2s,(1g. L71)'2),
(3.13) [S303-1RL(n),

where
Rl(n)=2mancd(3m; Fj(m)) s

Rim=c Smzne Ln{ PBa)+(,  [UL1dP},

Bm

Ryn)=cs 2 Lu(4silg,L;")*d(Bm, F,;.), and

mzne,veN

Rim=c, 3 La(Ls)" S 1dP.

Gyn(Bm (WABp (v/2))

The remaining part of the proof of (3.1) is devoted to showing that R (n)=
0(d,), for =1, 2, 3 and 4. It follows from that

(314) Rl(")éngnc(KBm, Fj([ncj))§4p(a(T); Fj([nc])) ’

which, in conjunction with C4 and C5, yields

(3.15) P(O‘(T), FJ([nCD)gC7(sn/log+s")_a(lg+(sn/lg+sn>)‘5
= Ces7 (184 50)7 8
<, LYTa-®(|g, s YBrat+iz-ra-a
€100 .

Next, we proceed with R,(n). The events B.(l), for m>=nc, are mutually,ex-
clusive. It is deduced that

B.16)  R(m=CZmencLn{PBa)+|,  1UiIdP}<cuLascnd,.

The last statement follows because E|U,|< 00, DmancP(Bn(1))<1 and Line=
O(L,). To establish Ryn)=0(d,), it can be seen that

B17)  Rim=cs B La@silg,L;)V"d(Bn, Fu)

2nc.ve

=cy 3 > L4538, L7)2d(Bm, Fop)

ieNy inc/2smine, veN

=¢C12 2 Ltinesor > (4831g+LE')“2d(Bm. E.p).

ieN, inc/2sm<ine, veN o
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As we have pointed out above, the events B,oea(T), for mznc and are dis-
joint. According to and C2, it follows that L;'<css,, and

(3.18) Ry(n)<4cie 2 Luinern 2 (4silg+ L7 *0(a(T), Fore)

ieN, veN [ine]

<S¢ D Lemerss 2 (4538, L7 2s7%(1g450)°

ieN; VEN (inc)

<cis 3 Loinesn D si(1g48,)PH2 .

teN, vEN [inc]

In view of C5 and is deduced to

3.19) R(m)<cie 3 (m)2 3 v 2 (log v)Pf /2
ieNy VEN [inel
C"n—aw(l—a)(log n)ﬁ+1/z—r(1—a) a<1’ ﬁER,
[ cn~%(log n)*/2+8 a=1, >-3/2,
=] cin-loglogn a=1, f=-3/2,
cn? a=1, B<-3/2,
'-5.01757; .

It remains to be shown that R,(n)=0(5,).

(3.20) Rim<cs 3 Lu(Lis)™ 1S.1dP

znc,veEN SGchm(wABmcvlz))

<euln 3 L ([ + )
mznc,veN, Gy~Bm (V) GynBm (v/2)

<ciwL, 3 L;lS |S¥|dP,  where S¥=S,/s.
veN; Gy

The following arguments are similar to those in [4]. Since E|X|£35.P(] X|
>k), then by setting

Y =(S¥/2)(1g. Ly 211 S¥| >2(g. Ly )Y,

it follows from and Markov’s inequality that for v> 1

L] |SdP<2g. L Ly SioP(1 ST > 2008, L))

k 1/2
<208, L) L Sea{ s Lok g, L)+ ZimiP(1Us| > 3 5.0lg L) |-

Since L,=0(v"% and ilog 2<log v(i) for vEN,, it results from in
that ' .

(3.21) R4(n)§_czan:O(5n) .
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By inserting [3.15), (3.16), [3.19) and [3.2I) into [3.13), the proof of (3.1) is com-
pleted.

Proof of [3.2). We set /,(m)={vEN: st(1—¢,)<s2<sh(l46,)). It is easy
to see that

3.22) P(Qn(x))—P(Rn(x))=mglm(P(Qn(x)ﬂBm)—P(Rn(x)ﬂBm))
=m§c(P(Bm, Fvel,(m): S, <x5m)—P(Bm, Vel (m): S,<x5n)).

Let An={P(Bn!|Fictne»)>1/2}EFjtne. Clearly, {An, m=nc} consists of mutu-
ally exclusive events. By Lemma 1, P(BnAAn)=d(Bm, Ficnep). Thus,

©.23)  PQu(xN—P(Ru(x)<2 3 d(Bm, Ficcnen)

+m§w(P(Am, velm): S,<xsm)—P(An, Yvel,(m): S,£x5n)).

From and

(324) mgm_d(Bm; Fj(tnc]))§4p(a(T), Fj([nc]))§_4cloan .
From
3.25) P(An, vel,(m): S,<x5m)—P(Am, Yvel,(m): S, <xsm)

=L Py, l€1,0m): Sy S x5 <Si| Fictnen)d P

éczsP(Am)(l:r(n)"*‘ {251;3?71./(3%1(1_En)—si(tncl))}1/2§624P(Am)5;1/2»

where »(n)=min{ve N: s%,(1—¢,)<s2< st (14¢,)} =min I,(m). The last inequality
in follows, since L,<e¥?. In view of [3.24) and [3.25), it is observed that

(3.26) I<8¢100,+case’® 22 P(An)=000,)+0(e?).

The proof of is now complete.

4. An approximation Order of Convergence of the Distribution of fr,(t)

In this section, we exploit the method developed above to obtain the rate
of convergence for the uniform distance between the distribution of our random
estimator for the p.d.f. and the standard normal distribution.

We first state the conditions for the kernel function, the sequence {4, : ncN },
and the probability density function. ‘

Assume K(-) to be a measurable function with
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K, : supier| K(t)| <oo,

K, SIK(t)Idt<oo,

K, : SK(t)dt:l ,
Ki:lim ;.| tK(®#)] =0,
K,: StK(t)dt=0 .

For the sequence {h,; n< N}, we assume that it is a monotone decreasing
sequence and

H,: limy.wha=0,
H,: limy.onhya=00,
Hs: limpow(hh/n)27-1h37 =7+ for r=1, 2.
It is traditional in such work to assume that
Hi: ho=n"%, As(1/3, 1).
As far as the probability density is concerned, we shall assume that
F,: f(-) is uniform continuous, integrable and bounded
(in order to be a density function),
F,.: f(t) exists for all t€R, and supier| f7(t)| <o .

Adapting the notations presented in Sections 1 and 2, we shall present a
result similar to that given by Yamato and Basu and Sahoo [1]. The pur-
pose of this result is two-fold: First, it provides the rate of convergence for
the uniform distance between the distribution of Wolverton-Wagner’s estimator
(when properly normed) and the standard normal distribution (for fixed size
sample), and then it states the exact approximation order of L, upon which
the whole analysis depends.

Theorem 2. If K,—K., H,—H; and F, hold, then for fixed teR,

_ fn(t)_Efngl . — -1/2
Mu=supex| P(§arcr iy =)~ 00| =0(nhay ),

where fa(t) is the flxed-size kernel density estimator.
In addition, if H, holds, then M,=0(n""/*),

Proof. Since (f.(t)—Ef.))/(Var (fa()) 12=8§, /s,, then by Petrov ([7], p.
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115), it follows that
4.1) M,<cL,.

If we show that L,=0((nh,)"'/?), the proof of is completed. By
C,-inequality,

42)  BI=SE|UPSASIEIY,HIEY, 1), Y= K~ X)h).
As in [9, (5.8) and (5.9)],

(4.3) EIY,-I’éllfllS!K(u)I’du/hﬁ, Ifll=sup.erf(®),  and

4.5) YIS IA| 1K) du.
Consequently, since H3 holds, it is seen that for large n,
(4.6) Bint/n<eird £ Kw)l*du.
We shall now examine the behavior of Var(S,). It is clear that
n fp- u - u _ 2
4.7 Var(s,,)_2,=l{h,ZSK=(h—j)f(t—u)du—(h,*SK(hf)f(t w)du)'}.

Arguments similar to those of [9, Section 3], can be used to show that if f@

is uniform, continuous, and bounded, and if K,-K, and H,-H; hold, then

Var (S,)=<(n/h,), i.e., (h,/n)Var(S,) is bounded away from zero and infinity.
We conclude, as does Yamato [9, (5.11)], that

4.8) (nha) 2 La=(Bih%/n)siha/n)"**=0(1).
This completes the proof of [Theorem 2.

The rest of this section is consigned to the random estimator fr,@). Cal-
ling upon [Theorem 1, the following theorem may also be proved.

Theorem 3. If conditions C,, C,, C,, K,-K,, H;-H, and F, hold, thén for
Jfixed t<R,

supzer| P(Ta(f 7,(t)=fr,(0)/scaraS x)— B(x)| =0(e¥)+0(3,) .
Comments. (i) Since si<n'*? and L,=0(n"""%/), it follows that
P(|st,stari—1]>¢,)=0(e}/*) is equivalent to P(| T5*[nT] "2 —1| >e,)=0(e¥2).
(i) We note that C2 and C5 are always valid because of H, and

As an extension, the next Theorem asserts that the conclusions of Theorem
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3 still hold even if fr () is replaced by f(t).

Theorem 4. If Cl, C3, C4, K1-K5, Hl—H4 and F1-F2 hold, then for fixed
teR,

supzer| P(Ta(fr,(0)— f(t)stari= x)— D(x)] =0(e4/)+0(3a) .

Proof. As pointed out in[(1.2), Ta(fr,&)—f#)=Sr,+Zr,. The asymptotic
behavior of Sy, is already known in [Theorem 3. Hence, it remains to find
out how Zr, acquits. Using K,-K; and K;, H, and F,, we see that

@9 1Ze, | =| Sin{ K7€ — R0~ f@)du]

=|3a{K@thuf O+n3y D0 o)) dul

T -
=C121=’-‘1h?=027‘}. 24 a.e.,

where v belongs to (¢, u)or (u, t). Since &7/*= L,=cn~"%/2(2>1/3), it follows
that

4.10)  P(Talfr,6)—FO)stirs> ey S P(TEP A [nTIA 02> coell?)
< P(TS AT I > e 34)
<(1/2)P((TEA[nT] ) —1| >cmirebarbia-b_1)
<(1/2)P(| 5§, star1— 11 >ea)=0(ex") .

By and by choosing B.=ceey?+¢.0, and a,=cse}? the result is seen
immediately.

The next is a consequence of [Theorem 4.
Corollary. If C,, C;, C,, K\-K;, Hi-H, and F,-F, hold, then for fixed t< R,

supscr| P(Talf r.(0)— f()s75 < x)— B(x)] =0(e¥2)+0(3n)

5. Auxiliary Results

In this section, we collect all the Lemmas which were used in the proofs
of Theorems 1-4.

Lemma 1 ([5]). Let Fuy and Fe) be subfields of F, then
(i) if {B.; nEN} is a sequence of disjoint events of Fu, the following
result is true
Stnend(Br, Foy)=4p(Fu, Fey), and
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(i) if A€F, and if B={P(A|F,)>1/2}, then we have that

P(AAB)=d(A, Fw).
The proofs of the following two lemmas are simple and, therefore, are

omitted.

Lemma 2. Let {&,; n=N} and {Y,; nN} be sequences of r.v.s and let
Wa=8,Y .. Suppose that {a,; n=N} and {Bn; n=N} are two sequences of
Positive constants which tend to zero as n tends to infinity. If

Supzer| P(Y 2 =x)—@(x)| =0(8,) and P(|&n—1|>a,)=0(84),
then sup,er| P(W,<x)—@(x)| =0(8,)+0(a).

Lemma 3. Let {Z,; ncN} and {Y,.; n=N} be sequences of r.v.s and let
Ww=Z,4Y,, for n=1,2, .. Suppose that for any sequence {B,; n= N} of
positive constants, we have that

supzer| P(Z,<x)— Q(x)l'—‘o(ﬁn

Then, for any sequence of positive constants {a,; n=N }, it follows that
Super| PW < x)— @(x)| =0(@n)+0(Ba)+P(Y | >a) .

Lemma 4. Let {U;; i=N} be a sequence of i.r.v.s such that EU;=0,

EU%=¢} and E|U;|*<oco. Let {S,; n=N} be a sequence of partial sums with

Sn=2}=105, Bi=X7.8} and L,=B}/si. Define Fy=0¢U,, Uy, -, Uy), then for
any 2L;i'< L;' we have P-a.e.

SUPser| P(Sn=x8, | Fp)—@(x)| =cLa{se+(ssLs)7*|Sk|}.
Proof. We note that
An(Fr)=Sup.;ep| P(Sy S x84 | Fp)— D (x)]

=SUpser| P(Si+(Sn—St) S x5 | Fi)— O(x)]|

S Sh Sn S
SUPIE"'P (st — ,,)lle (s2—sD' (si—shi/

<suprer| P(Sa—Sr < x(s%—s})'?)—D(x)|

S
sk)”2 (st—s

Fy) d)(x)l

+SqueR’¢( &t ,3)“2)_@(")|
=T+T,, say.

It is clear ([7] p. 114) that
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To<(sn(s:—s}) V2 —1)/~2me+|Sk|(sh—sD) '/~ 2x
<ci{sf/(sh—sD+ 1Skl /(sh—s3)'"%},

since 2si/Bi<s3/B$ implies that 2B3/Bj<s3/si. But Bj/Biz=1l, hence 2*’s

<s?. And since s3/s%<1, it follows that si/s%<se/sa. Under these considera-

tions, we obtain that T,<c,s7'{ss+|Se|}. Since s, is a monotone increasing

with respect to n, and s,L, tends to infinity, T, can be bounded by T.=

csLo{se+(s:Ls)*|Se|}. From [7, p. 115], and since 2*/°si<s}, it follows that

T.<c(B3—Bi)(st—sd) **<c;L,. This completes the proof of the lemma.
Lemma 5 ([6]). Let Ny={2*; veN} and N,={veN,:v=<[n/log n]). Then

01 if e=0, d<—1,

O(log log n) if e=0, 6=—1,

0((log n)**1) if e=0, 6>—1,

O(n(log n)’~%)  if e>0, 6 R.

EvENnV’(log ”)le

Lemma 6. Let {U,; i=N} be a sequence of i.r.v.’s with EU,=0, EU}=a}
and E|U;|*=Bi<oco. Let {S,; n=N} be a sequence of partial sums with si=
D702 Bi=31.B8% and L.=B}/si. Then, for all t>0 with t*=4log.L3' we
have

(5.1) P(ISal>sat)SciLat™*+ Ry,
where R,=30P(|U|>cstsn), c2=1/6.

Proof. The idea here is to show that P(S,=s,t) is bounded above by the
R.H.S. of [5.I). Next, replacing the U, by —U; and repeating the proof of
the latter case, we establish that P(S,<—s,t) is also bounded above by the
same expression as in [5.1) This confirms that is true. We proceed by
showing that

P(Sazsat)Sc1Lat™+Ry .

We define UX=UI(|U:| £cs8qt), ¢2=1/6, k=1, 2, -+, n, and Sx=31,U%. 1t is
easy to check that

(5.2) P(S,=ts,)S P(S¥2tsn)+ 71 P(1U;1 > ¢a8al) .
Set h=(snt)"*{21g,L7'+121g,t}. Via Markov’s inequality and independence,
- (6.3) P(S%>ts,)<exp (—hsst) Eexp (hS%)

< L% *1}-, Eexp (hUY).
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Since AUX<(21g, L7'+121g.t)co=d,, a.e., it follows that
(5.4) exp (hUN=1+hU%+(hU%)3/2+(hU%)*/6)1+hU%/3+ --)
S1+hUS+(hU%)2/24(h*/6) | U%|® exp (d,) .
Taking the expectations from both sides of (5.4), it can be seen that
Eexp (hU¥)<exp (hEU¥+(h%/2)EU%*+(h*/6)E |U%|* exp (d,)) .

Now, since EU;=0, it implies that

(5.5) |hREUSDSKhE|U¥I(U ;| > cs8at) S had/(casnt) < cia?/s?,
and
(5.6) h* exp (d.)E|U%|°< L7t (sat)*{21g, L7 +1g,2}°83.

In conjunction with [(5.5) and [(5.6), [(5.3) becomes
P(S%>ts2)< L7 exp (co+(1/2)h2s2+ LYt {slg, L7'+1g,t}?) .

But for sufficiently large =n, L3*t{slg,L3'+1g,t}* is bounded above by a con-
stant ¢;, say, and (1/2)h®s% is bounded by lg,L;'+6lg.t. This confirms that
P(S%>tsa)<c1L,t™% which completes the proof of the lemma, by noticing that

Ra=271P(1U;| > ¢o8a) S E U1/ (cosnt)* < cs Lt~ .
Lemma 7. Let {U;; i€ N} be a sequence of i.r.v.’s with EU,=0, E i=a?
and E|U;|*=B}<co. Let {S,; n=N)} be a sequence of partial sums with st=

205, Bi=2327.83 and L,=B3/si. Then for I([p, g))={veN; si<si<s?)
(p=q), we have that

() sup.erP3p, v I([p, q1): Su< x <Su) =< ¢ Lp+ea(si—si)2s3!
and for Fy=a(U,, -, U,) (k<p=<q), we have that
(i) sup.erP(3p, vel([p, ¢1): Su=x<SulFi)=<ciL,+ea(si—s2)1¥(s3—s) 12,

where L,=(B3— B})(s%—s?)™2,
Proof. We shall first sho‘w (i). It is not hard to see that
Py, vel([p, ¢1): S,<x<S,)
=P@vel(p, ¢1): S,<x<Sp)+PApcI(p, ¢1): Sp<x<S,).
Since we can replace X, by — X, it suffices to show that
P(Sp=x<maXp<;soS;) <1 Lp+co(si—s3) 2530 .

Set H=maxp<;s(S;—S,), then using [7, p. 1157 it follows that
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=SP(x—h§Sp§x)dP(H§h)

<L+ 0(x/9)— Oz —h)/sp)| dP(HS )

<c:Lp+c.E|H|/sp
<eiLp+co(EH?)V?/sp
écle‘*'Ca(sg_s%)”z/sp .

The last statement follows from the Marcinkiewicz-Zygmund Inequality for
independent variables.
To show (ii), we have that P-a.e.

P(Sp§x<max,,<,-sq5,-lFk)gP(x—H-—Sk ;;S,,—S,,gx——Sle,,)

—_—_—SP(x—h-—Sk_S_Sp—Sk§x—Skth)dPl(H§h)

oLyt | 10— SiXsh— /)~ O((x—Ss— hXsh—sD™ ) | dPUHS )

<c Lp+eu(si—sp) P (sp—sh 2.

This completes the proof of Lemma 7.
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