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Abstract. A study of Hermitian geometry of holomorphically immersed com-
plex surfaces in $P^{3}$ is given. A normalization of the complex second funda-
mental form is given and is used to extract the global invariants, complex
principal curvatures. We give formulae expressing the Chern forms in terms
of the Kaehler form and the complex principal curvatures. For compact
surfaces in $P^{3}$ we obtain a pair of Gauss-Bonnet type formulae. As an ap-
plication of our Gauss-Bonnet formulae we prove that an algebraic surface in
$P^{3}$ with an immersive osculating map is a quadric. The notion of a parabolic
surface in $P^{3}$ is introduced. Compact parabolic surfaces do not exist since
they would have to satisfy the critical Chern number equality, $(c_{1})^{2}=3c_{2}$ .
An infinite family of local parabolic surfaces are constructed using the method
of prolongation. In the process we also give an infinite family of non-left-
invariant integrable distributions on $U(4)$ .

Introduction.

In this paper we present a study of Hermitian geometry of holomorphically
immersed complex surfaces in $P^{3}$ with the Fubini-Study metric using the method
of moving frames.

Let $M$ be a complex surface and consider a holomorphic immersion

$f$ ; $M\rightarrow P^{3}$ .
We construct what we call the complex second fundamental form of $f$ which is
a smooth section of the second symmetric power of the holomorphic cotangent
bundle of $M$. Normalizing the $\ovalbox{\tt\small REJECT} mplex$ second fundamental form we uncover
two nonnegative functions $\kappa_{1},$ $\kappa_{2}$ on $M$ which we call complex-Principal curvatures.
The two global invariants $\kappa_{1}$ and $\kappa_{2}$ in turn enable us to give a satisfactory
description of complex surfaces in $P^{3}$ , and the resulting picture is not unlike
that of real surfaces in the Euclidean 3-space.

Our normalization of the complex second fundamental form yields formulae
1980 Mathematics Subject Classification (1985 Revision) : $53A55,53C40,53C65$ .
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(2.8-2.12) expressing the Chern forms in terms of the K\"ahler form and the
complex prinicipal curvatures. These formulae may have applications in value
distribution theory. For a compact surface in $P^{3}$ we obtain a pair of Gauss-
Bonnet formulae (2, Theorem 2) expressing the Chern numbers in terms of the
degree (or equivalently, the induced volume) and the integral of the sum and
product of complex principal curvatures. Generalized Gauss-Bonnet formulae
for algebraic hypersurfaces in $P^{n}$ are also given in 2. Combining our results
with the well-known calculation of the Chern numbers of projective algebraic
hypersurfaces we then give formulae expressing the integrals of elementary
symmetric polynomials in the complex principal curvatures in terms of the
degree. As an application of our Gauss-Bonnet formulae we prove that (2,

Theorem 6) an algebraic surface in $P^{3}$ with an immersive osculating map must
be a quadric.

We call a complex surface in $P^{3}$ (totally) complex-umbilic if the two princi-
pal curvatures coincide everywhere. We prove (3, Theorem) that a complex
surface in $P^{3}$ is complex-umbilic if and only if the induced metric on it is
K\"ahler-Einstein. This theorem combined with an earlier theorem of Chern [C]

yields a complete local classification of complex-umbilic surfaces: A complex
umbilic surace in $P^{3}$ is either a piece of a $P^{2}$ , or congruenct to a piece of the
normalized quadric $Q_{2}$ .

We call a complex surface in $P^{3}$ a (totally) parabolic surface if one of the
complex-principal curvatures vanishes everywhere. Unfortunately there are no
compact parabolic surfaces in $P^{3}$ : As a consequence of our Gauss-Bonnet
formulae a compact parabolic surface satisfies the critical Chern number equality,
$c_{1}^{2}=3c_{2}$ . On the other hand a surface satisfying the critical Chern number
equality can be uniformized by the complex 2-ball (cf. [H]), and the Lefschetz
theorem on hyperplane sections implies that a surface in $P^{3}$ is simply connected.
Indeed there are not even immersed compact parabolic surfaces: A theorem of
Fulton-Hansen [FH] implies that a holomorphic immersion from a connected
compact $M^{2}$ into $P^{3}$ has to be an embedding. However, there are an abundant
supply of local parabolic surfaces in $P^{3}$ : We prove that (5, Theorem 4) given
any nonconstant function greater than 1, there is a local parabolic surface whose
nonzero principal curvature is the given function. In fact, we construct these
surfaces up to integration involving ordinary differential equations. It is worth
remarking that in the course of proving Theorem 4 we discover a family of
non-left-invariant completely integrable distributions on $U(4)$ . The resulting
foliations of $U(4)$ seem to possess some interesting properties.

We now explain the organization of our paper.
\S 1 is essentially expository, and contains a moving frame theoretic sketch

of complex submanifolds of $P^{n}$ . We explain the construction of the Frenet
bundle along a complex submanifold in $P^{n}$ as the first order reduction of the
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unitary frame bundle along the submanifold. The so called infinitesimal Plucker
formulae (1.6) are seen to be an immediate consequence of this first order reduc-
tion process.

In \S 2 the results of \S 1 are applied to complex hypersurfaces in $P^{n}$ . The
complex second fundamental form is defined, and normalized. The normaliza-
tion of the complex second fundamental form is seen as a second order reduc-
tion of the unitary frame bundle. This reduction at once leads to the complex-
principal curvatures. Chern’s curvature theoretic formulation of characteristic
classes combined with the second order reduction produces generalized Gauss-
Bonnet formulae for hypersurfaces.

In \S 3 the notion of a constant isotropy type surface in $P^{3}$ is defined, and
we find that there are three constant isotropy type surfaces: complex-umbilic,
parabolic, and generic surfaces. We take care of the complex-umbilic case in
this section.

In \S 4 we prolong the exterior differential system describing the Frenet
bundle along a parabolic surface several times to arrive at a set of local structure
equations (4.58-4.71). \S 5 contains the main results on parabolic surfaces.

1. Moving frames.

This section is largely expository and serves to set up the subsequent
notation.

Let $G(n, k)$ denote the Grassmann manifold of k-planes in $C^{n}$ . A k-plane
$\Lambda\in G(n, k)$ can be represented by a decomposible k-vector $e_{1}\wedge\cdots\wedge e_{k}$ , where
$(e_{1}, \cdots , e_{k})$ is a unitary k-frame in $C^{n}$ . We will write

$\Lambda=[e_{1}\wedge\cdots\wedge e_{k}]$ .
Let $(\epsilon_{\alpha})$ denote the canonical basis of $C^{n}$ and put

$\Lambda_{0}=[\epsilon_{1}\wedge\cdots\wedge\epsilon_{k}]$ .
Then the holomorphic projection

$U(n)\rightarrow G(n, k)$ , $g-g(\Lambda_{0})$

gives an explicit identification

$G(n, k)=U(n)/U(k)\times U(n-k)$ ,
where

$U(k)\times U(n-k)=\{\left(\begin{array}{ll}A & 0\\0 & B\end{array}\right)$ : $A\in U(k),$ $B\in U(n-k)\}$

is the isotropy subgroup at $\Lambda_{0}\in G(n, k)$ .
Let $\mathfrak{m}$ denote the orthogonal complement (relative to the Killing form) to
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$\mathfrak{h}$ in $u(n)$ , where $\mathfrak{h}$ denotes the Lie algebra of $U(k)\times U(n-k)$ , so that

$u(n)=\mathfrak{h}\oplus \mathfrak{m}$ .
Note that $\mathfrak{m}$ is identified with the tangent space of $G(n, k)$ at $\Lambda_{0}$ . Let $\Omega=(\Omega_{b}^{a})$

denote the $\iota\downarrow(n)$-valued Maurer-Cartan form of $U(n)$ . Take a local section $s$ of
$U(n)\rightarrow G(n, k)$ and put $\omega=s^{*}\Omega$ . The usual metric, invariant and K\"ahler, on
$G(n, k)$ is given by

$\Sigma\omega_{\ell}^{\alpha}\otimes\overline{\omega}_{\ell}^{\alpha}$ , where $1\leqq i\leqq k;k+1\leqq a\leqq n$ .
The forms $(\Omega_{i}^{a})$ give the m-component of $\Omega;(\omega_{\ell}^{a})$ are all of type $(1, 0)$ .

Consider a holomorphic immersion
$F$ : $N\rightarrow G(n, k)$ ,

where $N$ is a complex manifold. Take a local section $e=(e_{1}, \cdots , e_{n})$ of the
pullback bundle $F^{-1}U(n)\rightarrow N$ and put $\omega=e^{*}\Omega$ . Then the K\"ahler form of the
induced metric on $N$ is

(1.1) $\Phi=\frac{i}{2}\alpha 3^{\omega_{i}^{a}\wedge\overline{\omega}_{i}^{\alpha}}$ , where $1\leqq i\leqq k;k+1\leqq\alpha\leqq n$ .

Let $S\rightarrow G(n, k)$ denote the universal bundle. Observe that $(e_{\ell})$ (the first $k$ vectors
of e) form a local unitary frame for the bundle $F^{-1}S\rightarrow N$. The corresponding
curvature forms are
(1.2) $xJ_{i}=d\omega^{J_{i}}+\omega^{J_{h}}\wedge\omega_{i}^{h}=-\omega^{J_{a}}\wedge\omega_{i}^{a}$ ,

where $1\leqq h,$ $i,$ $j\leqq k$ . Let $\tau_{1}(F^{-1}S)$ denote the first Chern form of $F^{-1}S$ . From
(1.1) and (1.2) we then obtain

(1.3) $\tau_{1}(F^{-1}S)=\frac{i}{2\pi}trace(\chi)=-\frac{1}{\pi}\Phi$ .

In the remainder of this section we give a brief exposition of the local
theory of complex submanifolds in $P^{n}$ via the method of moving frames.

Consider a holomorphic map $f$ : $N\rightarrow P^{n}$ , where $N$ is an m-dimensional
complex manifold. There is a local holomorphic lifting

$f:U\subset N\rightarrow C^{n+1}\backslash \{0\}$ , $z=(z_{\ell})-{}^{t}(f^{0}(z), f^{n}(z))$ ,

where $(z_{\ell})$ are local holomorphic coordinates.
The first order osculating sPace of $f$ at $z\in M$ is defined to be

$T_{z}^{1}=span\{f, \partial\hat{f}/\partial z_{\ell}\}_{z}\subset C^{n+1}$ .
Near a general point dim $T^{1}=m+1$ . As our discussion is of local nature we
assume that dim $T^{1}\equiv m+1$ . Note that this amounts to assuming that $f$ is an
immersion.
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The first osculating map is the holomorphic map

$f^{(1)}$ : $N\rightarrow G(n+1, m+1)$ , $z-T_{l}^{1}$ .
The second order osculating space of $f$ at $z$ is

$T_{z}^{2}=span\{f, \partial f/\partial z_{\ell}, \partial^{2}f/\partial_{Z\ell}\partial z_{j}\}_{z}\subset C^{n+1}$ .
Observe that

dim $T^{2}\leqq m+1+\left(\begin{array}{l}m+1\\2\end{array}\right)$ .
Invoking the localism again we assume that the dimension of $T$ is constant.

The second osculating map is the holomorphic map

$f^{(f)}$ : $N\rightarrow G(n+1, t+1)$, $z-T_{z}^{2}$ ,

where $t+1=\dim T^{2}$ .
The i-th order osculating sPace of $f$ at a point $z\in M$, denoted by $T_{z}^{\ell}$ , is

defined to be the subspace of $C^{n+1}$ spanned by $f$ and its partials of order up
to $i$ at the point $z$ . The i-th osculating map, denoted by $f^{(\ell)}$ , is the map taking
$z$ to $T_{z}^{i}$ . Near a general point of $N$ the dimensions of osculating spaces are
constant. Assume that the osculating dimensions of $f$ are constant everywhere
on $N$, and put

dim $T^{i}=1+t_{i}$ .
The osculating order of $f$ , denoted by $o(f)$ , is defined to be the smallest integer
such that

$t_{0(f)}=t_{0(f)+1}$ , but $t_{0(f)}\neq t_{o(f)-1}$ .
We assume that $f$ is linearly full $i.e.$ ,

$T^{0(f)}=C^{n+1}$ .
We call the strictly increasing monotone sequence $(t_{1}, \cdots , t_{0(f)})$ the osculating
sequence of $f$. Observe that we always have

$t_{1}=m,$ $t_{\mathfrak{o}(f)}=n,$
$0<t_{\ell}-t_{\ell- 1}\leqq\left(\begin{array}{l}m+\iota-1\\i\end{array}\right)$ .

We also put
$T^{0}=f^{-1}S$ ,

where $S\rightarrow P^{n}$ is the universal bundle.
For each $i,$ $1\leqq i\leqq o(f)$ , we define

$\Delta^{\ell}\rightarrow N$

to be the subbundle of the trivial bundle $C^{n+1}\times N$ whose fibre at $z\in N$ is given
by
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$\Delta_{z}^{i}=the$ orthogonal complement to $T_{z}^{i-1}$ in $T_{z}^{i}$ ,
$i.e.$ ,

$\Delta_{z}^{\ell}=[e_{t_{\ell-1}+1}\wedge\cdots\wedge e_{t\ell}]_{z}$ .
We thus have the Whitney sum decomposition

$C^{n+1}\times N=T^{0}\oplus\Delta^{1}\oplus\cdots\oplus\Delta^{0(f)}$ ,
and

dim $\Delta^{\ell}=s_{\ell}=t_{i}-t_{\ell-1}$ .
The Frenet bundle, denoted by $\mathcal{F}\rightarrow N$, is a $ U(1)\times U(s_{1})\times\cdots$ $\times U(s_{0(f)})$-reduc-

tion of the $U(1)\times U(n)$-principal bundle $f^{-1}U(n+1)\rightarrow N$. A local section

$e=(e_{0}, \cdots e_{n})$

of the Frenet bundle, called a Frenet frame along $f$ , is characterized by the
conditions

(1.4) $[e_{0}]=f,$ $[e_{0}\wedge\cdots\wedge e_{\ell_{i}}]=f^{(\ell)}$ for every $i$ .
Let $\Omega=(\Omega_{b}^{a}),$ $0\leqq a,$ $b\leqq n$ , denote the $u(n+1)$-valued Maurer-Cartan form of

$U(n+1)$ . Put $\omega=e^{*}\Omega$ , where $e$ is a Frenet frame along $f$. We then have

$de_{a}=\omega_{a}^{b}\otimes e_{b}$ ,

and the conditions in (1.4) are reflected by the following set of exterior equations:

(1.5) $\omega_{a}^{b}=0$ for $a\leqq t_{\ell},$ $b\geqq t_{\ell+1}$ .
Let $\Phi_{\ell}$ denote the K\"ahler form of the i-th osculating (possibly singular)

metric given by the pullback of the standard metric on $G(n+1, t_{\ell}+1)$ . Also
let $\nabla^{\ell}$ denote the induced connection on the bundle

$\Delta^{\ell*}\otimes\Delta^{+1}\rightarrow N$ .
The following set of formulae routinely follow from the standard Chern

form computation together with the relations given in (1.5), and were first
written down by Tai [T]:

(1.6) $\tau_{1}(\nabla^{\ell})=\frac{1}{\pi}(-s_{i+1}\Phi_{\ell-1}+(s_{i}+s_{\ell+1})\Phi_{\ell}-s_{\ell}\Phi_{\ell+1})$ ,

where $\tau_{1}$ denotes the first Chern form.

2. The complex second fundamental form and the Chern forms.

We consider a holomorphic immersion

$f$ : $M\rightarrow P^{m+1}$ ,
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where $M$ is an m-dimensional complex manifold.

Remark. If $M$ is compact and connected, then a theorem of Fulton-Hansen
[FH] implies that $f$ has to be an embedding.

The (first) osculating map of $f$ is the holomorphic map

$f^{(1)}$ : $M\rightarrow G(m+2, m+1)=P^{m+1*}$ , $z-T_{z}^{1}$ .
Throughout this section we will adhere to the following index convention:

$1\leqq i,$ $j,$ $k,$ $\cdots\leqq m;0\leqq a,$ $b,$ $c,$ $\leqq m+1$ .
The Frenet bundle, $\mathcal{F}\rightarrow M$, is a $U(1)\times U(m)\times U(1)$-reduction of the pullback

bundle $f^{-1}U(m+2)\rightarrow M$ ; if $e=(e_{a})$ is a Frenet frame, then

(2.1) $[e_{0}]=f$ , $[e_{0}\wedge\cdots\wedge e_{m}]=f^{(1)}$ .
Choose a Frenet frame $e$ , and put

$\omega_{b}^{a}=e^{*}\Omega_{b}^{a}$ ,

where $\Omega=(\Omega_{b}^{a})$ is the skew-Hermitian Maurer-Cartan form of $U(m+2)$ . The
forms $(\omega_{b}^{a})$ satisfy

$de_{a}=\omega_{a}^{b}\otimes e_{b}$ .
The conditions in (2.1) imply that

(2.2) $\omega_{0}^{m+1}=\omega_{m+1}^{0}=0$ .
Let $ds^{2}$ denote the normalized Fubini-Study metric on $P^{m+1}$ so that its

holomorphic sectional curvature equals 4. The holomorphic immersion $f$ pulls
back $ds^{2}$ to $M$ giving it a K\"ahler metric. The forms $(\omega_{0}^{\ell})$ form a local type
$(1, 0)$ unitary coframe on $(M, f^{*}ds^{2})$ , and the corresponding Kahler form is
given by

$\Phi=\frac{l}{2}(\omega_{0}^{1}\wedge\overline{\omega}_{0}^{1}+ +\omega_{0}^{m}\wedge\overline{\omega}_{0}^{m})$ .

Exterior differentiation of both sides of the equation $\omega_{0}^{m+1}=0$ leads to

$\omega_{1}^{m+1}$ A $\omega_{0}^{1}+\cdots+\omega_{m}^{m+1}\wedge\omega_{0}^{m}=0$ .
The holomorphy of $f^{(1)}$ is reflected by the fact that the forms $(\omega_{i}^{m+1})$ are all
of type $(1, 0)$ . By Cartan’s lemma

$\omega_{\ell}^{m+1}=X_{ij}\omega^{j_{0}}$

for some complex-valued local functions $X_{ij}$ with $X_{\ell j}=X_{j\ell}$ .

Definition. The type $(2, 0)$ symmetric form
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$\Pi=\omega_{i}^{m+1}\cdot\omega_{0}^{i}=X_{\ell j}\omega_{0}^{i}\cdot\omega^{j_{0}}$

is called the complex second fundamental form.

Theorem 1 (The first normal form). Let $f$ : $M\rightarrow P^{m+1}$ be a holomorPhic
immersion. Then in a neighborhood of any Point in $M$ there exists a Frenet
frame $e$ such that

(2.3) $e^{*}\Omega_{\ell}^{m+1}=k_{\ell}e^{*}\Omega_{0}^{\ell}$ (no sum),

where the $k_{i}’ s$ are globally defined real-valued functions on $M$ with

$0\leqq k_{m}\leqq k_{m-1}\leqq\ldots\leqq k_{1}$ .

Proof. We want to see how the complex symmetric matric $X=(X_{\ell f})$

transforms under a change of Frenet frame. Let $e,\tilde{e}$ be two Frenet frames.
Then on their common domain the two frames are related by

$e=\delta\cdot g$

for some $U(1)\times U(m)\times U(1)$-valued local function $g=(\exp(lt), A, \exp(is))$ . Define
tilded quantities using $\tilde{e};\tilde{\omega}=Z^{*}\Omega,\tilde{X}_{\ell f}\tilde{\omega}^{f_{0}}=\tilde{\omega}_{\ell}^{m+1}$ . From the formula

$\omega=Ad(g^{-1})\tilde{\omega}$

we compute that

(2.4) $X=\exp(-i(s+t))^{t}A\tilde{X}A$ .
It now follows from a result of Chern (see [C] p. 28) that we can make $X$

diagonal. The rest follows routinely. $\square $

Given a holomorphic immersion $f:M\rightarrow P^{m+1}$ we will call the global functions

$\kappa_{\ell}=(k_{\ell})^{2}$ : $M\rightarrow R$

the $comPlex$ Principal curvatures. We also let $\sigma_{\ell}$ denote the i-th elementary
symmetric polynomial of $(\kappa_{\ell})$ . For example,

(2.5) $\sigma_{1}=\kappa_{1}+\cdots+\kappa_{m}$ , $\sigma_{m}=\kappa_{1}\cdots\kappa_{m}$ .
Let $\nabla$ denote the canonical connection ( $i.e.$ , metric and type (1, $0)$) on the

holomorphic tangent bundle $TM\rightarrow M$ coming from the K\"ahler metric $f^{*}ds^{2}$ . In
the following we will compute the curvature matrix, $\chi$ , of $\nabla$ using the unitary
coframe $(\omega_{0}^{\ell})$ . We have

$d\omega_{0}^{\ell}=-\theta_{f}^{\ell}\wedge\omega_{0}^{f}$ ,

where $\theta=(\theta_{j}^{i})$ is the connection matrix. The curvature forms $(\chi_{f}^{\ell})$ are given by

$x_{f}^{\ell}=d\theta_{f}^{\ell}+\theta_{k}^{\ell}\wedge\theta_{f}^{k}$ .



TOTALLY PARABOLIC SURFACES 69

Using the Maurer-Cartan structure equations of $U(m+2)$ we obtain

$d\omega_{0}^{i}=-\omega_{0}^{i}\wedge\omega_{0}^{0}-\omega_{f}^{i}\wedge\omega^{j_{0}}=-(\omega_{j}^{i}-\delta_{j}^{i}\omega_{0}^{0})\wedge\omega_{0}^{j}$ .
Thus

$\theta\}=\omega J-\delta j\omega_{0}^{0}$ .
We easily have

$\theta_{k}^{i}$ A $\theta_{j}^{k}=\omega_{k}^{i}\wedge\omega_{j}^{k}$ .
Again using the Maurer-Cartan structure equations of $U(m+2)$ we obtain

$d\theta_{j}^{\ell}=d(\omega_{j}^{\ell}-\delta_{f}^{\ell}\omega_{0}^{0})=-\omega_{0}^{i}\wedge\omega_{f}^{0}-\omega_{k}^{i}\wedge\omega_{j}^{k}-\omega_{m+1}^{i}\wedge\omega_{f}^{m+1}+\delta_{f}^{\ell}\omega_{k}^{0}\wedge\omega_{0}^{k}$ .
It follows that

$x_{j}^{i}=\omega_{0}^{i}\wedge\overline{\omega}_{0}^{i}+\overline{\omega}_{i}^{m+1}\wedge\omega_{j}^{m+1}-\delta_{j}^{\ell}\Sigma\overline{\omega}_{0}^{i}\wedge\omega_{0}^{k}$ .
Using the first normal form (2.3) we can rewrite the above as
(2.6) $x_{j}^{\ell}=\omega_{0}^{i}\wedge\overline{\omega}_{0}^{j}+\delta_{f}^{i}\Sigma\omega_{0}^{k}\wedge\overline{\omega}_{0}^{k}+k_{i}k_{j}\overline{\omega}^{\ell}\wedge\omega^{f}$ .

We have, in particular,

(2.7) trace $x=-2\iota(m+1)\Phi-\Sigma\kappa_{\ell}\omega_{0}^{\ell}\wedge\overline{\omega}_{0}^{\ell}$ ,

where $\Phi$ is the K\"ahler form of $(M, f^{*}ds^{2})$ .
Note that if we let $(h_{\ell})$ denote the holomorphic sectional curvatures relative

to the unitary coframe $(\omega_{0}^{\ell})$ , then

$h_{\ell}=2(2-\kappa_{i})$ .
The i-th Chern form of $\nabla$ , denoted by $\tau_{i}(M, \nabla)$ , is given by

$\tau_{i}(M, \nabla)=P^{i}(\frac{i}{2\pi}.\chi)$ ,

where $P^{i}$ denotes the i-th elementary symmetric polynomial in the eigenvalues
of the matrix $(i/2\pi)\cdot\chi$ . For example,

$\tau_{1}(M, \nabla)=\frac{i}{2\pi}$ trace $\chi$

$\tau_{2}(M, \nabla)=(\frac{l}{2\pi})^{2}(\sum_{J<l}x_{j}^{f}x_{k}^{i}-x_{i}^{f}x_{j}^{i})$ ,

$\tau_{m}(M, \nabla)=(\frac{l}{2\pi})^{m}$ det $\chi$ .

From (2.7) we obtain

(2.8) $\tau_{1}(M, \nabla)=\frac{1}{\pi}(m+1)\Phi-\frac{l}{2\pi}\Sigma\kappa_{\ell}\omega_{0}^{i}\wedge\overline{\omega}_{0}^{\ell}$ .

Put
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$\Phi_{1}=\frac{t}{2}\Sigma\omega r^{+1}\wedge\varpi_{i}^{m+1}$ .

Observe that $\Phi_{1}$ is the K\"ahler form of the (possibly singular) osculating metric
$f^{(1)*}ds_{1}^{2}$, where $ds_{1}^{2}$ denotes the standard metric on $G(m+2, m+1)$ . We can
now rewrite (2.8) as

(2.9) $\tau_{1}(M, \nabla)=\frac{1}{\pi}((m+1)\Phi-\Phi_{1})$ .

For $m=2$ we calculate that

(2.10) $\tau_{2}(M^{2}, \nabla)=\frac{1}{\pi^{2}}(3-\sigma_{1}+\sigma_{2})\Phi^{2}$ .

For $m=3$ we calculate that

(2.11) $\sigma_{2}(M^{3}, \nabla)=\frac{-1}{4\pi^{2}}\sum_{<J}(12-3(\kappa_{\ell}+\kappa_{f})+2\kappa_{\ell}\kappa_{j})\Psi_{\ell j}$ ,

where $\Psi_{\ell j}=\omega_{0}^{\ell}\wedge\overline{\omega}_{0}^{\ell}\wedge\omega_{0}^{f}\wedge\overline{\omega}_{0}^{j}$ . Also

(2.12) $\tau_{3}(M’, \nabla)=\frac{1}{3\pi^{2}}(12-3\sigma_{1}+2\sigma_{2}-3\sigma_{3})\Phi^{3}$ .

Theorem 2 (Generalized Gauss-Bonnet). Let $f:M^{2}\rightarrow P^{3}$ be a smooth alge-
braic surface given by a holomorphic embedding, and also let $c_{1}^{2},$

$c_{2}$ denote the
Chern numbers of M. Then

(2.13) $c_{1}^{2}=9d+\frac{1}{\pi^{8}}\int_{H}(\sigma_{2}-3\sigma_{1})\Phi^{2}$ ,

(2.14) $c_{2}=3d+\frac{1}{\pi^{t}}\int_{H}(\sigma_{2}-\sigma_{1})\Phi^{2}$ ,

where $d$ is the degree of the pr0jective variety $f(M)\subset P^{3}$ .

Proof. Wirtinger’s theorem states that

$d=\frac{1}{\pi^{l}}\int_{r}\Phi^{2}$ .

The formula in (2.13) follows from (2.9) upon integration, and (2.14) follows
from (2.10). $\square $

Theorem 3 (Generalized Gauss-Bonnet). Let $f:M^{S}\rightarrow P^{4}$ be a smooth alge-
braic 3-fold given by a holomorphic embedding, and also let $c_{1}^{3},$

$C{}_{1}C_{2},$ $c_{3}$ be the
Chem numbers of M. Then

(2.15) $ c\ddagger=64d+\frac{1}{\pi},\int_{H}(-16\sigma_{1}+4\sigma_{2}-\sigma_{s})\Phi$ ,
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(2.16) $C{}_{1}C_{2}=24d+\frac{1}{\pi^{3}}\int_{H}(-6\sigma_{1}+\frac{7}{3}\sigma_{2}-\sigma_{3})\Phi^{3}$ ,

(2.17) $c_{3}=4d+\frac{1}{\pi^{3}}\int_{H}(-\sigma_{1}+\frac{2}{3}\sigma_{2}-\sigma_{8})\Phi^{3}$ ,

where $d$ is the degree of $f(M)\subset P^{4}$ .

Proof. Wirtinger’s theorem becomes

$d=\frac{1}{\pi^{3}}\int_{H}\Phi^{3}$ ,

and the result follows from (2.9), (2.11), (2.12) upon integration. $\square $

Given a compact embedded hypersurface $f:M\rightarrow P^{m+1}$ we put

$K_{\ell}=\frac{1}{\pi^{m}}\int_{H}\sigma_{\ell}\Phi^{m}$ ,

which we call the i-th total curvature. We will express the total curvatures
$K_{i}$ in terms of the projective degree of $M$ in the following. Realize $M=f(M)$

$\subset P^{m+1}$ as the zero locus of a transversal holomorphic section of the line bundle

$H^{@d}\rightarrow P^{m+1}$ ,

where $H=S^{*}\rightarrow P^{m+1}$ is the hyperplane bundle. (In other words, $M$ is a smooth
divisor in the complete linear system $|dH|$ on $P^{m+1}.$ ) From the direct sum

$TM\oplus H^{\otimes a}|_{M}=TP^{n}|_{H}$

and the Whitney product formula we obtain

(2.18) $c(TP^{m+1})|_{M}=c(TM)\cdot c(H^{\otimes a})|_{M}$ .
Put

$h=c_{1}(H)|_{M}$ .
By a version of the Wirtinger theorem we find that

(2.19) $h^{m}=h^{m}([M])=\int_{M}h^{m}=d=\deg(M)$ .

A quick proof of (2.19) can be given as follows: The Poincar\’e dual of a $P^{1}$

in $P^{m+1}$ is $[(1/\pi^{m})\Phi^{m}]\in H_{dR}^{2m}(P^{m+1})$ , where $\Phi$ is the K\"ahler form of the Fubini-
Study metric. (Our Fubini-Study metric is normalized so that the volume of
$P^{m+1}$ is $\pi^{m+1}.$ ) On the other hand, by (1.3) the first Chern class of the hy-

perplane bundle $H$ is given by $[(1/\pi)\Phi]\in H_{aR}^{f}(P^{m+1})$ . So

$h^{m}([M])=\int_{H}\frac{1}{\pi^{m}}\Phi^{m}|_{M}=\#(M, P^{1})$ ,

where $\#$ denotes the intersection pairing. But



72 K. YANG

$\#(M, P^{1})=d=\deg(M)$ .
Using (2.18) together with (2.19) we can compute the Chern numbers of a

degree $d$ smooth hypersufaoe $M\subset P^{m+1}$ . For example, for $m=2$ we obtain

(2.20) $c_{1}^{2}=d(4-d)^{2}$ ,

(2.21) $c_{2}=d(d^{2}-4d+6)$ .
For algebraic three-folds in $P^{4}$ we obtain

(2.22) $c_{1}^{s}=d(5-d)$ ,

(2.23) $C{}_{1}C_{2}=d(5-d)(d^{2}-5d+10)$ ,

(2.24) $c_{8}=d(-d^{3}+5d^{2}-10d+10)$ .
Combining (2.20, 2.21) with (2.13, 2.14) we obtain

Theorem 4. Let $M^{2}$ be an algebraic surface in $P^{3}$ , and put

$K_{l}=\frac{1}{\pi^{s}}\int_{K}\sigma\Phi^{f}$ , $d=\deg(M)$ .
Then

$K_{1}=2d(d-1)$ ,

$K_{2}=d(d-1)^{2}$ .
Combining (2.22-2.24) with (2.15-2.17) we obtain

Theorem 5. Let $M$ be an algebraic three-fold in $P^{4}$ of degree $d$ , and also
let $K_{\ell}$ denote the i-th total curvature. Then

$K_{1}=3d(d-1)$ ,

$K_{f}=3d(d-1)^{2}$ ,

$K_{s}=d(d-1)^{s}$ .
We close this section by giving an application of our Gauss-Bonnet formulae.

Theorem 6. Let $f:M^{2}\rightarrow P^{s}$ be a holomorphc embedding from a compact
surface, and $suPPose$ that the osculating map

$f^{(1)}$ : $M\rightarrow G(4,3)=P^{s*}$

is everywhere immersive. Then $f(M)$ is a quadric.

Proof. Let $\nabla^{1}$ denote the type $(1, 0)$ metric connection of $M$ with the
osculating metric, $i.e.$ , the K\"ahler metric $f^{(1)*}ds_{1}^{2}$ . The curvature forms, $x^{\prime}=$

$(\chi_{j}’\ell)$ , of $(M, f^{(1)*}ds_{1}^{2})$ with respect to $(\omega_{1}^{3}, \omega_{2}^{3})$ are computed to be



TOTALLY PARABOLIC SURFACES 73

$x_{1}^{\prime 1}=-2\omega_{1}^{3}\wedge\omega_{3}^{1}-\omega_{2}^{3}\wedge\omega_{3}^{2}+\omega_{0}^{1}\wedge\omega_{1}^{0}$ ,

$x_{2}^{\prime 2}=-2\omega_{2}^{3}\wedge\omega_{3}^{2}-\omega_{1}^{3}\wedge\omega_{3}^{1}+\omega_{0}^{2}$ A $\omega_{2}^{0}$ ,

$x_{2}^{\prime 1}=-X_{1}^{\prime 2}=\omega_{0}^{2}$ A $\omega_{1}^{0}+\omega_{3}^{2}\wedge\omega_{1}^{3}$ .
Let $\tau_{\ell}(M, \nabla^{1}),$ $i=1,2$ , denote the i-th Chern form of $TM\rightarrow M$ with the connec-
tion $\nabla^{1}$ . Consulting the above equations we find that

$\tau_{1}(M, \nabla^{1})=\frac{1}{\pi}(3\Phi_{1}-\Phi)$ ,

$\tau_{\mathfrak{g}}(M, \nabla^{1})=\frac{1}{\pi^{2}}(1+3\sigma_{2}-\sigma_{1})\Phi^{2}$ .
Integration over $M$ yields

$c_{1}^{2}=d+\frac{1}{\pi^{2}}\int_{K}(9\sigma_{2}-3\sigma_{1})\Phi^{2}$ ,

$c_{2}=d+\frac{1}{\pi^{f}}\int_{r}(3\sigma_{2}-\sigma_{1})\Phi^{2}$ .

Combining these formulae with our Gauss-Bonnet formulae we obtain

$3c_{2}-c_{1}^{2}=2d$ .
On the other hand the formulae in (2.20, 2.21) imply that

$3c_{2}-c_{1}^{2}=2(d-1)^{2}d$ .
Consequently the degree must equal 2. $\square $

3. Constant isotropy type surfaces in $P^{3}$ .
For the rest of this paper we deal exclusively with holomorphically im-

mersed complex surfaces in $P^{3}$ . We will focus on local Hermitian geometry
of such surfaces.

Consider a holomorphic immersion

$f$ : $M=M^{2}\rightarrow P^{3}$ .
Take a Frenet frame $e:U\subset M\rightarrow \mathcal{F}$ and put $\omega=e^{*}\Omega$ . We then have

(3.1) $\omega_{0}^{3}=0$ .
We know from 2 that we can choose $e$ so that in addition to (3.1)

(3.2) $\omega_{1}^{3}=k_{1}\omega_{0}^{1}$ , $\omega_{2}^{3}=k_{2}\omega_{0}^{2}$ , $0\leqq k_{2}\leqq k_{1}$ .
Moreover, the $k_{\ell}’ s$ are globally defined functions on $M$.

Any Frenet frame achieving the normal form (3.2) will be called a second
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order Frenet frame.

Definition. i) A point $p\in M$ is called a complex-umbilic point of $f$ if

$k_{1}(p)=k_{2}(p)$ ;

ii) $p\in M$ is called a parabolic point if

$k_{2}(p)=0$ and $k_{1}(p)>0$ ;

iii) otherwise, $p\in M$ is called a generic point.
If every point is complex-umbilic, then the immersion is said to be totally

$comPlex$-umbilic. We define the notions of totally Parabolic and totally generic
immersions analogously.

In order to carry out our analysis further it becomes necessary to assume
that the immersion is of constant isotropy $tyPe$ , $i.e.$ , it is totally complex-umbilic,
totally papabolic, or totally generic. (Near a generic point, points stay generic.
So the total genericity assumption is a global assumption.) The upshot is that
the totality of second order frames at a point depends on the type of the point.
Immersions of constant isotropy type (at every order) are also called immersions
with constant isotropy tower by some authors. See [G] or [J].

There are not many totally complex-umbilic surfaces as the next theorem
shows.

Theorem. Let $f$ : $M\rightarrow P^{3}$ be a holomorPhically immersed surface. Then $f$

is totally complex-umbilic if and only if the induced metric on $M$ is Kahler-
Einstein.

Proof. The induced metric on $M$ is given by

$ds_{H}^{2}=\omega_{0}^{1}\otimes\overline{\omega}_{0}^{1}+\omega_{0}^{2}\otimes\overline{\omega}_{0}^{2}$ .
The curvature matrix, $\chi$ of $M$ with respect to $(\omega_{0}^{1}, \omega_{0}^{2})$ is given by

$x_{j}^{\ell}=\omega_{0}^{i}\wedge\overline{\omega}_{0}^{j}+\delta_{f}^{\ell}\Sigma\omega_{0}^{k}\wedge\overline{\omega}_{0}^{k}+k_{\ell}k_{j}\overline{\omega}^{\ell}\wedge\omega^{j}$ .
Consequently,

trace $\chi=(3-\kappa_{1})\omega_{0}^{1}$ A $\overline{\omega}_{0}^{1}+(3-\kappa_{2})\omega_{0}^{2}\Lambda\overline{\omega}_{0}^{2}$ .
The K\"ahler form of $ds_{H}^{2}$ is given by

$\Phi=\frac{i}{2}(\omega_{0}^{1}\wedge\overline{\omega}_{0}^{1}+\omega_{0}^{2}\wedge\overline{\omega}_{0}^{2})$ .
Now the metric $ds_{M}^{2}$ is Kahler-Einstein if and only if

trace $ x=\lambda\Phi$ ,
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for some complex-valued function $\lambda$ (which, in fact, has to be a constant). The
result follows easily. $\square $

Remark. Consulting (2.7) we see that the preceding result holds true for
hypersurfaces in any $P^{n}$ .

Chern [C] has shown that a K\"ahler-Einstein surface in $P^{3}$ is locally either
a piece of a $P^{2}$ or congruent to a piece of the normalized quadric

$Q_{2}=$ { $x^{2}+y^{2}+z^{2}+w^{2}=0:x,$ $y,$ $z,$ $w$ homogeneous $coordinates$ } $\subset P^{3}$ .
This result together with a bit of computation yields

Theorem. SuPpose $f$ : $M\rightarrow P^{3}$ is a totally $comPlex$-umbilic immersion. Then
either $\kappa_{1}=\kappa_{2}\equiv 0$ (a Piece of a $P^{2}$), or $\kappa_{1}=\kappa_{2}\equiv 1$ (congruent to a Piece of $Q_{2}$).

Remark. We could have obtained the above theorem directly by exterior
differentiating both sides of the equations in (3.2), and setting $k_{1}=k_{2}$ .

Let $f$ : $M\rightarrow P^{3}$ be a totally generic immersion. If

$e:U\subset M\rightarrow \mathcal{F}$

is any second order Frenet frame, then

$e^{*}\Omega_{i}^{3}=X_{\ell j}e^{*}\Omega^{J_{0}}$ ,

$X=(X_{\ell f})=\left\{\begin{array}{ll}k_{1} & 0\\0 & k_{2}\end{array}\right\}$ : $M\rightarrow M(2, R)$ , $0<k_{2}<k_{1}$ .

To compute the structure group of the second order Frenet bundle,

$\mathcal{F}_{2}\rightarrow M$ ,

we recall the transformation rule (2.5):

(3.3) $\tilde{X}=e^{-\ell_{(\iota+t)}}{}^{t}AXA$ .
By definition, the second isotropy group at $p\in M$ is

$G_{2}(p)=\{(e^{\ell\iota}, A, e^{\ell t})\in U(1)\times U(2)\times U(1):X(p)=\tilde{X}(p)\}$ .

Lemma. For every $P\in M,$ $G_{2}(p)$ is given by

(3.4) $G_{2}=\{(e^{\ell\iota}$ , exp $(\frac{i}{2}(s+t))\cdot\left\{\begin{array}{ll}\delta & 0\\0 & \epsilon\end{array}\right\},$ $e^{\ell t}):s,$ $t\in R,$ $\delta,$ $\text{\’{e}}=\pm 1\}$

$\cong U(1)^{3}\times Z_{4}$ .
Proof. We have
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$SU(2)=\{\left\{\begin{array}{ll}z & w\\-\overline{w}\overline{z} & \end{array}\right\}$ : $z,$ $w\in C,$ $|z|^{2}+|w|^{2}=1\}$ .

We also have a epimorphism

$U(1)\times SU(2)\rightarrow U(2)$ , $(e^{t\theta}, A)-e^{\ell\theta}A$ .
Thus we can write any $A\in U(2)$ as

(3.5) $A=e^{i\theta}\left\{\begin{array}{l}wz\\-\overline{w}\overline{z}\end{array}\right\}$ , $|z|^{2}+|w|^{2}=1$ .

With $A\in U(2)$ as in the above and $X=\tilde{X}=\left\{\begin{array}{ll}k_{1} & 0\\0 & k_{2}\end{array}\right\}$ the equation in (3.3) gives

the following set of conditions on $s,$ $t,$ $\theta,$
$z,$ $w$ :

$e^{\ell(t+t)}k_{1}=e^{2\ell\theta}(z^{2}k_{1}+\overline{w}^{2}k_{2})$ ,

$0=zwk_{1}-\overline{z}\overline{w}k_{2}$ ,

$e^{\ell_{(s+t)}}k_{2}=e^{2\ell\theta}(w^{2}k_{1}+\overline{z}^{2}k_{2})$ .
The rest is straightforward. $\square $

Summarizing, a second order frame along a totally generic immersion
$f$ : $M\rightarrow P^{3}$

is a Frenet frame giving the first normal form

$\omega f=k_{\ell}\omega_{0}^{\ell}$ , $0<k_{2}<k_{1}$ .
If $e$ , and $\tilde{e}$ are any two second order frames, then on their common domain
they are related by the formula

$\tilde{e}=e\cdot g$ ,

where $g$ is a local $G_{2}$-valued smooth function. The second order Frenet bundle,
$\mathcal{F}_{2}\rightarrow M$, is a $G_{2}$-principal bundle obtained from the $U(1)\times U(2)\times U(1)$-principal
Frenet bundle by a reduction process.

Suppose now that $f:M\rightarrow P^{3}$ is a totally parabolic immersion. The structure
group of the second order Frenet bundle, again denoted by $G_{2}$ , is the isotropy
group of the action (3.3), where

$X=\tilde{X}=\left\{\begin{array}{ll}k_{1} & 0\\0 & 0\end{array}\right\}$ , $k_{1}>0$ .
We compute that

(3.6) $G_{2}=\{(e^{\ell\iota},$ $\left\{\begin{array}{ll}\pm e^{\ell_{(|+t)/2}} & 0\\0 & e^{\ell r}\end{array}\right\},$
$e^{\ell\iota})$ : $s,$ $t,$ $r\in R\}\cong U(1)^{3}\times Z_{2}$ .
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4. Totally parabolic surfaces: structure equations.

Consider a totally parabolic immersion

$f$ : $M\rightarrow P^{3}$

from a complex two-manifold $M$. Let

$e;U\subset M\rightarrow \mathcal{F}_{2}\subset U(4)$

be any second order Frenet frame, and put

$\omega=e^{*}\Omega$ .
We then have

(4.1) $\omega_{0}^{s}=0$ ,

(4.2) $\omega_{1}^{3}=k_{1}\omega_{0}^{1}$ , $\omega_{2}^{3}=0$ , $k_{1}>0$ .
Exterior differentiating both sides of the equations in (4.2), and writing

modulo equations in (4.1, 4.2), we obtain

(4.3) [ $d$ log $k_{1}-(2\omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{3})$] A $\omega_{0}^{1}-\omega_{2}^{1}\wedge\omega_{0}^{2}=0$ ,

(4.4) $\omega_{2}^{1}\wedge\omega_{0}^{1}=0$ .
Note that $d$ log $k_{1}$ is purely real and that $(2\omega_{1}^{1}-\omega_{0}^{0}-\omega_{s}^{3})$ is purely imaginary.
Put

(4.5) $\omega_{0}^{1}=\alpha^{1}+la^{3}$ , $\omega_{0}^{2}=\alpha^{g}+i\alpha^{4}$ ,

(4.6) $\omega_{2}^{1}=\zeta^{1}+\iota\zeta^{2}$ ,

(4.7) $ l(2\omega_{1}^{1}-\omega_{0}^{0}-\omega_{s}^{3})=\eta$ ,

for some real l-forms $\alpha^{1},$ $\alpha^{2},$ $\cdots$ , $\eta$ . Substitution of the equations in (4.5, 4.6,
4.7) into the relations in (4.3, 4.4) yields

$(4.8d)(48c)(4.\cdot 8b)(4.8a)$ $\left\{\begin{array}{llllll}\zeta^{1} & & 0 & -\zeta^{2} & & 0\\\zeta^{l} & & 0 & \zeta^{1} & & 0\\dlog & k_{1} & -\zeta^{1} & -\eta & & \zeta^{2}\\\eta & & -\zeta^{2} & dlog & k_{1} & -\zeta^{1}\end{array}\right\}\wedge\left\{\begin{array}{l}\alpha^{1}\\\alpha^{2}\\a^{s}\\\alpha^{4}\end{array}\right\}=0$ .

The forms $\zeta^{1},$ $\zeta^{g},$
$\eta,$

$d$ log $k_{1}$ are real l-forms and they can be expressed as
linear combinations of $\alpha^{1},$ $\cdots$ , $\alpha^{4}$ . So we introduce 16 real variables

$(g_{\ell} ; 0_{\ell} ; s_{\ell} ; s_{\ell}^{\prime})$ , $1\leqq i\leqq 4$ ,
by setting
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(4.9) $d$ log $k_{1}=g_{i}\alpha^{\ell}$ , $\eta=0_{i}\alpha^{\ell}$ , $\zeta^{1}=s_{i}\alpha^{\ell}$ , $\zeta^{2}=s_{i}^{\prime}\alpha^{i}$ .

Assume that the primary invariant $\kappa_{1}$ is not a constant. (In fact, as we
will show in 5, $\kappa_{1}$ may not be a constant.)

Substituting (4.9) into (4.8), and expanding with respect to the basis

{ $\alpha^{1}\wedge\alpha^{2},$ $\alpha^{1}$ A $\alpha^{3},$ $\alpha^{1}\wedge\alpha^{4},$ $\alpha^{2}\wedge\alpha^{3},$ $a^{2}\wedge\alpha^{4},$ $\alpha^{3}$ A $\alpha^{4}$ }

of $\Lambda^{2}(T^{*}M)$ , we obtain the following system of linear equations in ( $g_{\ell}$ ; $0_{\ell}$ ; $s_{\ell}$ ;

s\’i):

(4.10a) $s_{2}=0$ , $s_{3}+s\text{\’{i}}=0$ , $s_{4}=0$ , $s_{2}=0$ , $s_{4}=0$ ,

(4.10b) $s_{1}-s_{3}^{\prime}=0$ ,

(4.10c) $g_{2}+s_{1}=0$, $g_{S}+0_{1}=0$ , $g_{4}+s_{3}=0$ , $0_{2}-s_{3}=0$ , $0_{4}+s_{3}^{\prime}=0$ ,

(4.10d) $0_{2}+s_{1}^{\prime}=0$ , $g_{1}-0_{3}=0$ , $0_{4}+s_{1}=0$ , $g_{2}+s_{3}^{\prime}=0$ , $s_{2}-s_{4}^{\prime}=0$ .
The linear system (4.10) has exactly 4-dimensional solutions, and they are

given by
$g_{i}=arbitrary$ ,

$0_{1}=-g_{3}$ , $0_{2}=-g_{4}$ , $0_{3}=g_{1}$ , $0_{4}=g_{2}$ ,

$s_{1}=-g_{2}$ , $s_{2}=0$ , $s_{3}=-g_{4}$ , $s_{4}=0$ ,

$s_{1}^{\prime}=g_{4}$ , $s_{2}^{\prime}=0$ , $s_{8}^{\prime}=-g_{2}$ , $s_{4}^{\prime}=0$ .
We thus obtain

(4.11) $d$ log $k_{1}=g_{\ell}\alpha^{i}$ ,

(4.12) $\eta=-g_{3}\alpha^{1}-g_{4}a^{2}+g_{1}\alpha^{3}+g_{2}\alpha^{4}$ ,

(4.13) $\zeta^{1}=-g_{2}\alpha^{1}-g_{4}\alpha^{3}$ ,

(4.14) $\zeta^{2}=g_{4}\alpha^{1}-g_{2}\alpha^{3}$ .
The equations in (4.13, 4.14) can be combined into a single equation:

(4.15) $\omega_{3}^{1}=i(g_{4}+ig_{2})\omega_{0}^{1}$ .
The form $d$ log $k_{1}$ is globally defined on $M$. On the other hand the forms

$(\alpha^{\ell})$ are subject to the $G_{2}$-isotropy action, and so are $(g_{t})$ . We will compute a
normal form for $(g_{\ell})$ , hence simplifying the next prolongation step which begins
with the exterior differentiation of (4.11-4.14).

Keep in mind that all forms on $U\subset M$ are written relative to a second
order Frenet frame $e;U\rightarrow U(4)$ . Suppose we have another second order frame

$e:\sim 0\rightarrow U(4)$ .
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We then know that $e$ and $ e\sim$ are related by the formula

$\tilde{e}=e\cdot k$ ,

where $k$ is a smooth local $G_{2}$-valued function. We may put

$k=(e^{\ell*},$ $\left\{\begin{array}{ll}\pm e^{\ell_{(\iota+t)/2}} & 0\\0 & e^{\ell r}\end{array}\right\},$
$e^{\ell t})$ ,

where $s,$ $t,$ $r:U\cap 0\rightarrow R$ are smooth. Put
$\tilde{\omega}=e^{*}\sim\Omega$ ,

and define tilded quantities $(\tilde{g}_{\ell})$ by

(4.16) $d\log k_{1}=g_{\ell}\alpha^{\ell}=\tilde{g}_{\ell\tilde{\alpha}^{\ell}}$ ,

where $\tilde{\omega}_{0}^{1}=\tilde{\alpha}^{1}+i\tilde{\alpha}^{3}$ , and $\tilde{\omega}_{0}^{2}=\tilde{\alpha}^{2}+i\tilde{\alpha}^{4}$ .
From the transformation rule

$\tilde{\omega}=Ad(k^{-1})\omega$

we compute that
$(\tilde{\omega}_{0}^{1},\tilde{\omega}_{0}^{2})=e^{\ell t}(\pm e^{-\ell(\iota+t)/t}\omega_{0}^{1}, e^{-\ell r}\omega_{0}^{2})$ .

It follows that we may change

(4.17) $\omega_{0}^{1}\leftrightarrow e^{\ell a}\omega_{0}^{1}$ , $\omega_{0}^{2}-e^{\ell b}\omega_{0}^{2}$ ,

where $a,$ $b$ are any smooth local functions. Combining (4.16) with (4.17) we
see that we can change

(4.18) $g_{1}+\dot{\iota}g_{3}-e^{\ell a}(g_{1}+ig_{s})$, $g_{2}+lg_{4^{-}}e^{\ell b}(g_{2}+lg_{4})$ .
As a consequence of (4.18) we can further choose a second order frame so

as to make

(4.19) $g_{S}=g_{4}=0$ , $g_{1}\geqq 0$ , $g_{2}\geqq 0$ .
Deflnition. The global functions

$\gamma_{1}=(g_{1})^{2}$ , $\gamma_{2}=(g_{2})^{2}$ : $M\rightarrow R$

will be called the secondary invariants of the immersion $f$ .

With the aid of (4.19) we can rewrite the equations in (4.11-4.14) as follows:

(4.20) $d$ log $k_{1}=g_{1}\alpha^{1}+g_{2}\alpha^{2}$ ,

(4.21) $i(2\omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{3})=g_{1}\alpha^{3}+g_{2}\alpha^{4}$ ,

(4.22) $\omega_{2}^{1}=-g_{2}(\alpha^{1}+i\alpha^{3})$ .
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Remark. The exterior equations in (4.20-4.22) are written relative to a
“third order Frenet frame”. Now $G_{2}$ is 3-dimensional, and consulting (4.17-

4.19) we see that the structure group of the bundle of third order Frenet frames
is one-dimensional. Thus we can hardly expect to improve the choice of our
frame any further.

We need to exterior differentiate both sides of the equations in (4.20-4.22).

We first make some preliminary calculations.
Using the Maurer-Cartan structure equations and the equations in (4.1, 4.2,

4.20, 4.21, 4.22) we calculate that

(4.23) $d\alpha^{1}=i(\omega_{0}^{0}-\omega_{1}^{1})\wedge\alpha^{3}+g_{\iota}(\alpha^{1}\wedge\alpha^{2}-\alpha^{s}\wedge\alpha^{4})$ ,

(4.24) $d\alpha^{2}=i(\omega_{0}^{0}-\omega_{2}^{2})\wedge\alpha^{4}$ ,

(4.25) $d\alpha^{3}=-i(\omega_{0}^{0}-\omega_{1}^{1})\wedge\alpha^{1}+g_{2}(\alpha^{1}\wedge\alpha^{4}-\alpha^{2}\wedge\alpha^{3})$ ,

(4.26) $d\alpha^{4}=-i(\omega_{0}^{0}-\omega_{2}^{2})\wedge\alpha^{2}-2g_{2}\alpha_{1}\wedge\alpha^{3}$ ,

(4.27) $d\omega_{1}^{1}=(1+\gamma_{2}-\kappa_{1})\omega_{0}^{1}\wedge\overline{\omega}_{0}^{1}$ ,

(4.28) $d\omega_{0}^{0}=-\omega_{0}^{1}\wedge\overline{\omega}_{0}^{1}-\omega_{0}^{2}\wedge\overline{\omega}_{0}^{2}$ ,

(4.29) $d\omega_{s}^{3}=\kappa_{1}\omega_{0}^{1}\wedge\overline{\omega}_{0}^{1}$ ,

(4.30) $d\omega_{2}^{1}=\omega_{0}^{1}\wedge\overline{\omega}_{0}^{2}+(g_{2}\omega_{1}^{1}-g_{2}\omega_{2}^{2})\wedge\omega_{0}^{1}$ .
We also have

(4.31) $\omega_{0}^{1}\wedge\overline{\omega}_{0}^{1}=-2i\alpha^{1}\wedge\alpha^{s}$ ,

(4.32) $\omega_{0}^{2}\wedge\varpi_{0}^{2}=-2i\alpha^{2}\wedge\alpha^{4}$ ,

(4.33) $\omega_{0}^{1}$ A $\omega_{0}^{2}=(\alpha^{1}\wedge\alpha^{2}-\alpha^{3}\wedge\alpha^{4})+i(\alpha^{1}\wedge\alpha^{4}-\alpha^{2}\wedge\alpha^{3})$ ,

(4.34) $\omega_{0}^{1}\wedge\overline{\omega}_{0}^{2}=(\alpha^{1}\wedge\alpha^{2}+\alpha^{s}\wedge\alpha^{4})+l(\alpha^{s}\wedge\alpha^{2}-\alpha^{1}\wedge\alpha^{4})$ .
We introduce 16 new real variables

$(t_{\ell} ; t_{\ell}^{\prime} ; n_{\ell} ; n_{\ell}^{\prime})$

by setting

(4.35) $dg_{1}=t_{\ell}\alpha^{\ell}$ ; $dg_{2}=t_{i}^{\prime}\alpha^{i}$ ; $\iota(\omega_{0}^{0}-\omega_{1}^{1})=n_{\ell}\alpha^{\ell}$ ; $i(\omega_{0}^{0}-\omega_{2}^{2})=n^{\prime}\alpha^{\ell}$ .
We assume that the secondary invariants $\gamma_{1}$ and $\gamma_{2}$ are not constant, and

nowhere zero.
Consulting (4.23-4.34) we exterior differentiate both sides of the equations

in (4.20-4.22), and obtain

(4.36) $0=dg_{1}\wedge\alpha^{1}+dg_{2}\wedge\alpha^{2}+g_{1}i(\omega_{0}^{0}-\omega_{1}^{1})\wedge a^{3}$

$+g_{1}g_{2}(\alpha^{1}\wedge\alpha^{2}-\alpha^{3}\wedge\alpha^{4})+g_{2}i(\omega_{0}^{0}-\omega_{2}^{2})\wedge\alpha^{4}$ ,
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(4.37) $(6+4\gamma_{2}-6\kappa_{1})\alpha^{1}\wedge\alpha^{3}+2\alpha^{2}\wedge\alpha^{4}=dg_{1}\wedge\alpha^{3}+dg_{2}\wedge\alpha^{4}-g_{1}\iota(\omega_{0}^{0}-\omega_{1}^{1})\wedge\alpha^{1}$

$+g_{1}g_{2}(\alpha^{1}\wedge\alpha^{4}-\alpha^{2}\wedge\alpha^{3})-g_{2}\iota(\omega_{0}^{0}-\omega_{2}^{2})\wedge\alpha^{2}-2\gamma_{2}\alpha^{1}\wedge\alpha^{3}$ ,

(4.38) $0=\alpha^{1}\wedge\alpha^{2}+\alpha^{3}\wedge\alpha^{4}+g_{2}i(\omega_{0}^{0}-\omega_{2}^{2})\wedge\alpha^{3}+dg_{2}\wedge\alpha^{1}+\gamma_{2}(\alpha^{1}\wedge\alpha^{2}-\alpha^{3}\wedge\alpha^{4})$ ,

(4.39) $0=\alpha^{3}\wedge\alpha^{2}+\alpha^{4}\wedge\alpha^{1}-g_{2}i(\omega_{0}^{0}-\omega_{2}^{2})\Lambda\alpha^{1}+dg_{2}\wedge\alpha^{3}+\gamma_{2}(\alpha^{1}\wedge\alpha^{4}-\alpha\wedge^{2}\alpha^{3})$ .
Substitution of (4.35) into the exterior equations in (4.36-4.39) leads to the

following linear system of equations in $(t_{i} ; t_{i}^{\prime} ; n_{\ell} ; n_{\ell}^{\prime})$ :

(4.40) $-t_{2}+t_{1}^{\prime}+g_{1}g_{2}=0$ ,

(4.41) $t_{s}+g_{1}n_{1}=0$ ,

(4.42) $-t_{4}+g_{2}n_{1}^{\prime}=0$ ,

(4.43) $-t_{3}+g_{1}n_{2}=0$ ,

(4.44) $-t_{4}^{\prime}+g_{2}n_{g}^{\prime}=0$ ,

(4.45) $-g_{1}n_{4}-g_{1}g_{2}+g_{2}n_{3}^{\prime}=0$ ,

(4.46) $-g_{1}n_{2}+g_{2}n_{1}^{\prime}=0$ ,

(4.47) $6+6\gamma_{2}-6\kappa_{1}-t_{1}-g_{1}n_{s}=0$ ,

(4.48) $t_{1}^{\prime}+g_{1}n_{4}+g_{1}g_{2}=0$ ,

(4.49) $-t_{2}+g_{1}g_{2}-g_{2}n_{3}^{\prime}=0$ ,

(4.50) $2-t_{2}^{\prime}-g_{2}n^{\prime}=0$ ,

(4.51) $t_{4}-t_{s}^{\prime}=0$ ,

(4.52) $1-t_{2}^{\prime}+\gamma_{2}=0$ ,

(4.53) $g_{2}n_{1}^{\prime}-t_{3}^{\prime}=0$ ,

(4.54) $t_{4}^{\prime}=0$ ,

(4.55) $g_{2}nE=0$ ,

(4.56) $1-g_{2}n_{4}^{\prime}-\gamma_{2}=0$ ,

(4.57) $g_{2}n_{3}^{\prime}+t_{1}^{\prime}=0$ .
With a bit of persistence we find that the above linear system possesses

exactly 3-dimensional solutions given by

(4.58) $t_{\ell}=arbitrary$ for $i<4$ ,

(4.59) $t_{4}=t_{3}$ ,
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(4.60) $t_{1}^{\prime}=t_{2}-g_{1}g_{2}$ ,

(4.61) $t_{2}^{\prime}=1+\gamma_{2}$ ,

(4.62) $t_{3}^{\prime}=t_{3}$ ,

(4.63) $t_{4}^{\prime}=0$ ,

(4.64) $n_{1}=t_{8}/g_{1}$ ,

(4.65) $n_{2}=t_{s}/g_{1}$ ,

(4.66) $n_{8}=(6+6\gamma_{2}-6\kappa_{1}-t_{1})/g_{1}$ ,

(4.67) $n_{4}=--t_{2}/g_{1}$ ,

(4.68) $n_{1}^{\prime}=t_{8}/g_{g}$ ,

(4.69) $n_{2}^{\prime}=0$ ,

(4.70) $n_{s}^{\prime}=(g_{1}g_{2}-t_{2})/g_{2}$ ,

(4.71) $n_{4}^{\prime}=(1-\gamma_{2})/g,$ .

5. Totally parabolic surfaces with a constant secondary invariant.

In this section we will prove the following theorems.

Theorem 1. Let $f$ : $M\rightarrow P^{s}$ be a totally parabolic surface. Then its primary
invariant $\kappa=\kappa_{1}$ is not a constant.

Theorem 2. Let $f$ be as in Theorem 1. Then the secondary invariant $\gamma_{g}$ is
not a constant.

Theorem 3. Let $f$ be as in Theorem 1. Then the secondary invariant $\gamma_{1}$ is
a constant $c$ if and only if $c=0$ . In this case we have

$\kappa>1$ and $\gamma_{g}=(\kappa-1)^{1/2}$ .

Theorem 4. Let $\hat{\kappa}:M\rightarrow R$ be any nonconstant smooth function with $\hat{\kappa}>1$ .
Then there exists a totally Parabolic local holomorPhic immersion

$f$ : $U\subset M\rightarrow P^{3}$

such that $\kappa|_{U}=\hat{\kappa}|_{U}$ , and $\gamma_{1}|_{U}\equiv 0$ .

Remark. i) A consequence of Theorem 1 is that a totally parabolic surface
is never of constant holomorphic sectional curvature, and is never homogeneous.

ii) We will produce, in the course of proving Theorem 4, a class of non-
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left-invariant involutive distributions on $U(4)$ with 5-real-dimensional leaves.

Proof of Theorem 1. Let $e:U\subset M\rightarrow U(4)$ be a second order Frenet frame
along $f$ , and put as usual $\omega=e^{*}\Omega$ . We then have

(5.1) $\omega_{1}^{3}=k_{1}\omega_{0}^{1}$ , $\omega_{2}^{3}=0$ , $k_{1}>0$ .
Assume that $k_{1}=c$ is a constant. Exterior differentiation of both sides of the
equations in (5.1) leads to the equations in (4.3, 4.4) with $d$ log $k_{1}=0$ :

(5.2) $-(2\omega_{1}^{1}-\omega_{0}^{0}-\omega_{s}^{s})\wedge\omega_{0}^{1}-\omega_{2}^{1}\wedge\omega_{0}^{2}=0$ ,

(5.3) $\omega_{2}^{1}\wedge\omega_{0}^{1}=0$ .
The exterior equations in (5.2, 5.3) lead to the linear system in (4.10) with $(g_{\ell})$

$=0$ , and we find that the only solution is given by

$(0_{\ell})=(s_{\ell})=(s_{i}^{\prime})=0$ .
Hence

(5.4) $2\omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{3}=0$ , $\omega_{2}^{1}=0$ .
Exterior differentiate both sides of the equation $\omega_{2}^{1}=0$ modulo equations in (4.1,

5.1, 5.4), and obtain
$0=-\omega_{0}^{1}\wedge\omega_{2}^{0}$ .

But the forms $\omega_{0}^{1},$ $\omega_{0}^{2}$ are independent on $M$, and the theorem is proved. $\square $

Given a totally parabolic surface

$f$ : $M\rightarrow P^{3}$

we take a third order Frenet frame $e$ and put $ e*\Omega=\omega$ . Then we have

(5.5) $d$ log $k_{1}=g_{1}\alpha^{1}+g_{2}\alpha^{2}$ ,

(5.6) $i(2\omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{3})=g_{1}\alpha^{3}+g_{2}\alpha^{4}$ ,

(5.7) $\omega_{2}^{1}=-g_{2}(\alpha^{1}+i\alpha^{2})$ ,

where
$\omega_{0}^{1}=\alpha^{1}+i\alpha^{3}$ , $\omega_{0}^{2}=\alpha^{2}+i\alpha^{4}$ .

By Theorem 1 we know that $(g_{\ell})\neq 0$ .

Proof of Theorem 2. Suppose $g_{2}\equiv 0$ . Then (5.7) becomes

$\omega_{2}^{1}=0$ ,

and again we arrive at
$\omega_{0}^{1}\wedge\omega_{2}^{0}=0$
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violating the independence condition. We now suppose that $g_{2}=c>0$ . Exterior
differentiation of (5.5-5.7) leads to (4.40-4.57) with $(t_{1}^{\prime})=0$ . In particular, (4.52)

becomes
$1+\gamma_{2}=0$

which is impossible. $\square $

Proof of Theorems 3 and 4. Suppose $g_{1}=c>0$ . We then obtain the equa-
tions in (4.40-4.57) with $(t_{\ell})=0$ . Rearranging thus obtained equations we have

(5.8) $t_{4}^{\prime}=0$ ,

(5.9) $n_{2}^{\prime}=0$ ,

(5.10) $t_{3}^{\prime}=0$ ,

(5.11) $g_{1}n_{1}=0$ ,

(5.12) $g_{2}n_{1}^{\prime}=0$ ,

(5.13) $g_{1}n_{2}=0$ ,

(5.14) $-g_{1}n_{2}+g_{2}n_{1}^{\prime}=0$ ,

(5.15) $6+6r_{2}-6\kappa_{1}$ $g_{1}n_{3}=0$ ,

(5.16) $-t_{1}^{\prime}-g_{1}n_{4}-g_{1}g_{\epsilon}=0$ ,

(5.17) $g_{1}g_{f}-g_{2}n_{8}^{\prime}=0$ ,

(5.18) $2-t_{f}^{\prime}-g_{f}n_{4}^{\prime}=0$ ,

(5.19) $1-g_{2}n_{4}^{\prime}-\gamma_{2}=0$ ,

(5.20) $g_{2}n_{s}^{\prime}+t_{1}^{\prime}=0$ .
The equations in (5.8-5.20) represent a linear system in ( $t_{\ell}^{\prime}$ ; $n_{\ell}$ ; n\’i). Note that
(5.19) implies that $g_{2}$ can not vanish. Now the equations of (5.11-5.13) imply
that $n_{1}=n_{1}^{\prime}=n_{2}=0$ . In fact it is not hard to see that the linear system pos-
sesses a unique solution: it is given by

$n_{1}=n_{t}=n=0$ , $n_{s}=(6+6\gamma_{2}-6\kappa_{1})/g_{1}$ ,

$n_{1}^{\prime}=n_{8}^{\prime}=0$ , $n_{S}^{\prime}=g_{1}$ , $n_{4}^{\prime}=(1-\gamma_{2})/g_{2}$ ,

$t_{1}^{\prime}=-g_{1}g_{2}$ , $t_{8}^{\prime}=1+\gamma_{g}$ , $t_{s}^{\prime}=t_{4}^{\prime}=0$ .
Consequently we obtain

(5.21) $ ic(\omega_{0}^{0}-\omega_{1}^{1})=(6+6\gamma_{f}-6\kappa_{1})\alpha$ ,

(5.22) $i(\omega_{0}^{0}-\omega_{2}^{2})=c\alpha^{3}+((1-\gamma_{2})/g_{2})\alpha^{4}$ ,
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(5.23) $dg_{2}=$ $cg_{2}a^{1}+(1+r_{2})a^{2}$ ,

where $c=g_{1}>0$ . We exterior differentiate both sides of the equation in (5.23)

and obtain

(5.24) $0=-cdg_{2}\wedge\alpha^{1}-cg_{2}d\alpha^{1}+2g_{2}dg_{2}\wedge\alpha^{2}+(1+\gamma_{2})d\alpha^{2}$ .
The equations in (4.23, 4.24) in consultation with (5.21, 5.22) give

(5.25) $d\alpha^{1}=g_{2}(\alpha^{1}\wedge\alpha^{2}-\alpha^{3}\wedge\alpha^{4})$ ,

(5.26) $d\alpha^{2}=c\alpha^{3}\wedge\alpha^{4}$ .
Substituting (5.23, 5.25, 5.26) into (5.24) we obtain

$0=(c-2c\gamma_{2})\alpha^{1}\wedge\alpha^{2}+(c+2c\gamma_{2})\alpha^{3}\wedge\alpha^{4}$ .
It follows that

$1-2\gamma_{2}=1+2\gamma_{2}=0$

which is absurd. We have thus established that if $\gamma_{1}$ is a constant then it
must be equal to zero. Suppose that $\gamma_{1}=c=0$ . The equations in (4.20-4.22)
become

(5.27) $d$ log $k_{1}=g_{2}\alpha^{2}$ ,

(5.28) $i(2\omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{S})=g_{2}\alpha^{4}$ ,

(5.29) $\omega_{2}^{1}=-g_{2}(\alpha^{1}+i\alpha_{\epsilon})$ .
Exterior differentiation of the equations in (5.27-5.29) leads (5.8-5.20) with $g_{1}=0$ :
(5.30) $t_{4}^{\prime}=0$ ,

(5.31) $n_{2}^{\prime}=0$ ,

(5.32) $t_{3}^{\prime}=0$ ,

(5.33) $n_{1}^{\prime}=0$ ,

(5.34) $6+6\gamma_{2}-6\kappa_{1}=0$ ,

(5.35) $t_{1}^{\prime}=0$ ,

(5.36) $n_{3}^{\prime}=0$ ,

(5.37) $2-t_{2}^{\prime}-g_{\mathfrak{g}}n_{4}^{\prime}=0$ ,

(5.38) $1-g_{2}n_{4}^{\prime}-\gamma_{2}=0$ .
Observe that $g_{2}$ is never zero. Solving the system of equations in (5.30-5.38)

we obtain:
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(5.39) $t_{1}^{\prime}=t_{3}^{\prime}=t_{4}^{\prime}=n_{1}^{\prime}=n_{2}^{\prime}=n_{3}^{\prime}=0$ ,

(5.40) $\gamma_{2}=\kappa_{1}-1>0$ ,

(5.41) $n^{\prime}=(2-\kappa_{1})/(\kappa_{1}-1)^{1/2}$ ,

(5.42) $t_{2}^{\prime}=\kappa_{1}$ .
Note that $(n_{\ell})$ are arbitrary. We consider the exterior differential system on
$M$ given by

(5.43) $\omega_{0}^{3}=\omega_{2}^{3}=0$ , $\omega_{1}^{3}=k_{1}\omega_{0}^{1}$ $(k_{1}>1)$ ,

(5.44) $d$ log $k_{1}-(2\omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{s})=(\kappa_{1}-1)^{1/2}\omega_{0}^{2}$ ,

(5.45) $\omega_{2}^{1}=-(\kappa_{1}-1)^{1/2}\omega_{0}^{1}$ ,

(5.46) $d(\kappa_{1}-1)^{1/2}=\kappa_{1}{\rm Re}\omega_{0}^{2}$ ,

(5.47) $i(\omega_{0}^{0}-\omega_{2}^{2})=((2-\kappa_{1})/(\kappa_{1}-1)^{1/2}){\rm Im}\omega_{0}^{l}$ .
We now exterior differentiate the equations in (5.46, 5.47) and show that they
lead to no new quadratic equations modulo the system. Exterior differentiate
the equation in (5.46) and obtain

$0=d\kappa_{1}\wedge a^{2}+\kappa_{1}d\alpha^{2}=2k_{1}dk_{1}\wedge\alpha^{2}$

since $d\alpha^{2}=i(\omega_{0}^{0}-\omega_{2}^{l})\wedge\alpha^{4}=0$ modulo the system. Now

$k_{1}dk_{1}\wedge\alpha^{2}=\kappa_{1}d$ log $k_{1}\wedge a^{2}=0$

by virtue of (5.44). Exterior differentiate the left side of (5.47) and obtain

$\dot{\iota}(d\omega_{0}^{0}-d\omega_{2}^{2})=(2\kappa_{1}-4)\alpha^{1}\wedge\alpha^{3}-4\alpha^{2}\wedge\alpha^{4}$ .
The exterior derivative of the right hand side of (5.47) is easily seen to be
equal to the above expression using the real part of the equation in (5.44) and

(5.48) $d\alpha^{2}=0$ ,

(5.49) $d\alpha^{4}=(\kappa_{1}-1)^{-1\prime 2}((2-\kappa_{1})\alpha^{2}\wedge\alpha^{4}-2(\kappa_{1}-1)\alpha^{1}\wedge\alpha^{s})$ .
We also record that

(5.50) $d\alpha^{1}=i(\omega_{0}^{0}-\omega_{1}^{1})\wedge\alpha^{3}+g_{2}(\alpha^{1}\wedge\alpha^{2}-\alpha^{3}\wedge\alpha)$ ,

(5.51) $d\alpha^{3}=i(\omega_{0}^{0}-\omega_{1}^{1})\wedge\alpha^{1}+g_{2}(\alpha^{1}\wedge\alpha-\alpha^{2}\wedge\alpha^{3})$ .
Let $\theta$ : $U(4)\rightarrow R^{+}$ and consider the exterior differential system, denoted by

$\Sigma_{\theta}$ , given by:

(5.52) $\Omega_{0}^{3}=\Omega_{2}^{3}=0$ , $\Omega_{1}^{3}=(\cosh\theta)\Omega_{0}^{1}$ ,
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(5.53) $d\log(\cosh\theta)-(2\Omega_{1}^{1}-\Omega_{0}^{0}-\Omega_{3}^{3})=(\sinh\theta)\Omega_{0}^{2}$ ,

(5.54) $\Omega_{2}^{1}=-(\sinh\theta)\Omega_{0}^{1}$ ,

(5.55) $d(\sinh\theta)=(\cosh^{2}\theta){\rm Re}\Omega 0$ ,

(5.56) $i(\Omega_{0}^{0}-\Omega_{2}^{2})=(cosech\theta-\sinh\theta){\rm Im}\Omega_{0}^{2}$ .
The point of the long calculation leading up to the present paragraph is that
the system $\Sigma_{\theta}$ on $U(4)$ is completely integrable. (The reader can, of course,
verify this directly by closing the sytem $\Sigma_{\theta}$ with the aid of the Maurer-Cartan
structure equations of $U(4).)$ We see also that a leaf of $\Sigma_{\theta}$ locally projects
down to give a complex surface in $P^{3}$ with

$\kappa_{1}=\cosh^{2}(\pi(\theta))$ .
Finally we remark that the completely integrable distribution defined by $\Sigma_{\theta}$ is
non-left-invariant. $\square $

Remark. The equation (5.27) shows that the real l-form $\alpha^{2}$ is a globally
defined form on $M$. Now (5.48) shows that $\alpha^{2}$ is a closed form. Hence given
a totally parabolic immersion $f$ : $M\rightarrow P^{3}$ there arises a de Rham cohomology
class $[\alpha^{2}(f)]$ .

References

[BPV] W. Barth, C. Peters and A. Van de Ven: ComPact ComPlex Surfaces, Springer-
Verlag, New york, 1984.

[C] S-S. Chern: Einstein hypersurfaces in a K\"ahlerian manifold of constant holomor-
phic curvature, J. Diff. Geom., 1 (1967), 21-31.

[FH] W. Fulton and J. Hansen: A connectedness theorem for projective varieties with
applications to intersections and singularities of mappings, Annals of Math., 110
(1979), 159-166.

[G] M. Green: The moving frame, differential invariants and rigidity theorems for
curves in homogeneous spaces, Duke Math. J., 45 (1978), 735-779.

[H] B. Hunt: Complex manifold geography in dimensions 2 and 3, J. Diff. Geom.,
30 (1989), 51-153.

[J] G. Jensen: Higher Order Contact of Submanifolds of Homogeneous Spaces,
Springer-Verlag, New York, 1977.

[0] K. Ogiue: Differential geometry of K\"ahler submanifolds, Advances in Math., 13
(1974), 73-114.

[On] B. O’Neill: Isotropic and K\"ahler immersions, Canadian J. Math., 17 (1965),

907-915.
[ST] I. Singer and J. Thorpe: The curvature of 4-dimensional Einstein spaces, in

Global Analysis, Princeton University Press, Princeton (1969), 355-365.
[T] H-S. Tai: On Frenet frames of complex submanifolds in complex projective

spaces, Duke Math. J., 51 (1984), 163-183.



88 K. YANG

[Y] K. Yang: Deformation of submanifolds of real projective spaces, Pacific J. Math.,
120 (1985), 469-492.

Department of Mathematics
Arkansas State University
State University, Arkansas 72467


	Introduction.
	1. Moving frames.
	2. The complex second ...
	Theorem 1 ...
	Theorem 2 ...
	Theorem 3 ...
	Theorem 4. ...
	Theorem 5. ...
	Theorem 6. ...

	3. Constant isotropy type ...
	Theorem. Let ...
	Theorem. SuPpose ...

	4. Totally parabolic surfaces: ...
	5. Totally parabolic surfaces ...
	Theorem 1. ...
	Theorem 2. ...
	Theorem 3. ...
	Theorem 4. ...

	References

