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Summary. Let $\{(X_{n}, Y_{n}) : n=1,2, \cdots\}$ be a strictly stationary strong mixing
sequence of random vectors in $R^{d+p}$ and denote by $r_{\phi}(x_{0})=E[\phi(Y)|X=x_{0}]$ ,
where $\phi$ is a real Borel function defined on $R^{p},$ $P\geqq 1$ . In this paper, we prove
for the above sequence, the asymptotic normality of the rank nearest neigh-
bor kernel estimators of $r_{\phi}(x_{0})$ , studied by Yang [11], Stute [10] and
Yoshihara [13].

1. Introduction. Let $\{(X_{n}, Y_{n}):n=1, 2, \}$ be a strictly stationary se-
quence of $(d+p)$-dimensional random vectors $(r.v. s)$ with a continuous distribu-
tion $(d. f.)H(x, y)=P(X\leqq x, Y\leqq y)$ and marginal $d.f$ . $sF$ and $G$ respectively.
Let $\phi$ be a real Borel function on $R^{p}$ , with $ E|\phi(Y)|<\infty$ and $r_{\phi}(x)=E[\phi(Y)|X$

$=x]$ denote the regular conditional expectation of $\phi(Y)$ , given $X=x$ assuming
that the latter quantity exists and is finite. Following the ideas of Stone [9],
Yang [11] proposed a kernel estimator for $r_{\phi}(x_{0})$ of the rank nearest neighbor
(RNN) type for the case $p=d=1$ . A natural extension of Yang’s estimator
for $p\geqq 1,$ $d\geqq 1$ is given by

(1.1) $r_{n.\phi}(x_{0})=(na_{n}^{a}t_{n}(x_{0}))^{-1}\sum_{\ell=1}^{n}\phi(Y_{\ell})K_{n.x_{0}}(X_{i})$ ,

where $K_{n.x_{0}}(x)=K(a_{n}^{-1}(F_{n1}(x_{1})-F_{n1}(x_{01})), \cdots , a_{n}^{-1}(F_{na}(x_{0})-F_{nd}(x_{0a})))$, with $K$

denoting a d-dimensional suitable kernel function, $x=(x_{1}, x_{g}, \cdots , x_{\ell})^{\prime},$ $x_{0}=(x_{01}$ ,
$x_{0t},$ $\cdots$ , $x_{0d})^{\prime},$ $F_{nf}$ denoting the standard empirical $d.f$ . based on $\{X_{\ell j},$ $1\leqq i\leqq n$ ,
$1\leqq j\leqq d\},$ $t_{n}(x_{0})=(na_{n}^{a})^{-1}\Sigma_{\ell\approx 1}^{n}K_{n.r_{0}}(X)$ and $\{a_{n}\}$ a bandwidth sequence with
$a_{n}\rightarrow 0$, as $ n\rightarrow\infty$ . From the nonparametric standpoint, the RNN estimator (1.1)
is preferable to its Nadaraya-Watson (NW) conterpart obtained by replacing
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$F_{nj}(x_{j})$ with $x_{j},$ $1\leqq j\leqq d$ in (1.1). Since the asymptotic variance of the above
proposed RNN estimator equals $f(x_{0})$ times the variance of the NW estimator
(cf. Robinson [7] and Theorem 3.1 below), in terms of the asymptotic relative
efficiency the RNN estimator would be superior to the NW estimator for most
values of $x_{0}$ (See Remark 4.2 below).

For the case $P=1,$ $d=1,$ $\phi(Y)=Y$ and when $\{(X_{\ell}, Y_{\ell})\}$ is a stationary in-
dependent sequence, Stute [10] had shown that the estimator (1.1), suitably
normalized, is asymptotically normal. This result was recently extended to $*_{-}$

mixing and $\phi$-mixing sequences by Yoshihara [13], who utilized for this pur-
pose his celebrated “approximation” lemma for absolutely regular processes (See

Lemma 3.1 of [13]). However, his results do not cover the important and more
general case of strong mixing sequences.

The objective of the present paper is to establish the above result to cover
stationary strong mixing vector sequences $\{(X_{i}, Y_{i})\}$ . It should be pointed out
in this connection that the above referred “approximation” technique of Yoshi-
hara [13], coupled with Stute’s [10] method, does not seem to extend to tbe
case of strong mixing sequences. We are, however, able to circumvent this
ostensible difficulty by using the weak convergence of multidimensional empirical
processes for strong mixing sequences coupled with some approximations using
“truncation” arguments. We also make use of certain probability bounds on
the oscillations of empirical processes, which along with some notation, assump-
tions and preliminaries are given in Section 2. The main result is proved in
Section 3. Finally, some useful remarks are presented in the concluding Section 4.

2. Notations, assumptions and a preliminary result.

2.1. Notations and definitions. The rank nearest neighbor (RNN) estimator
of the conditional $d$ . $f$ . $m(y|x_{0})=P(Y\leqq y|X=x_{0}),$ $y\in R^{p}$ for fixed $x_{0}\in R^{a}$ , (cf.

Yang [11] for $p=1,$ $d=1$ ) is given by

(2.1) $m_{n}(y|x_{0})=(na_{n}^{a}t_{n}(x_{0}))^{-1}\sum_{\ell=1}^{n}I_{[Y\ell\leq y]}K_{n.x_{0}}(X_{\ell})$ ,

where $K,$ $t_{n}$ and $a_{n}$ are as defined in (1.1). If we replace the indicator function
$I_{[Y\leq y]}$ in (2.1) with any real Borel function $\phi(Y)$ , we obtain a RNN estimator
$r_{n.\phi}(x_{0})$ defined by (1.1) of $r_{\phi}(x_{0})=E[\phi(Y)|X=x_{0}]$ .

Let $\{\xi_{n\ell} : 1\leqq i\leqq n, n\geqq 1\}$ be a triangular sequence of random vectors defined
on a probability space $(\Omega, \llcorner A, \mathcal{P})$ . The sequence $\{\xi_{n\ell}\}$ is said to be strong mixing
$(s.m.)$ , if there is a function $\alpha(\cdot)$ defined on non-negative integers with $\alpha(N)\downarrow 0$

as $ N\rightarrow\infty$ and

(2.2) $\sup|P(A\cap B)-P(A)P(B)|\leqq\alpha(N)$

for all $A\in \mathcal{F}_{1.k}^{n}$ and $B\in \mathcal{F}_{k+N.\infty}^{n}$ , where $k$ and $n$ are positive integers, $\mathcal{F}_{a.b}^{n}$ denotes
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the sub-a-algebra generated by the $r.v$ . $s\{\xi_{ni} : a\leqq i\leqq b\}$ and the $\sup$ in (2.2)
is taken over all $n\geqq 1,$ $k\geqq 1$ . The $s.m$ . condition (2.2) was introduced by
Rosenblatt [8] and is more general than certain other restrictive types of
mixing conditions, such as those of $*$-mixing, $\phi$-mixing and absolute regularity
(see Ibragimov and Linnik [4]).

2.2. Assumptions.
A.I The sequence $\{(X_{i}, Y_{i})\}$ is strong mixing and for some $\delta,$ $0<\delta<1$ ,

$\Sigma_{f=1}^{\infty}j^{\iota}\alpha^{\delta}(j)<\infty$ .
A.II(i) $H(x, y)$ has bounded density $h(x, y)$ with marginals $f(x)$ and $g(y)$ such

that $f(x)$ is bounded away from zero in some open neighborhood (nghd) $N_{0}$

of $x_{0}\in R^{a}$ ;
(ii) the joint $d.f$ . $F_{j}(x_{1}, x_{2})$ of $(X_{1}, X_{1+j})$ has a continuous density $f_{j}(x_{1}, x_{2})$

in an open nghd $N_{0}^{*}$ of $(x_{0}, x_{0}),$ $x_{0}\in R^{a}$ .
A.III For each fixed $y\in R^{p},$ $m(y|F^{-1}(t))$ , where $F^{-1}(t)=(F_{1}^{-1}(t_{1}), F_{2}^{-1}(t_{2}),$ $\cdots$ ,

$F_{\overline{a}^{1}}(t_{a}))$ with $0<t_{j}<1$ for $j=1,2,$ $\cdots$ , $d$ , is twice continuously differenti-
able in $t\in N_{0}^{**}=N_{01}^{**}\times\cdots\times N_{0a}^{**}$ , where $N_{0j}^{*}$ is an open nghd of $F(x_{0f})$ for
$j=1,2,$ $\cdots$ , $d$ , and

$\max_{1\leqq l.J\leqq d}\sup_{l\in N_{\dot{0}}}\sup_{y}|\frac{\partial^{2}}{\partial t_{\ell}\partial t_{j}}m(y|F^{-1}(t))|<\infty$ .

A.IV $K$ is any probability kernel function on $R^{a}$ , twice continuously differen-
tiable and vanishing outside a compact interval, (say) $[$ –1, $1]^{a}$ and

satisfying $\int u_{j}K(u)du=0$ for $1\leqq j\leqq d$ .
A.V The bandwidth sequence $\{a_{n}\}$ satisfies $0<a_{n}\downarrow 0,$ $ na_{n}^{a+2+\delta}\rightarrow\infty$ and $na_{n}^{a+4}$

$\rightarrow\tau$ as $ n\rightarrow\infty$ , where $\tau\geqq 0$ is a constant and $\delta(0<\delta<1)$ is as given in
A.I.

The symbols such as $C_{1},$ $C_{2},$ $\cdots$ ( $i.e.,$ $C’ s$ with subscripts) that aPpear through-
out denote generic constants.

2.3. A Preliminary result. We need the result of Lemma 2.1 below pertain-
ing to the oscillations of the (univariate) empirical processes for strong mixing
sequences. The results can be deduced from Mehra and Rao [5]. We sketch
the proof giving only necessary details: Let $\{U_{i} : i\geqq 1\}$ be a mixing sequence of
uniform $[0,1]r.v$ . $s$ and consider the empirical process $\{V_{n}(t):0\leqq t\leqq 1\}$ , where
$V_{n}(t)=n^{-1/g}\Sigma_{t=1}^{n}(I_{[U_{i}\leqq t]}-t)$ . We now state

Lemma 2.1. Let $\{U_{\ell} ; i\geqq 1\}$ be a $s$ . $m$ . sequence of uniform $r.v$ . $s$ . satisfying
$A$ . I with $k=2$ . Then for given, $c,$ $\lambda>0$ and $0\leqq s,$ $t\leqq 1$ ), we have for sufficiently
large $n$
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$P($ $S_{ca_{n}}^{up|V_{n}(t)-V_{n}(s)|\geqq\lambda a_{n}^{(1-2^{-}1\delta)/2})\leqq C_{1}\lambda^{-4}}$

where $C_{1}$ is a constant, depending only on $c,$ $\alpha,$
$\delta$ .

Proof. The proof follows on the lines of the arguments of Billingsley [2],

Theorem 22.1). We have from Lemma 2.6 (i) of Mehra and Rao [5], with
$C_{\ell}\equiv 1,$ $q\equiv 1$ there,

$E|V_{n}(t)-V_{n}(s)|^{4}\leqq C_{1}[(t-s)^{2-\delta}+n^{-1}(t-s)^{1-\delta}]$

$\leqq 2C_{1}\epsilon^{-1}(t-s)^{8-\delta}$ , $0\leqq s,$ $t\leqq 1$ ,

for any arbitrary $\epsilon>0$ and $|t-s|>\epsilon n^{-1}$ . Consequently, arguing as in Billingsley
([2], p. 199), it can be shown, for a suitably selected small $P$ and a positive
integer $m$ that

$P(\sup_{1\iota+mp}t|V_{n}(t)-V_{n}(s)|\geqq\lambda a_{n}^{\langle 1-2^{-}1\delta)/2})$

$\leqq 2\epsilon^{-1}C_{1}(\lambda a_{n}^{(1-2^{-}1\delta)/2})^{-4}(mp)^{8-\delta}$ .
which completes the proof (with $mP=ca_{n}$ ). $\square $

3. The main result. In this section we shall prove the asymptotic normality
of the RNN estimator $r_{n,\phi}(x_{0})$ defined by (1.1) of the regression function $r_{\phi}(x_{0})$ ,
$x_{o}\in R^{d}$ .

Let $H_{n}(x, y)=n^{-1}\Sigma_{i=1}^{n}I_{[X\leq x.Y\leq]}i\ell t$ for $x\in R^{d},$ $y\in R^{p}$ and for $x_{0}\in R^{d}$ , set

(3.1) $\nu_{n.\phi}(x_{0})=(na_{n}^{a})^{-1/1}\sum_{\ell=1}^{n}[\phi(Y_{\ell})-r_{\phi}(x_{0})]K_{n.\iota_{0}}(X_{\ell})$ ,

and

(3.2) $\beta_{n,\phi}(x_{0})=(na_{n}^{a})^{1/2}[r_{n.\phi}(x_{0})-r_{\phi}(x_{0})]$ .
Then, from (3.1) and (3.2), $\beta_{n.\phi}(x_{0})=\nu_{n.\phi}(x_{0})/t_{n}(x_{0})$ . By showing $t_{n}(x_{0})\rightarrow 1p$ as
$ n\rightarrow\infty$ , we shall establish the asymptotic normality of $\beta_{n.\phi}(x_{0})$ via that of
$\nu_{n.\phi}(x_{0})$ . Towards this end, by the assumption A.IV and Taylor’s expansion,
we have the followlng decomposition of $\nu_{n.\phi}(x_{0})$ :

(3.3) $\nu_{n.\phi}(x_{0})=(n/a_{n}^{d})^{1/2}\int_{A_{n}}[\phi(y)-r_{\phi}(x_{0})]K_{(n).x_{0}}(x)dH_{n}(x, y)$

$+a_{\overline{n}\int_{A_{n}}n).x_{0}}^{(a+a)}[\phi(y)-r_{\phi}(x_{0})]\sum[U_{nj}(x_{j})-U_{nf}(x_{0j})]K\{j)(x)dH_{n}(x, y)$

$+\frac{1}{2}(na_{n}^{\langle d+4)})^{-1/2}\int_{A_{n}}[\phi(y)-r_{\phi}(x_{0})]\sum_{j.j^{\prime}}[U_{nj}(x_{f})-U_{n}(x_{0f})]$

$\times[U_{nj}(x_{f}^{\prime})-U_{nj}(x_{0f^{\prime}})]K^{(j,j^{\prime})}(\Delta_{n,x})dH_{n}(x, y)$

$=J_{n1}+J_{n2}+J_{n3}$ (say),
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where
$A_{n}=\bigcap_{j=1}^{d}\{x_{j} : |F_{nj}(x_{j})-F_{nj}(x_{0j})|\leqq a_{n}\}$ ,

$K^{(j)}(x)=\frac{\partial}{\partial x_{j}}K(x)$ , $K^{(j.j^{\prime})}(x)=\frac{\partial^{2}}{\partial x_{j}x_{f}}K(x)$ ,

$K_{(n).x_{0}}(x)=K((F_{1}(x_{1})-F_{1}(x_{01})/a_{n}, (F_{a}(x_{a})-F_{a}(x_{0d}))/a_{n})$ ,

$U_{nj}(x_{j})=\sqrt{}\overline{n}[F_{nj}(x_{j})-F_{j}(x_{j})]$ and $\Delta_{n.x}=(\Delta_{n.x_{1}}^{\langle 1)}, \Delta_{n.x_{d}}^{\langle d)})^{\prime}$ ,

$a_{n}\Delta_{n.x_{j}}^{tj)}$ lying between $F_{nj}(x_{j})-F_{nj}(x_{0j})$ and $F_{j}(x_{j})-F_{j}(x_{0j})$ for $ 1\leqq$ ] $\leqq d$ . The
integral sign in (3.3) and below should be understood as single or multiple
integral depending on the context.

We first consider the asymptotic behaviour of $J_{nj},$ $j=2,3$ :

Lemma 3.1. If the sequence $\{(X_{\ell}, Y_{i})\}$ is $s$ . $m$ . satisfying A. I with $k=$

$2(d+p)$ , A. II to A. $V$, then $ E|\phi(Y_{1})|^{2+\delta_{1}}<\infty$ for some $\delta_{1}>2\delta/(2+\delta)impl\dot{\iota}es$

$J_{nJ_{p}^{-}}\rightarrow 0$ , for $j=2$ and 3, as $ n\rightarrow\infty$ , where $J_{nj}’ s$ are as defined in (3.3).

Proof. We first deal with $J_{ns}$ . Since $K$ vanishes outside [–1, 1], the ex-
pansion (3.3) holds with integration restricted to the set $A_{n}$ and, further, since
$\max_{1\leq j\leq d}\sup_{x_{j}\in R}|U_{nj}(x_{j})|=O_{p}(1)$ , as $ n\rightarrow\infty$ , in view of Theorem 3.2 of Mehra
and Rao [5], on the preceding set $|F_{j}(x_{j})-F_{j}(x_{0j})|\leqq c_{f}a_{n},$ $1\leqq j\leqq d$ , for some
constants $c_{j}’ s$ and sufficiently large $n$ (see Lemma 3.6 of Yoshihara [13]).
Consequently,

(3.4) $|J_{n3}|\leqq\frac{1}{2}(na_{n}^{a+4})^{-1/2}\max_{1p\leq J\leq d}\sup_{x\in A_{\dot{n}}}|U_{nj}(x_{f})-U_{nj}(x_{0j})|^{2}$

$\times\int_{A_{\dot{n}}}|\phi(y)-r_{\phi}(x_{0})|\sum_{J\cdot J^{\prime}}|K^{(j.j^{\prime})}(\Delta_{n.x})|dH_{n}(x, y)$ ,

where $A_{n}^{*}=\bigcap_{j=1}^{d}\{x_{j} ; [|F_{j}(x)-F_{j}(x_{0j})|\leqq c_{j}a_{n}]\}$ . Further, since $K^{(f.j^{\prime})}$ is bounded,
the integral on the RHS of (3.4) is $O_{p}(1)$ as $ n\rightarrow\infty$ by the law of large numbers
(which does hold for strong mixing sequences and the assumed conditions here).

Also since $\{V_{nj}\circ F\}=\mathcal{L}\{U_{nj}\}$ , we have from Lemma 2.1

(3.5) max $sup|U_{nj}(x_{j})-U_{nj}(x_{0j})|=O_{p}(a_{n}^{(2-\delta)/4})$ , $ n\rightarrow\infty$ ,
$1\leq J\leq d_{x\in A_{\dot{n}}}$

for the $s.m$ . sequence satisfying A. I with $k=2(1+p)$ . Thus $J_{n8_{p}^{\rightarrow}}0$ as $ n\rightarrow\infty$ ,

follows from (3.4) and (3.5) in view of Assumption A. V. Next we show that
$J_{ng_{p}^{\rightarrow}}0$ as $ n\rightarrow\infty$ . This result is crucial in establishing the main result (cf.

Lemma 2 of Stute [10] and Lemma 4.2 of Yoshihara [13]). We have

(3.6) $J_{n2}=a_{n}^{-(d+2)/2}\int_{A_{n}xR^{p}}[\phi(y)-r_{\phi}(x_{0})]\sum_{f}[U_{nj}(x_{f})-U_{nj}(x_{0f})]$

$\times K_{(n).x_{0}}^{(j)}(x)d[H_{n}(x, y)-H(x, y)]$



54 K. L. MEHRA, ET AL.

$+a_{n}^{-(a+2)/2}\int_{A_{\dot{n}}\times R^{P}}[\phi(y)-r_{\phi}(x_{0})]\sum_{j}[U_{nj}(x_{j})-U_{nj}(x_{0j})]$

X $K_{(n).x_{0}}^{(j)}(x)dH(x, y)$ ,

$=\xi_{n}+\eta_{n}$ (say).

Since $H(x, y)=G(y|x)F(x)$ and $K$ vanishes outside [–1, 1], we have as for (3.4)

$|\eta_{a}|=a_{\overline{n}}^{(d+8)\prime 8}|\int_{A_{n}}E[(\phi(Y)-r_{\phi}(x_{0}))|X=x]\sum_{f}[U_{nj}(x_{j})-U_{nj}(x_{0j})]K_{\langle n).x_{0}}^{(j)}(x)dF(x)|$

$\leqq a_{n}^{-(a+8)\prime\epsilon\int_{A_{\dot{n}}}|r_{\phi}(x)-r_{\phi}(x_{0}))|\sum_{f}|U_{nj}(x_{j})-U_{nj}(x_{0j})||K_{(n).x_{0}}^{(f)}(x)|dF(x)}p$

Now making the transformation $F_{j}(x_{j})-F_{f}(x_{0j})=a_{n}t_{j},$ $1\leqq j\leqq d$ , using the con-
tinuous differentiability of $r_{\phi}\circ F^{-1}(t)$ in a nghd $N_{0}^{**}$ (Assumption A.III) and
Taylor’s expansion, it is easy to verify in view of (3.5) that, under the stated
mixing condition,

(3.7) $\eta_{n}=O_{p}(a_{n}^{(a+1-\delta/2)/2})$ as $ n\rightarrow\infty$ .
In dealing with the first term $\xi_{n}$ in (3.6), the cases $d=1$ and $d>1$ need

separate treatment. We shall first treat the simpler $d>1$ case: For some
constant $C_{1}$ ,

(3.8) $|\xi_{n}|\leqq\frac{d}{a_{n}^{(d+t)/2}}\max_{1\leq Jsa}\sup_{x\in A_{\dot{n}}}|U_{nj}(x_{j})-U_{nj}(x_{0j})|$

$\times\int|\phi(y)-r_{\phi}(x_{0})|\max_{1\leqq j\leq d}|K_{(n),x_{0}}^{(j)}(x)|d(H_{n}+H)(x, y)$

$\leqq C_{1}a_{n}^{(d-1-(\delta/2))\prime 8}(\xi_{n1}^{*}+\xi_{n2}^{*})$ (say),

where, as $ n\rightarrow\infty$

(3.8a) $\xi_{n1}^{*}=\frac{1}{na_{n}^{a}}a_{\Rightarrow 1}^{n}|\phi(Y_{\ell})-r_{\phi}(x_{0})|\max_{1\leq j\leqq d}|K_{(n).x_{0}}^{(j)}(X_{i})|$

$\rightarrow^{p}(f(x_{0})/\Pi_{j=I}^{a}f_{j}(x_{0f}))\int E[|\phi(Y)-r_{\phi}(x_{0})|/X=x_{0}]\max_{a1\leq J\leq}|K^{(j)}(t)|dt$

$=\lim_{\vec{n}\infty}\xi_{n2}^{*}<\infty$ ;

(3.8) and (3.8a) imply

(3.9) $|\xi_{n}|\leqq O(a_{n}^{\langle d-1-(\delta/t))/2})$

$\rightarrow p0$

as $ n\rightarrow\infty$ , if $d\geqq 2$ . Next for the case $d=1$ , we write

(3.10) $\xi_{n}=-a_{\overline{n}}^{s/\epsilon}r_{\phi}(x_{0})\int_{A_{n}xR^{p}}[U_{n}(x)-U_{n}(x_{0})]K_{(n),x_{0}}^{\prime}(x)d(H_{n}-H)(x, y)$
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$+a_{n}^{-3/2}\int_{A_{n}xR^{p}}\phi(y)[U_{n}(x)-U_{n}(x_{0})]K_{(n).x_{0}}^{\prime}(x)d(H_{n}-H)(x, y)$

$=\xi_{n1}+\xi_{n2}$ , (say).

We will show that $\xi_{n2}\rightarrow 0p$ as $ n\rightarrow\infty$ and the same holds for $\xi_{n1}$ by parallel
arguments: Let $B_{n}=\{y:|\phi(y)|\leqq b_{n}\}$ , where $ b_{n}\uparrow\infty$ as $ n\rightarrow\infty$ and $B_{n}^{c}$ denote
the complement of $B_{n}$ . Then we have

(3.11) $\xi_{n2}=(na_{n}^{3})^{-1/2}\int_{A_{\dot{n}}xB_{n}}\phi(y)[U_{n}(x)-U_{n}(x_{0})]K_{\langle n).x_{0}}^{\prime}(x)dW_{n}(x, y)$

$+a_{n}^{-s/2}\int_{A_{\dot{n}}xB_{n}^{c}}\phi(y)[U_{n}(x)-U_{n}(x_{0})]K_{(n).x_{0}}^{\prime}(x)dH_{n}(x, y)$

$-a_{n}^{-\theta/2}\int_{A_{\dot{n}}xB_{n}^{c}}\phi(y)[U_{n}(x)-U_{n}(x_{0})]K_{(n).x_{0}}^{\prime}(x)dH(x, y)$

$=\xi_{n21}+\xi_{n22}+\xi_{n23}$ (say),

where $W_{n}(x, y)=\sqrt{}\overline{n}[H_{n}(x, y)-H(x, y)]$ and $A_{n}^{*}$ is as defined in (3.4). Now
by the boundedness of $K^{\prime}$ and $g_{x}(y)$ and the assumption $ E|\phi(Y)|^{2+\delta_{1}}<\infty$ , we
have, as $ n\rightarrow\infty$ ,

$(na_{n})^{-1}\sum_{\ell=1}^{n}|\phi(Y_{i})|^{(2+\delta_{1})/2}|K_{(n).x_{0}}^{\prime}(X_{l})|\rightarrow pE[|\phi(Y_{1})|^{(2+\delta_{1})/2}|x_{0}]\int|K^{\prime}(u)|du$ .

In view of this and (3.5), we get

(3.12) $|\xi_{n22}|\leqq {}_{p}Ca_{n}^{-3/2}a_{n}^{(1\prime 2)(1-(\delta/2))}\int_{A_{\dot{n}}\cap B_{n}^{c}}|\phi(y)||K_{(n).x_{0}}^{\prime}(x)|dH_{n}(x, y)$

$\leqq {}_{p}Ca_{n}^{-\delta/4}\cdot b_{\overline{n}}^{\delta_{1/2}}\cdot[a_{n}^{-1}\int|\phi(y)|^{(2+\delta_{1})/2}|K_{(n).x_{0}}^{\prime}(x)|dH_{n}(x, y)]$

$=O_{p}(a_{n}^{-\delta/4}\cdot b_{n}^{-\delta_{1/2}})$ .
Similarly, we can get

(3.13) $|\xi_{n23}|=O_{p}(a_{n}^{-\delta/4}\cdot b_{\overline{n}}^{\delta_{1/2}})$ .
Finally, we note that the multi-dimensional empirical process $\{W_{n}(x, y)\}$ defined
in (3.11) converges weakly to an $a$ . $s$ . Gaussian process under strong mixing
conditions A.I with $k=2(1+p)$ (cf. Yoshihara [12], Mehra et al. [6],) so
that $\sup_{\epsilon}|W_{n}(x, y)|=O_{p}(1)$ . Since $K^{\prime}$ is bounded, we thus have from (3.5) and

(3.11) that

(3.14)
$|\xi_{n21}|\leqq C(na_{n}^{S})^{-1\prime 2}\sup_{x\in A_{\dot{n}}}|U_{n}(x)-U_{n}(x_{0})|\cdot\sup_{x.y}|W_{n}(x, y)|\cdot b_{n}$

$=O_{p}((na_{n}^{3+\delta})^{-1/2}\cdot a_{n}^{\langle 1+\delta/2)/2}\cdot b_{n})$ .
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By letting $b_{n}=a_{n}^{-(1+\delta/2)/2}$ , it follows from (3.12) to (3.14) that $\xi_{n2}\rightarrow 0p$ as $ n\rightarrow\infty$ ,
in view of $ na_{n}^{3+\delta}\rightarrow\infty$ , the fact that $\delta_{1}>2\delta/(2+\delta)$ and the Assumption A. V. This
coupled with (3.10) and (3.9) that $\xi_{n_{p}^{\rightarrow}}0$ as $ n\rightarrow\infty$ , for all $d\geqq 1$ . Consequently,
the proof of the lemma is complete in view of (3.6) and (3.7). $\square $

Lemma 3.2. Under the assumptiOns of Lemma 3.1, the sequence $\{\nu_{n.\phi}(x_{0})\}$

is expressible as
$\nu_{n.\phi}(x_{0})=T_{n.\phi}(x_{0})+\phi_{n}$ ,

where

(3.15) $T_{n.\phi}(x_{0})=(n/a_{n}^{a})^{1/t}\int[\phi(y)-r_{\phi}(x_{0})]K_{(n).x_{0}}(x)d(H_{n}-H)(x, y)$

and

$\lim_{n\rightarrow\infty}\phi_{n}=\tau^{1/2}\sum_{j\approx 1}^{a}\frac{\partial^{g}}{\partial^{8}x_{j}}r_{\phi}(x)|_{x=x_{0}}(\int t_{f}^{2}K(t)dt)=b_{\phi}(x_{0})$

Proof. From (3.3) the term $J_{n1}$ can be written as

(3.16) $J_{n1}=(n/a_{n}^{a})^{1/g}\int[\phi(y)-r_{\phi}(x_{0})]K_{(n).x_{0}}(x)d(H_{n}-H)(x, y)+\phi_{n1}+\phi_{n2}$ ,

where setting
$\overline{A}_{n}=\bigcap_{f\approx 1}^{a}\{x_{f} ; |F_{j}(x_{j})-F_{j}(x_{0f})|\leqq a_{n}\}$ ,

(3.17) $\phi_{n1}=-(n/a_{n}^{a})^{1\prime^{g}}\int_{A_{n\cap}^{c}\overline{A}_{n}}[\varphi(y)-r_{\varphi}(x_{0})]K_{(n).x_{0}}(x)dH_{n}(x, y)$

and

(3.18) $\phi_{n\epsilon}=(n/a_{n}^{a})^{1\prime}\int[\phi(y)-r_{\phi}(x_{0})]K_{(n).x_{0}}(x)dH(x, y)$

$=(n/a_{n}^{d})^{1\prime 2}\int[r_{\phi}(x)-r_{\phi}(x_{0})]K_{(n).x_{0}}(x)dF(x)$

$\rightarrow b_{\phi}(x_{0})$ as $ n\rightarrow\infty$ ,

by using Taylor’s expansion of $r_{\phi}(x)$ around $x_{0}$ and transformations as for (3.7),

and the Assumptions A. III, A. IV and A. V. Now we deal with the term $\phi_{n1}$ :
For this first note that, for sufficiently large $n$ , on the set $A_{n}$ for some $j(1\leqq j\leqq d)$

(3.19) $|F_{f}(x_{f})-F_{j}(x_{0j})|\geqq||F_{nj}(x_{f})-F_{nf}(x_{0j})|-n^{-1/2}|U_{n}(x_{j})-U_{n}(x_{0f})|$ I
$>a_{n}(1-\tau_{n})p$

the last inequality following since by Lemma 2.1, uniformly in $x$ (also $x_{0}$ ),

$n^{-1/8}|U_{n}(x_{f})-U_{n}(x_{0j})|\leq a_{n}\tau_{n}$ , with $\tau_{n}=[c/(na_{n}^{2})^{1/8}]$ ,
$\overline{p}$
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as $ n\rightarrow\infty$ , for some constant $c>0$ . In view of (3.17) and (3.19)

(3.20) $|\phi_{n1}|\leqq p(n/a_{n}^{a})^{1/2}\int_{D_{n}(x_{0})}|\varphi(y)-r_{\varphi}(x_{0})||K_{(n).x_{0}}(x)|dH_{n}(x, y)$

$\rightarrow 0p$ as $ n\rightarrow\infty$ ,

where
$D_{n}(x_{0})=U_{J=1}^{d}\{x_{j} ; a_{n}(1-\tau_{n})<|F_{f}(x_{j})-F_{j}(x_{0j})|\leqq 1\}$ ,

the last convergence following again by the law of large numbers and by noting
that the expectation and variance of the preceding expression converge to zero,
as $ n\rightarrow\infty$ . To convince oneself of the last assertion, one simply needs to make
the transformations $F_{j}(x_{j})-F_{j}(x_{0j})=a_{n}t_{j},$ $1\leqq j\leqq d$ , in the above-referred expres-
sions for the mean and variance and use the same reasoning as for (3.7) and
(3.8a) coupled with the fact that, in view of assumption A. I and A. II, the set
$U_{J=1}^{a}\{t:(1-\tau_{n})<t_{j}\leqq 1\}$ converges to a Lebesgue null set for all values of $c$ , as
$ n\rightarrow\infty$ . The proof of the lemma is complete in view of (3.16), (3.18) and (3.20). $\square $

Lemma 3.3. Under the assumptjons of Lemma 3.1, $t_{n}(x_{0})\rightarrow 1$ as $ n\rightarrow\infty$ , where
$t_{n}(x_{0})$ is defined in (1.1).

Proof. The proof follows on the same lines as that of Theorem 3.1 below,
based on the decomposition (3.5) and Lemma 3.1 with $\phi(y)\equiv 1$ . $\square $

Now we state the main result of our paper.

Theorem 3.1. SuppOse that the stationary sequence $\{X_{\ell}, Y_{\ell}\}$ is $s$ . $m$ . satisfy-
ing A. I with $k=2(d+p)$ , A. II-A. V. Further if $ E|\phi(Y)|^{2+\delta_{1}}<\infty$ for some
$\delta_{1}>2\delta/(2+\delta)$ , where $\delta$ is defined by A. $I$, then for any fixed $x_{0}\in R^{a}$

(i) $\lim_{n\rightarrow\infty}var(T_{n.\phi}(x_{0}))=\sigma_{\phi}^{2}(x_{0})$ ,

where $\sigma_{\phi}^{2}(x_{0})=var(\phi(Y_{1})|X_{1}=x_{0})\int K^{2}(u)du$ ,

(ii) $\beta_{n.\phi}(x_{0})=(na_{n}^{d})^{1/2}[r_{n.\phi}(x_{0})-r_{\phi}(x_{0})]\rightarrow \mathcal{L}\beta_{\phi}(x_{0})$ ,

where $\beta_{\phi}(x_{0})$ is a $N(b_{\phi}(x_{0}), \sigma_{\phi}^{2}(x_{0}))$ random variable with $b_{\phi}(x_{0})$ as defined in
Lemma 3.2.

(iii) Let $r_{\phi}^{(r)}=(r_{\phi}(x_{01}), r_{\phi}(x_{02}),$ $r_{\phi}(x_{0H}))^{\prime}$ for a pOsitjve integer $M$ and fixed
pOints $x_{01},$ $x_{02},$ $\cdots$ , $x_{0K}$ in $R^{d}$ and $\gamma_{n.\phi}^{(\Pi)}$ denote the corresponding vector of RNN
estimators. Then, as $ n\rightarrow\infty$ , the joint asymptOtlc distribution of $(na_{n}^{a})^{1/2}(r_{n.\phi}^{\langle\Pi)}-$

$r_{\phi}^{(A)})$ is $N(B_{\phi}, \Sigma_{\phi}^{(X)})$ , where $\Sigma_{\phi}^{(H)}=d_{l}ag(\sigma_{\phi}^{2}(x_{01}), \cdots , \sigma_{\phi}^{2}(x_{0H}))$ with $\sigma_{\phi}^{2}(x_{0f})$ as
defined in (i) for $1\leqq j\leqq M$ and $B_{\phi}=(b_{\phi}(x_{01}), b_{\phi}(x_{02}),$ $\cdots$ , $b_{\phi}(x_{0d}))^{\prime}$ .
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Proof. We note from (3.15) that

$T_{n.\phi}(x_{0})=n^{-1/2}\sum_{i=1}^{n}[Z_{n\ell}-E(Z_{ni})]$ ,

where

$Z_{ni}=a_{n}^{-d}/2[\phi(Y_{i})-r_{\phi}(x_{0})]K(a_{n}^{-1}(F_{1}(X_{l1})-F_{1}(x_{01})), \cdots , a_{n}^{-1}(F_{a}(X_{\ell a})-F_{d}(x_{0d})))$

clearly $T_{n.\phi}(x_{0})$ is a normalized version of N-W type estimator of $r_{\phi}(x_{0})$-infact
it is the usual N-W estimator of $E[\phi(Y)|F_{1}(X_{1})=F_{1}(x_{01}), F_{a}(X_{d})=F_{a}(x_{0d})]$

which is, under the assumed conditions, the same as $E[\phi(Y)|X=x_{0}]$ . Thus
the asymptotic normality of $T_{n.\phi}(x_{0})$ with the asymptotic variance as given
in (i) follows from Theorem 5.2 of Robinson [7]. The result of (ii) now
follows from (3.3), and Lemmas 3.1, 3.2 and 3.3. The joint asymptotic normality
of part (iii) also follows from Theorem 5.2 of [7]. The conditions of Theorem
5.2 of [7] are easily verified under the assumed conditions of our theorem. $\square $

It should be noted that when $\tau=0,$ $i.e$ . when $na_{n}^{d+4}\rightarrow 0$ , the bias $b_{\phi}(x_{0})=0$

in Lemma 3.2 and consequently in Theorem 3.1.

4. Concluding remarks.

1. It should be noted that Theorem 3.1 also yields the asymptotic normality,
as $ n\rightarrow\infty$ , of $m_{n}(y|x_{0})$ defined by (2.1):

$(na_{n})^{1/2}[m_{n}(y|x_{0})-m(y|x_{0})]\rightarrow N(b_{\phi}(x_{0})\mathcal{L}\tilde{\sigma}_{x_{0}}^{2})$ ,

where $\tilde{\sigma}_{x_{0}}^{2}=m(y|x_{0})[1-m(y|x_{0})](\int K^{2}(u)du)$ , provided the conditions of Theorem

3.1 hold.
2. According to Theorem 5.1 of Robinson [7], the asymptotic variance

of N-W estimator of $r_{\phi}(x_{0})$ is given by $\sigma_{\phi}^{*2}(x_{0})=\sigma_{\phi}^{2}(x_{0})/f(x_{0})$ with $\sigma_{\phi}^{2}(x_{0})$ as
defined in Theorem 3.1 (i) above, the result being the same as in the iid case.
Thus from Theorem 3.1, it is clear that the asymptotic relative efficiency of
N-W estimator relative to the RNN estimator of $r_{\phi}(x_{0})$ in the $s$ . $m$ . case is
given by $[\sigma_{\phi}^{l}(x_{0})/\sigma_{\phi}^{*2}(x_{0})]=f(x_{0})$ , which is usually small, and less than 1, for a
large class of densities $f,$ especially when $x_{0}$ is in the tails of the distribution
$F$. Accordingly, the RNN estimator should be preferable from the A. R. E.
point of view. However, finite sample comparisons sbould be studied for finer
conclusions.

3. Finally, we would like to point out that a RNN estimator of conditional
density $f(y|x_{0})=m^{\prime}(y|x_{0})$ can be defined on the same lines as (1.1):

(4.1) $g_{n}(y|x_{0})=(na_{n}^{d+p})^{-1}\sum_{i\approx 1}^{n}K_{n}(X_{\ell}, Y_{i} ; x_{0}, y)$ ,
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where $\{a_{n}\}$ denotes a bandwidth sequence and $K_{n}$ is given by

$K_{n}(x, z;x_{0}, y)=K(a_{\overline{n}}^{1}(F_{n}(x_{1})-F_{n}(x_{01})), \cdots, a_{n}^{-1}(F_{n}(x_{d})-F_{n}(x_{oa})), a_{\overline{n}}^{1}(z-y))$

with $K$ being a $d+p$ dimensional probability kernel. The asymptotic normality

of (5.1) can be established using the same method of proof employed in Section
3. Note that $g_{n}$ can be suitably normalized to make it a probability density

and the normalizing factor converges to 1 as $ n\rightarrow\infty$ . For simplicity we state
the asymptotic normality of (4.1) when $p=1,$ $d=1$ .

Theorem 4.1. SuPpose the probability kernel $K(u, v)$ is twice differentiable
with bounded and continuous partial derivaiives of order 2 and that $\int\int tK(s, t)dt=0$ .
Further assume that A. $I$, A. II, A. III hold. If the bandwidth sequence $\{a_{n}\}$

satisfies $na_{n}^{4}\rightarrow\infty,$ $na_{n}^{6}\rightarrow 0$ as $n\rightarrow 0$ , then

(i) $g_{n}(y|x_{0})\rightarrow g(y|x_{0})a.s.$ ,

and

(ii) $n^{1/2}a_{n}(g_{n}(y|x_{0})-g(y|x_{0}))\rightarrow N(0, \sigma_{0}^{2})$ ,

where $\sigma_{0}^{2}=g(y|x_{0})\int\int K^{2}(u, v)dudv$ .
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