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Abstract. Let {X,: =0} be a stochastic process with continuous time para-
menter and m(-) a measure on R,=[0,00). For large T the value of the

T T
integral L X,m(dt) is approximated by jo X;N(dt), where N is the Poisson

random process with mean measure m(-). The strong law and the law of
the iterated logarithm of large numbers are proved for the difference of these
two integrals under very mild conditions. Any structures for {X,} such as
stationarity, ergodicity and mixing properties are not assumed.

1. Introduction.

Let X={X;, t=0} be a stochastic process with continuous time parameter
teR,=[0, ) and let m be a measure on R, with m(R,)=o. If X is strictly
stationary, ergodic and integrable then it is possible to evaluate the value of

T
anﬂ&th

Tooo

using only the values of X, observed at regularly sampled discrete time epochs.
However without stationarity assumption observations of the process at regularly
sampled epochs may be of no use to find the asymptotic behavior of the integral

T .
(L.1) &mmwu

In this paper instead of systematic sampling we employ Poisson sampling pro-
cedure discussed extensively by E. Masry [4, 5, 6, 7]. .

Let N be a Poisson point process with mean measure m. Suppose N is
independent of {X:} and consider the integral '

T
(1.2) &&Nwm
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which is the sum of the observations of X, at Poisson sampled time epochs t;
in the time interval [0, 7]. Our main interest is the asymptotic behavior of
the difference of [(1.1) and [1.2). In this paper we prove the strong law of large
numbers and the law of the iterated logarithm for the difference of these two
integrals.

Although some results in this paper are generalized to multiparameter pro-
cesses we restrict ourselves to the one-paprameter case to emphasize the idea.

2. Preliminaries.

Let m be a measure on (R,, 8,), where 8, is the Borel ¢— algebra, and
write m(t) for m([0, t]), t€R,. Suppose that m(t) is a strictly increasing con-
tinuous function on R, satisfying m(0)=0 and m(+co)=+. Let X={X,, e
R.} be a measurable stochastic process and let N={N(A), A= 3.} be a Poisson
point process independent of X defined on a probability space (2, F, P). Let
M., t>0, be the completion of the ¢— algebra generated by N(A), A 8.N
[0,¢], and X,, s€R, and let H,={%2, ¢}. The following well-known lemma
plays the fundamental role in this paper.

Lemma 2.1. Fix T>0. If | EIX.Im(dt)<co, then {(Z(t):S:X,N'(ds), M) :
0<t<T} is a martingale where N(ds) denotes the random measure N(ds)— m(ds).
This lemma implies that, for 0<s<t<T,
2.1) E{Z@t)| M}=Z(s) a.s..

3. The strong law of large numbers.

Define
Ti=sup{t: m@t)<i} i=0,1,2, -
and

Z,:ST X Nde) i=1,2, -
Ti-1

Theorem 3.1. If Smm(t)"‘h(t)‘”E { X3} m(dt)< oo for some positive measurable

function h(x), bounded away from 0, satisfying mfz-‘s,srﬁlh(t)/h(T,H)zC >0
for all i, where A(T) denotes suposesrh(t), then as T— oo
I S
m(TYh(T)
Remark. The conditions in are valid in such a situation that
E{X3}<g@®) for all t=1 where g(t) is a nondecreasing positive function with
g(T)/8(T::1)=C,>0 for all i=1. In fact h(t)=g(t)"/? satisfies the conditions in

3.1) {S X, N(dt)— SX,m(dt)}——>0 a.s.
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Theorem 3.1. In particular, if g(t)<Km()** where K and a are positive con-
stants, then we can put A(t)=m(t)*? for any 0 such that 0<d<min{e, 1/2}.

Lemma 3.2. For each ¢>0 and a<b,

g' Xzﬁ(dt)l >e)< —:;S';E{,Xg}m(dt).

a

3.2) P( sup

as8sd

Proof of Lemma. Let {4,={Sso, Sn1, ', San,}: n=1} be a sequence of
sets of division points of the interval [a, b] such that, for each n=1,

d=Sno<Sn1< Sn2< te <snnk:b;
4,C s

and
0r=max{Spi—Sn -1} —> 0 as n—> oo,

By the continuity of ni(dt) the random process Z(t):&:X,I\N/'(ds) has left hand

limits and is right continuous. Thus we have

(3.3) P( max SiX,ﬁ(dt)‘ >¢)

spi€dy

S’“X,ﬁ(dt)|>e)T P(S;.‘ISII)’

a

Sni

as n—oo. On the other hand, since for each n {S X;ﬁ(dt), i=1,2, -, kn}

3n,i-1

forms a sequence of martingale differences, by Corollary 2.1 in (p. 14),

3.4) P max

$ni€dn

[ronston] o) & £{((x0))

g—:?S:E{X%}m(dt).

From [(3.3) and [3.4) we have [3.2) =

Proof of Theorem. By the independence of {X.} and {N(-)} we have

T;

(3.5) E{Z%}:EHST Xcﬁ(dt)'z}

i-1
Ty

=E{S::_1X%m(dt)}=sr E{X%m(dt).

i-1
Moreover by the definition of A(f) we have that for all j

1

1
3.6) R(T)) =50

for Tj_lét_S_Tj.

Hence by the equality and the condition in the theorem we have
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@7 S—— L _Eizy= i-——1~——g” E{X?}m(dt)
= m(T,Ph(T ) 7= m(T, P h(T ) Ir5-1

) Tj 1 2 _ L) _—-——_];—_—
B e EXOman=\, e

Therefore by Theorem 2.18 in as n—oo,

IA

E{Xtm(dt)<oo.

1 Tn_,
(3.8) mgo XzN(dt)—->0 a.e.,

so that by the assumption on A(¢)

1 Ty o
S X:N(dt)—> 0 a.s..

m(T )R (T n) Jo
Now by for each j=1 we have that for each ¢>0
1 s o~
. P _— XN
(3 9) (TJ_SEESTI m(Tj)h(Tj)STj—l ¢ (dt)\>8)

< L ST’ E{X2m(dt).
= &'m(T ) h(T ;) 154

By the same way as in (3.7) for each £>0,

1
m(T HA(T)

(3.10) 2P

( sup
jze Tj_153sT;

S;,_IX‘N(‘”)\ >¢)

Lo 1 .
g—s;STIWE{X,}m(dtKoo.

So by the Borel-Cantelli Lemma as j— oo,

1

A1 —
@11 TR

S' XNt — 0 a.e..
Tj

r, ST,
For T >0 define

3.12) (T)>=max{T;: T.&T}.

Then by the assumption on A(:), (3.8) and we have

1 T ~ 1 (<
(3.13) |y Vo X sy ), Xeldn|

m({TYh(T)) 1 T o x>
= TR 'm(<T>h(<T>)|SoX°N(dt)—SO X;ﬁ(dt)‘

mTHAKTY) _ 4\ 1 VS
+C mRT) ) mTRKTS) S XN dn)

m((TH)AKT)) m(TH)+1 1 T "
S DT mKTY) 'm(<T>)lS<r;X‘N(d’).+"(D

—> 0 a.s..
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This completes the proof. m

4. The law of the iterated logarithm.

Consider the following conditions on {X;} and a positive measurable func-
tion h(x) which is bounded away from 0:

o0 1 .
(A) SIWE{Xz}m(dt)<°°,
o ]_ .
(B) Sl WE{Xz}m(df)<°°,
. h(s)
©) rj_llgssr, BT =Co>0,
D) 0<lim inf———("E{X#} m(d
< oty o F X )
<Ii L ("p(xtymd
Sl 3P ey, B X mdn<ee,
L 1 r_ .
(E) 0<112q_1.°£nf W)—zgo cm(dt)
<li L (" xm(d
Sl S0P ey K imdn < a.s.

Remark. Suppose that E{X}{} <K,m(t)** and K;m(@)**< E{X}} < Kym(t)** for
some a=0 and K;>0, (=1, 2, 3). Then the conditions (A), (B), (C) and (D) are
~satisfied. If in addition we assume that {X,} satisfies some mixing condition
(e.g. ¢-mixing) with suitable mixing rate, then the condition (E) is easily
checked, also.

For brevity introduce the notation :
' $(t)=(2t log log t)*  t=3.
Now we state the main result.

Theorem 4.1. Assume that there exists a function h(x) satisfying the condi-
tions (A), (B), (C), (D) and (E). Then we have

1) liminfg (S:XKN(dt))“’{SOTX,N(do—S:X, mdn}=—1 a.s.
and

4.2) lim sup (S:XfN(dt))"{S:X,N(dz)—SfX,m(dt)}= +1 as.

In the remainder of this section we assume that A(x) is a function satisfy-
ing the conditions (A), (B), (C), (D) and (E).
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Lemma 4.2. As n— oo,

4.3) m{ 5 (S: lXt(ﬁ(dt))z—S:"XfN(dt)} —>0 as.

n=1 i-

Proof. Set

T n
ZJ=S ’ XtN(dt) ]=1’ 2’ Tt
Tjq

Then we have

T;
4.4) E{Zﬂm,_,}:SP Ym(dt) a.s..
J-1
Hence for j=1,
@.5) BUZi~E(Z31 i 1=E{(23-() Xim(an)’)
J-1

ol )} )
=5E{(§:’

J=-1

%m(dt))z}—i—S:j_lE{Xt} m(dt)

E{Xs}m(dt){m(T»—m(T,--l)}+§ E{X#}m(d)

Ty
Tj—l
(by the Schwarz inequality)

T
=6S ! E{X#m(dt)
Tj_l
(by the definition of the sequence {T';}).

Thus by the conditions (B) and (C) we have

] 1
4. ———E[(Z:—E{Z?% )2
(4.6) jgz (T (T [(Z5—E{Z3| M;-1})*]
v 1 .
éGSTlWE{X,}m(dt)<oo.
By Theorem 2.18 in we have that, as n— oo,
1 n /T ~ : (Ta,
@n s B, Xel@n) | " xim@n} — 0 as.
On the other hand, by under the conditions (B) and (C), as T — o,
1 T 5 R
(4.8) W}TgoXtN(dt) —> 0 a.s..
Therefore combining [(4.7) and [(4.8) we have that, as n— oo,
1 no/(Ti o~ 2_ Tny,,
(4.9) W{ 2 STJ_IX,N(dt)) So XIN@H}— 0 ace..
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This completes the proof. m
Define

(4.10) U= El z, V%:S:"X%N(dt), s,,:S:”XtA”f(dt)

and
sa=E{Sz}=§f"E{X%}m(dt>, n=1,2, -
Lemma 4.3. As n— oo,

Uz
Va

Proof. By and (E)

(4.11)

—>1 a.s..

T,

Uz _ NIVAL _ 3;2(2?=1Z%_So X%N(dt)>
- Tn - n

Va So XEN(d?) s;zgf XEN(d1)

4+1—>1 a.s.. |

Lemma 4.4. As n— oo,

2

(4.12) gt —1 as.

Proof. Remark that by the condition (D) there exists an >0 such that
for large n

"B (X1 m(dt)26>0.

0

s2 1 S
m(T 2)h(T »)? m(T (T ,)

Hence for some positive integer j, we have

m(T Hh(T ;)* wa L pixaimdy

o 1 (Tj+1 2 S

=90 S =70 s}
K(= 1 ,
gfslm(Th(t)zE{Xz}m(dt)<oo by (A).

Thus we have that, as n — oo,

1 S:"+1X§N(dt)——>0 a.s.,

% )r,
from which we have

2
B 51 a.s.,

Va

completing the proof of the lemma. m
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Lemwa 4.5. As n— o,

@13 0<lim inf (" XtN@D<lim sup—- [ " XiN@n< o as.

n

Proof. Immediate from the conditions (D) and (E). =
Lemma 4.6. The following three statements hold with probability 1:

(4.14) ¢(Va0™" 2 {Z I0Z| >s)—ELZJ(1Z¢| >50)| M)} — 0,

“.15) V32, p {E[Z3(| Z4) S50)| HMeoi]—[EZ I Z1] < 50)| Hin) T2} —> 1
and
(4.16) 2 VL ELZ] My ]<co.

Proof. We will modify the arguments in (pp. 123-124).
Proof of By the condition (C), we have the following inequalities.

B3 s7'1Z,|102,1> )1 < 53 s7°E(Z3)

1
‘mhE)?
where j, is a sufficiently large integer and K some positive constant. So by
Kronecker’s lemma we have, as 7n— oo,

=5 -2S:: E{Xz}m(dt)sKS

p) e E{ X} m(d)< oo,

SZI‘EZIIZJ(IZtl >s;)—> 0 a.s.
and

53 2 ELZd(1Z4>50)| Hi]—> 0 as..

On the other hand by Lemma 4.5,

2

Va- Vi
O<11£‘rlinf Uz Sllrx’}_‘sggp Ut

Thus we have proved [(4.14).
Proof of (4.15).

l<oo a.s..

+— 3 ELZH(1 24 <50l Hoer ]~ [EZ( 24 <50) HioiT'

1!1
2

_ Ui sy {
o Via

321120 >50— % B IBEIZd > 50| He-)P)

s &=

L 1g
_}.--—‘(;2—-3—2 i=21 {ELZH( Z| S sl Meoi]—Z3(1 Z ) S50)}

n-1
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By Lemma 4.4 and 4.5 and the other assumptions, using the argument in
(p. 124), we have the result.
Proof of [(4.16). By the conditions (B) and (D) we can easily obtain that

= 1
B Bizii<o,

4
i
so that, by we have
= 1
tgl—“:’E[ZHﬂZﬂ§St)|=9ut-1:|<°° a.s. B

Let K denote the set of absolutely continuous functions x in C[0, 1] with
x(0)=0 and whose derivatives % are such that

| #wars1.
Define
(4.17) ExO=0(Va ) H{S+(Vi=Vi ) (tVia—Vi)Z )
for Vi ,<tVei_<VE 1<i<n-—2,
and
(4.18) Ea®)=0(V3) 1S+ (Vi—VH(tVi—VDZ 11}

for ViStVi<Vi,, 0<i<n—1.

Lemma 4.7. With probability 1 the sequence {{.} is relatively compact in C
[0, 1] and the set of its limit points coincides with K.

Proof. By Theorem 4.7 in and Cemma 45, with probability 1, the
sequence {§,} is relatively compact in C[0, 1] and its set of a.s. limit points
coincides with K. This combined with gives the required result. m

From this lemma we have

Corollary 4.8. With probability 1,

(4.19) lim inf ¢ (S:"X%N(dt))-IS:"X,IV(dt)= ~1
and
(4.20)  limsupg (S:"X%N(dz))"Sf"Xﬁ(dt): +1.

Proof of Theorem. We have already seen that, as n— oo,

ST""XfN(dt)
4.21) 0

—>1 a.s.

S:"X?N(dt)
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(Cemma 4.3). Hence it suffices to show that, as n— oo,
T, -1/2
(4.22) ({;"xavean) ™, sup

Tp-1s8sTq

S;n_l){,ﬁ(dt)‘ —>0 a.s.,

which is, by and the condition (E), equivalent to that, as n— oo,
S S
(T YT ) Tn 25570
By Corollary 2.1 in (p. 14) and the same argument as the proof -of
3.2, we have that, for each n» and ¢>0,

(4.23) S;n_lXtﬁ(dt)‘ —>0 as.

(4.24) P(;——l—-—#_—— sup S;n_lX,I\NI(dt)‘ >¢)

V(T o )A(T 2)? Ta-158sTs
K STn 1

= gt)r,_, m()Ph(t)!
where K is some positive constant, not depending on n. Hence by the condition
(B) and the Borel-Cantelli lemma, we have that, for each >0,

E{Xt}m(d?),

(4.25) P((ST”X""N(dt)*llﬂ sup S X (ﬁ(dt)\ >¢ i.0.)=0
) 0 ’ Tp-158sTp )Ty ' o )
This completes the proof of [Theorem 4.1. m

5. Concluding remarks.

(a) The function A(x) in the conditions of and 4.1 is not
superfluous as will be seen by the following example. For any a>0 there
exists a process X satisfying the conditions from (A) through (B) with h(x)=
1vx®, x=0. In fact let Y(), t=0, be a stationary process with finite fourth
moments. Then the process X(t), t=0, defined by X()=h(@)Y (t) satisfies condi-
tions (A), (B) and (C) with the function A(x) and the Lebesgue measure m. Let

T
7 be the a.s. limit of T“SOY(t)zdt. Then integrating by parts we obtain

G.1) L (T xiyemdt= Ty (yd
: T TOR(T Y So Vymldt)= s Sot (#)'dt
1 2a

TﬂanY(t)w—ngtw{ﬂ:Y(s)ws}dt

= Ti+ea

PO - S (;
1= 2ax1 777 2a+1)'
Thus the condition (E) is satisfied. The condition (D) can be verified similarly.

(b) For inference purpose the following pathwise central limit theorem will
be useful.

Theorem 5.1. Assume the conditions in Theorem 4.1. Then as T — oo,
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(5.2) iggyp(m S:Xtﬁ(dt)§x|X>—@(x)l —>0 a.s.,

where @(-) denotes the standard normal distribution function.
Lemma 5.2. As T — oo,

3 1 T 54
(5.3) mgo)ﬁm(dt)%o a.s..

Proof of Lemma. By the condition (B),

(5.4) Sl W Xim(dt)<eco a.s.,

and therefore

o0 1 4 oo
(5.5) &W im(dt)y<oo.

By Kronecker’s lemma and the condition (C), this implies [(5.3). m

Proof of Theorem. Fix a path {X;} such that as T — oo,

1

T . 0
(T h(T): So im(dt) —>

and

1 T A
W)]’L—(T—)—SO XgN(dt) —>0 a.s..

Then the random variables

{S:i_leﬁwt): i=1,2, -}

1

are independent with mean 0 and

(5.6) g;:E{(Sf”X,ﬁ(dt))ﬁX}:Sf" tm(dt).

47

Ty - . . o
Recall s$,=So E{X?}m(dt). Now we examine the Lindeberg condition. An ¢>0

is given. Then as n— oo,

G.7) 2 s ] S::_IX,ﬁ(dt) | ‘1 ‘ S::_lxtﬁ(dt) | >esa)
7 (Ta
=eTs‘,,—So Sm(dt) —> 0.

Thus by the conditions (D) and (E) we have that for each xR

(5.8) P((ST zm(dt))"”zgf"x,z\”r(dz)gx|X) — > D(x).
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On the other hand

Ty n ~

[T xanva) ST X2R(dt)
Ty = (Ta

S tm(dt) S Sm(dt)
0 0

Therefore we have that for each xR

(5.9)

+1—>1 a.s..

(5.10) P((S:nXﬁN(dt)>_1/2S:nXtﬁ(dt)§'x |1 X) —> B(x).
This easily implies ]
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