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Summary. Consider a two-dimensional random walk with mean $0$ and covari-

ance $\left(\begin{array}{l}l0\\01\end{array}\right)$ . Under some additional assumptions on the random walk the limit

theorem is established for the normalized random walk which is conditioned
to stay in a cone for a unit of time. The conditioned limit theorem is used
to prove a tail formula for the distribution of the exit time of the random
walk from a cone.

1. Introduction and the result.

Let $Z_{k}=(X_{k}, Y_{k}),$ $k=0,1,2,$ $\cdots$ , $Z_{0}=0$, be a two-dimensional random walk
with stationary independent increments which is defined on a probability space
$(\Omega, \mathcal{F}, P)$ and satisfies the following condition;

(1.1) $E(Z_{1})=0$ and Cov $(Z_{1})=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ .

We set a sequence of the normalized random walks $\{Z^{(n)}(t)=(X^{(n)}(t), Y^{(n)}(t))$ ,
$0\leqq t<\infty\},$ $n=1,2,$ $\cdots$ by

$Z^{(n)}(t)=n^{-1/2}Z_{k}+(nt-k)n^{-1/2}(Z_{i+1}-Z_{k})$

for $k/n\leqq t<(k+1)/n,$ $k=0,1,2,$ $\cdots$ Let $ C[0, \infty$ ) be the spaoe of all $R^{g}$-valued
continuous fuctions on $[0, \infty$ ) with the topology of the uniform convergence on
every compact set, and let $ C[0, \infty$ ) be the Borel field of $ C[0, \infty$ ). The function
space $C[a, b]$ and its Borel field $C[a, b],$ $ 0\leqq a\leqq b<\infty$ , will be defined similarly.
Note that $Z^{(n)}(\cdot)$ is a random element with values in $ C[0, \infty$ ) (or sometimes
we take it with values in $C[0,1]$ ).

We fix a closed cone $F$ in $R^{f}$ with the angle $a,$ $ 0<a<2\pi$ ,
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$F=F_{\beta.\beta+\alpha}=\{z=r(\cos\theta, \sin\theta), r\geqq 0, \beta\leqq\theta\leqq\beta+\alpha\}$

such that

(1.2) $-\pi/2<\beta<\pi/2<\beta+\alpha<3\pi/2$ .
(The assumption (1.2) will be used in our proof of Lemma 6 in 4.) Suppose
that the random walk satisfies

(1.3) $P(Z_{1}\in F\backslash \{0\})>0$ .
On $(C[0,1], C[0,1])$ we introduce the law of a conditioned random walk

$\varphi_{(n)}(L)=P(Z^{(n)}(\cdot)\in L|Z_{k}\in F, 0\leqq k\leqq n),$ $L\in C[0,1],$ $n\geqq 1$ .
By (1.3) $W^{(n)}$ is defined for every $n\geqq 1$ .

Let $|z|$ denote the Euclidean norm of $z$ in $R^{2}$ . Let $F_{1}$ and $F_{l}$ be the cones
defined by

$F_{1}=F_{\beta.\beta+\min ta.\pi I}$ and $F_{2}=F_{\max t\beta.\beta+a-\pi).\beta+\alpha}$ .
Note that $F_{j}\subseteqq F(j=1,2)$ , and $F_{1}=F_{2}=F$ when $\alpha\leqq\pi$ . To give our main result
we further impose the following assumptions on the random walk: There
exist $\mu sitive$ numbers $K>1,$ $\nu$ and $\gamma$ for which we have, either

(1.4) $P(|Z_{1}|\leqq K)=1$

or

(1.5) $\lim_{n\rightarrow*}\{nP(|Z_{1}|>Kn)/P(|Z_{1}|>n;Z_{1}\in F_{f})\}=0,$ $j=1,2$ ;

P-almost surely

(1.6) $E(Y_{1}|X_{1})=0$ , $E((Y_{1})^{3}|X_{1})\geqq\nu^{2}$ and $ E(|Y_{1}|^{3}|X_{1})\leqq\gamma$ .
Then we have the following theorem.

Theorem 1. SuppOse that the random walk satisfies (1.1), (1.3), either (1.4)
or (1.5), and (1.6), where the cone $F$ is put such that (1.2) holds. Then $W^{(n)}$

converges weakly in $C[0,1]$ to the law ffl which is given in theorem A below.

Remarks. (i) The assumption (1.5) holds if we have

$P(|Z_{1}|>n)_{\wedge}^{\vee}P(|Z_{1}|>n;Z_{1}\in F_{j})_{\wedge}H_{j}(n)$ exp $\{-M_{f}(\log n)^{2}\}$

as $n\rightarrow\infty(j=1,2)$ for some positive constant $M_{f}$ , where $H_{f}(n)$ is a positive non-
increasing function on $[0, \infty$ ) and the relation $f(n)_{\wedge}^{\vee}g(n)$ as $ n\rightarrow\infty$ stands for
the following;

$ 0<\lim\inf_{n\rightarrow\infty}\{f(n)/g(n)\}\leqq\lim\sup_{n\rightarrow\infty}\{f(n)/g(n)\}<\infty$ .
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(ii) If the component random walks $\{X_{n}\}_{n}$ and $\{Y_{n}\}_{n}$ are mutually in-
dependent, the assumption (1.6) in Theorem 1 may be omitted. Indeed, in this
case the first two in (1.6) follow from (1.1), and the third one is superfluous.

See proof of Lemma 6 in 4.

Continuous analogue of Teeorem 1 was given by Shimura [12] as follows.
Let $\{Z(t), 0\leqq t<\infty\}$ be the two-dimensional standard Brownian motion on $(\Omega$ ,
$\mathcal{F},$ $P$ ) which starts at $0$ . Consider the law of a conditioned Brownian motion

$W_{z}(L)=P(z+Z(\cdot)\in L|z+Z(t)\in F, 0\leqq t\leqq 1),$ $L\in C[0,1]$

for $z$ in $F^{o}$, where $F^{o}=F\backslash \partial F$ is the interior of the set $F$.

Theorem A ([12], Theorem 2). The law $\tilde{W}_{z}$ converges weakly in $C[0,1]$ as
$F^{o}\ni z\rightarrow 0$ to a certain law $\tilde{W}$ .

We note that $\tilde{W}$ is law of the conditioned Brownian motion which starts

at $0$ and enters at once into $F^{\circ}$, then stays there for a unit of time. Theorem
$A$ , together with the functional central limit theorem, would suggest Theorem
1 to us. Moreover it will play a key role to prove Theorem 1 in 5. By

Theorem 1 and Theorem A we have the following theorem.

Theorem 2. Under the same assumPtion to Theorem 1, we have

(1.7) $P(Z_{k}\in F, 0\leqq k\leqq n)=n^{-\pi/2a}L(n)$ ,

where $L(n)$ is a slowly varing function at $\infty$ .

Spitzer [14] first observed a conditioned limit theorem of one-dimensional
random walk. Iglehart [7] strengthened the result in terms of the functional
central limit theorem and expressed the limit process by the Brownian meander-
ing process. In [3] Durrett developed the conditioned limit theorem to a class
of one-dimensional Markov chains. However, as far as we know, the con-
ditioned limit theorem for a mult-dimensional random walk seems not to have

been considered yet. When we extend the problem to the multi-dimesional
random walk, we will encounter some difficulties to be dealt with. In the paper
the most difficult point among them may be Lemma 5 in 4. We note that
Theorem 1 may be refined to the limit theorem for the point process of ex-
cursions. Indeed, if we have Theorem 2, as was shown by Greenwood and
Perkins [5] and [6] for the excursions from a moving boundary for a one-
dimensional normalized random walk, we may conclude the following (see also
[12], Theorem 1): If the angle of the cone $\alpha>\pi/2$ , the point process of the
excursions in the cone for the normalized random walk converges to that for the
Brownian motion in the sense of [6]. We also note that Theorem 2 is a two-
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dimensional extension of a result given by Spitzer [14]. In [9] McConell con-
sidered the moments of the first exit time from a cone for $N(\geqq 2)$-dimensional
random walk.

Our paoer is organized as follows. In 2 we collect the preparatory materials
which will be used often in the following sections. We show in 3 the tightness
of the family of the laws $W^{(n)}$ in the space $C[0,1]$ . In 4 we show that a
limit process of the normalized conditioned random walks, which starts at $0$ ,
enters instantaneously into the interior of $F$. In 5 we prove Theorems 1 and 2.

2. Preliminaries.

For $w$ in $C[0,1]$ (or, in $C[0,$ $\infty$ )) and $z$ in $R^{2}$ , let $w_{z}$ be an element of
$C[0,1]$ (or, of $C[0,$ $\infty$ )) defined by

$w_{l}(t)=z+w(t)$ .
Let $W_{z}^{(n)}$ and $W_{z}$ be the probability measures on $(C[0,1], C[0,1])$ induced
respectively by $Z_{z}^{(n)}$ and $Z_{z}$ ;

$W_{z}^{(n)}(L)=P(Z_{z}^{(n)}\in L)$ and $W_{z}(L)=P(Z_{z}\in L)$ , $L\in C[0,1]$ .
For $w\in C[0,1]$ we put

$\sigma^{(n)}(w)=\min\{k/n : k=0,1, \cdots , n, w(k/n)\not\in F\}$

and
$\sigma(w)=\min\{0\leqq t\leqq 1, w(t)\not\in F\}$

$(\min\phi=\infty)$ , and introduce the transition probabilities of the normalized random
walk and of the Brownian motion with absorption at $F^{c}$ ;

$p^{(n)}(s, x, dz)=W_{\iota}^{(n)}(w(s)\in dz;\sigma^{(n)}>s)$

and
$p(s, x, dz)=W_{x}(w(s)\in dz;\sigma>s)$ , $0\leqq s\leqq 1,$ $x,$ $z\in F$ .

Then we have the following lemma.

Lemma 1. SuPpose that the random walk satisfies (1.1). Let sequences $z$ ,
$z_{n}$ in $F$ and $t,$ $t_{n}$ in $[0,1],$ $n=1,2,$ $\cdots$ , be such that $z_{n}\rightarrow z$ and $t_{n}\rightarrow t$ . Then, $as$

$ n\rightarrow\infty$ , the following hold: For every $W_{z}$-continuity set $L$ in $C[0,1]$ ,

(2.1) $W_{z_{n}}^{(n)}(w(\cdot)\in L;\sigma^{(n)}>t_{n})\rightarrow W_{l}(w(\cdot)\in L;\sigma>t)$ .
Let $S$ be a domain in $R^{2}$ of the form $F+x$ or $(F+x)\backslash (F+x^{\prime})$, where $x$ and $x^{\prime}$

are points in $R$ and

$F+x=\{z=z^{\prime}+x:z^{\prime}\in F\}$ .
Then we have
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(2.2) $\beta^{(n)}(t_{n}, z, S)\rightarrow\phi(t, z, S)$ uniformly in $z$ in $R^{2}$ .
To prove Lemma 1 we need the following version of the functional central

limit theorem which is a special case of Skorohod [13], Lemma in p. 10.

Theorem B. We can constract a probability space $(\hat{\Omega}, q, P)$ on which we
have a sequence of random elements $\hat{Z},\hat{Z}^{(1)},\hat{Z}^{(2)},$

$\cdots$ with values in $ C[0, \infty$ )
which satisfy

$\hat{Z}=^{L}Z,\hat{Z}^{(n)}=LZ^{(n)}$ (identity in law)
and

$\lim_{n\rightarrow\infty}\sup_{0\leqq\ell\leqq T}|\hat{Z}^{(n)}(t)-\hat{Z}(t)|=0$ almost surely

for every $ T<\infty$ .
By Theorem $B$ the left-hand side of (2.1) equals to

$F(\hat{Z}_{z_{n}}^{tn)}\in L;\sigma^{(n)}(\hat{Z}_{z_{n}}^{(n)})>t_{n})$ ,

and, together with the winding Property of the Brownian path (Ito and McKean
[8], 7.11),

$\sigma^{(n)}(\hat{Z}_{z_{n}}^{(n)})\rightarrow\sigma(\hat{Z}_{z})$ almost surely.

Hence, noting $\sigma(Z_{z})\neq t$ almost surely, we get (2.1).
Note that, for every $z\in R^{2}$ ,

(2.3) $p^{(n)}(t_{n}, z, \cdot)\rightarrow^{w}\phi(t, z, )$ in $R^{2}$

by a minor modification of the proof given above. So, together with $\dot{p}(t, z, \partial S)$

$=0$ , we have (2.2) except for the uniformity. To get the uniformity, we need
long but elementary steps of estimates of probailities of events under considera-
tion, where we use the special form of the set $S$ and the spatial homogeneity
of the random walk and the Brownian motion in addition to Theorem B. See
Appendix for the detail.

Let $ffl_{z.t}(n)$ and $W_{z.t}$ denote the laws on $(C[0,1], C[0,1])$ of the conditioned
random walk and of the conditioned Brownian motion which are defined res-
pectively as follows: For $0\leqq t\leqq 1$ and $z\in F$

$\varpi_{z}(nl(*)=W_{z}^{(n)}(*|\sigma^{(n)}>t)$ .
For $0\leqq t\leqq 1$ and $z\in F^{\circ}$

$ffl_{z.\ell}(*)=W_{z}(*|\sigma>t)$

and for $z\in\partial F\backslash \{0\}\varpi_{z.t}$ is the weak limit of the laws $IZ7_{z},.$ , as $\mathring{F}\ni z^{\prime}\rightarrow z$ and
$s\rightarrow t$ ([12], lemma 3). Note that, for $z\in\partial F\backslash \{0\}$ and $t>0,$ $ffl_{z.t}$ is the law of
the conditioned Brownian motion which starts at $z$, enters at once into $FQ$ and
stays there up to time $t$ . Then we have the following lemma.
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Lemma 2. SuPpose that the random walk satisfies (1.1) and (1.3). Let the
sequences $z_{n}$ in $F$ and $t_{n}$ in $[0,1],$ $n=1,2,$ $\cdots$ , be such that $z_{n}\rightarrow z\in F\backslash \{0\}$ and
$t_{n}\rightarrow t\in[0,1]$ . Then $\pi_{z_{n},t_{n}}(n)$ converges weakly in $C[0,1]$ to the law $ffi_{z.t}$ .

If $z\in F\backslash \partial F$, then $W_{z}(\sigma>t)>0$ and the lemma follows directly from (2.1) in
Lemma 1. Next consider the case $z\in\partial F\backslash \{0\}$ . As was done in [11] and [12],

we choose from the processes $\hat{Z}$ and $\hat{Z}^{(n)}$ the meandering Processes in $F^{\circ}\hat{Z}^{\sim}$ and
$\hat{Z}^{(n)\sim}$ which give the laws $\tilde{W}_{z.t}$ and $ffi_{z_{n}.t_{n}}(n)$ respectively. Here we adopt the
terminology–meandering process–after Chung [2]. Then it follows from Theo-

rem $B$ and again from the winding property of the Brownian path we have

$\hat{Z}^{\langle n)\sim}(\cdot,\hat{\omega})\rightarrow\hat{Z}^{\sim}(\cdot,\hat{\omega})$ in $C[0,1]$ almost surely.

Hence we have the lemma. (Note that, in the latter half of the proof, we used

the fact that the boundary $\partial F$ is locally linear at $z.$ )

Corollary to Lemma 2. Assume (1.1) and (1.3) for the random walk. Then,

for every $z$ in $\partial F\backslash \{0\}$ , we have

(2.4) $n^{1/2}W_{z}^{(n)}(\sigma^{(n)}>1)=n^{1/2}p(n)(1, z, F)\rightarrow C$ as $ n\rightarrow\infty$ ,

where $C$ is a positjve constant which depends on $z$ and the law of $Z_{1}$ .

Proof of the corollary is given in a similar way to that of [11], corollary

to Lemma 4.1, and we omit it.

For $\epsilon>0$ put $ U_{\epsilon}=\{x\in R^{2} : |x|<\epsilon\}\epsilon$ -neighbourhood of the origin. For $\epsilon>0$

and $J>1$ , d\’e. $J(n)$ denotes

max $\{P(|Z_{1}|>(1-1/J)\epsilon n^{1/2})/P(|Z_{1}|>2\epsilon n^{1/2}/J;Z_{1}\in F_{j}):j=1,2\}$ .

The following two estimates will be used in the next section.
For every $x\in U_{\epsilon}^{c}\cap F$

(2.5) $p^{(n)}(1, x, F)\leqq f_{\epsilon}n^{-1/2}$ , $n=1,2,$ $\cdots$ ,

where $U_{\epsilon}^{c}=R^{2}\backslash U_{\epsilon}$ and $f_{\text{\’{e}}}$ is a Positive constant which may depend on $\epsilon$ .
For every $x\in U_{\epsilon/J}\cap F$

(2.6) $\dot{p}^{(n)}(1/n, x, U_{\epsilon}^{c}\cap F)/p(n)(1/n, x, (U_{\text{\’{e}}/J})^{C}\cap F)\leqq d_{\epsilon.J}(n)$ .
Proof of (2.5) and (2.6) may be clear if we note the condition that $F$ is a

cone (and also the formula (2.4) for (2.5)) besides the spatial homogeneity of
the random walk. So we omit the detail.
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3. Tightness of the $\{\tilde{W}^{(n)}\}_{n}$ .
For $\epsilon>0$ and $w$ in $C[0,1]$ put

$\rho_{\epsilon}^{(n)}(w)=\min\{k/n : k=0,1, \cdots , n, |w(k/n)|\geqq\epsilon\}$ , $n=1,2,$ $\cdots$

$(\min\phi=\infty)$ . The main result of the section is the following lemma.

Lemma 3. Assume that the random walk satisfies (1.1), (1.3) and one of (1.4)
and (1.5). Then, the family of probabilities $W^{(n)},$ $n=1,2,$ $\cdots$ , is tight in $C[0,1]$ .

To prove Lemma 3 we will need the following lemma.

Lemma 4. Assume that the random walk satisfies the conditions of Lemma
3. Then, for every $\epsilon>0$ , there exists a $J>1$ such that

$\lim_{n\rightarrow\infty}\varphi_{(n)}(\rho_{\epsilon’ J}^{(n)}\leqq 1;|w(\rho_{\epsilon’ J}^{tn)})|\geqq\epsilon)=0$ .

Proof of Lemma 4. If (1.4) holds, then the lemma is clear, since

$W_{0}^{(n)}$ ( $|w(j/n)-w((]-1)/n)|\leqq Kn^{-1/2}$ for every $j\geqq 1$ ) $=1$

for every $n\geqq 1$ . Now assume (1.5). Note that

$\tilde{W}^{(n)}(\rho_{\epsilon/J}^{(n)}\leqq 1;|w(\rho_{\epsilon/J}^{(n)})|\geqq\epsilon)$

is less than

(3.1) $W^{(n)}(\rho_{\epsilon/J}^{(n)}\leqq 1;|w(\rho_{\epsilon/J}^{(n)})|\geqq\epsilon;\sigma^{(n)}>1)/W^{(n)}(\rho_{\epsilon/J}^{(n)}\leq 1;\sigma^{(n)}>1)$ .
Let $1_{w}(L)$ be the indicator function on a set $L$ , that is, $1_{w}(L)=1$ or $0$ according
as $w\in L$ or $w\not\in L$ . The numerator of (3.1) is less than

$\sum_{k\Rightarrow 1}^{n}\int 1_{w}(\min\{\rho_{\epsilon/J}^{(n)}, \sigma^{(n)}\}>(k-1)/n)P^{(n)}(1/n, w((k-1)/n)$ ,

$(U_{\epsilon/J})^{C}\cap F)\{p(n)(1/n, w((k-1)/n),$ $U_{\epsilon}^{c}\cap F$ )$/p^{(n)}(1/n$ ,

$w((k-1)/n),$ $(U_{\epsilon’ J})^{C}\cap F)$ } $W_{0}^{(n)}(dw)$ .

Here we assume the area of integral is $C[0,1]$ when it is unspecified in it.
So, by (2.6) the numerator of (3.1) is bounded by

$d_{\epsilon.J}(n)W_{0}^{(n)}(\rho_{\epsilon’ J}^{(n)}\leqq 1;\rho_{\epsilon/J}^{(n)}<\sigma^{(n)})$ .
The denominator of (3.1) is greater than

$\sum_{k\approx 1}^{n}\int 1_{w}(\rho_{e’ J}^{(n)}=k/n;\sigma^{(n)}>k/n)\dot{p}^{(n)}(1, w(k/n),$ $F$ )$W_{0}^{(n)}(dw)$ ,

which is not less than
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$f_{\epsilon/J}n^{-1/2}W_{0}^{(n)}(\rho_{\epsilon/J}^{(n)}\leqq 1;\rho_{\epsilon’ J}^{(n)}<\sigma^{(n)})$

by (2.5). By the two estimates given above,

$\varphi_{(n)}(\rho_{\iota’ J}^{(n)}\leqq 1;|w(\rho_{l}^{(n)}J)|>\epsilon)\leqq(f_{/j})^{-1}n^{1\prime 2}d_{*.J}(n)$ .
Since the right-hand side of the last inequality tends to zero as $ n\rightarrow\infty$ by (1.5),

the lemma follows.

Proof of Lemma 3. For $w$ in $C[a, b],$ $ 0\leqq a\leqq b<\infty$ , introduce the modulus
of continuity

$\chi_{w}(\delta;a, b)=\sup\{|w(t)-w(s)| : a\leqq s\leqq t\leqq b, t-s<\delta\},$ $\delta>0$ .
Then the tightness of $\{\varphi_{(n)}\}_{n}$ follows if we have

(3.2) $\lim_{\delta\rightarrow 0+}\lim\sup_{n\rightarrow\infty}\varphi_{(n)}(\chi_{w}(\delta;0,1)>5\epsilon)=0$ for every $\epsilon>0$

(Billingsley [1], Theorem 8.2). The following proof of (3.2) is a modification
of [12], proof of Theorem 2. Take $J>1$ as in Lemma 4. For $w$ in the support
of $\varphi_{(n)}$ with $\rho_{\epsilon’ J}^{tn)}(w)\leqq 1$ and $|w(\rho_{\epsilon’ J}^{(n)})|<\epsilon,$ $\chi_{w}(\delta;0,1)>5\epsilon$ implies $\chi_{w}(\delta;\rho_{\epsilon/J}^{(n)}, 1)$

$>\epsilon$ , since

$\chi_{w}(\delta;0,1)\leqq\chi_{w}(\delta;0, \rho_{\epsilon/\prime}^{(n)}1/n)+\chi_{w}(\delta;\rho_{\epsilon/J}^{(n)}, 1)$

$+|w(\rho_{\iota’ J}^{\langle n)})-w(\rho^{(n\underline{)}}1/n)|$ .
Hence $\varpi(n)(\chi_{w}(\delta;0,1)>5\epsilon)$ is bounded by

$ffl(n)(\rho_{J}^{(n)}’\leqq 1;|w(\rho_{\epsilon’ J}^{tn)})|\geqq\epsilon)+$

(3.3)
if $(n)(\rho_{/J}^{(n)}\leqq 1;|w(\rho_{\epsilon/J}^{(n)})|<\epsilon;\chi_{w}(\delta;\rho_{\epsilon/J}^{(n)}, 1)>\epsilon)$ .

By Lemma 4 the first term in (3.3) tends to zero as $ n\rightarrow\infty$ . Let

$ p_{n.\delta}=\sup$ { $\tilde{W}_{x.t}^{(n)}(\chi_{w}(\delta;0,$ l)>\’e): $x\in F\cap\{\epsilon/J\leqq|z|\leqq\epsilon\},$ $0\leqq t\leqq 1$ }.

By the strong Markov property of the random walk we get

the second term in $(3.3)=P^{(n)}(1,0, F)^{-1}\int 1_{w}(\rho_{\iota’ J}^{(n)}\leqq 1;\rho_{\epsilon’ J}^{(n)}<\sigma^{(n)}$ ;

$\epsilon/I\leqq|w(\rho_{l’ J}^{(n)})|\leqq\epsilon)p(n)(1-\rho_{*’ J}^{\langle n)}, w(\rho_{\epsilon’ J}^{(n)}),$ $F$ )

$\times\varphi_{w().1-\rho_{\epsilon\prime J}^{(n)(\chi_{w^{\prime}}(\delta;}}\rho_{\epsilon’ J}^{(n)}0,1-s)>\epsilon)_{I\iota\Leftarrow\rho_{\epsilon/J}^{(n)}}W^{(n)}(dw)\leqq p_{n.\delta}$ .
Since $\lim_{\delta\rightarrow 0+}\lim\sup_{n\rightarrow\infty}p_{n.\delta}=0$ , by Lemma 2, we have the lemma.

4. Instantaneous entrance to the interier $F^{\circ}$.
In this section we show the following lemma.
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Lemma 5. Assume that the random walk satisfies the condition of Theorem
1. Let $W$ be a limit Point of the sequence $\{\mathbb{F}^{(n)}\}$ in $C[0,1]$ . Then, for every
$t\in(O, 1]$ , we have

(4.1) $\varpi_{(w(t)\in\partial F)=0}$ .
Put

$z_{0}=(x_{0}, y_{0})=(\cos(\beta+\alpha/2), \sin(\beta+\alpha/2))$ and $F^{J}=F+z_{0}$ .
Before we prove Lemma 5, we show the following lemma.

Lemma 6. Let $0<t\leqq 1$ and $t_{n}=k_{n}/n,$ $0<k_{n}\leqq n$ with $t_{n}\rightarrow t$ as $ n\rightarrow\infty$ . Then,
under the assumption to Theorem 1, we have

(4.2) $\lim\inf_{n\rightarrow\infty}W_{0^{t_{n}}}^{(n)}(w(t_{n})\in F^{\prime})>0$ .

Proof. We divide the proof into two steps.
First Step. We show the following inequality: There exists a positive

constant $C_{0}$ for which we have

(4.3) $W^{(n)}(w(1)\in F^{\prime})\geqq C_{0}\varpi(n)(w=(w^{1}, w^{2}):|w^{1}(1)|\leqq 1)$

for all large $n$ .
Proof. Put $\mathcal{F}^{X}=\sigma\{X_{1}, X_{2}, \}$ and $P_{g^{X}}(*)=P(*|\mathcal{F}^{X})$ . Set $L(x)=\inf\{y$ :

$(x, y)\in F\},$ $x\in R(\inf R=-\infty)$ .
By (1.2) $(x, y)\in F$ is equivalent to $y\geqq L(x)$ . Then we have

$P^{(n)}(1,0, F^{\prime})\geqq\int_{\Omega}1_{\omega}(|X^{(n)}(1)|\leqq 1)P_{\Xi}x(\sigma^{(n)}(Z^{(n)})>1)$

(4.4) $\times Pff^{X}(Y^{(n)}(1)\geqq L(X^{(n)}(1)-x_{0})+y_{0}|Y^{(n)}(k/n)\geqq L(X^{(n)}(k/n)$ ,

$0\leqq k\leqq n)P(d\omega)$ .
It follows from the independence of increments of the random walk the follow-
ing holds $P$ almost surely:

$P_{g^{X}}(Y_{j}-Y_{f-1}\leqq y_{f}, 1\leqq j\leqq m)=\prod_{f=1}^{m}P_{g}x(Y_{j}-Y_{j-1}\leqq y_{f})$

for every $y_{f}$ in $R,$ $1\leqq j\leqq m,$ $m\geqq 1$ . In other words we may say that $\{Y_{0},$ $Y_{1}$ ,
$Y_{8},$ } is a random walk with independent (but not stationary in general)
increments with respect to the conditional probability $P_{g^{X}}P$ almost surely. So,
as in [5], Lemma 7 (a), we have, for the right-hand side of (4.4)

the third factor in the integrand

$\geqq P_{g^{X}}(Y^{(n)}(1)\geqq L(X^{(n)}(1)-x_{0})+y_{0})$
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$P$ almost surely. Put

$a=\max\{0, L(x-x_{0})+y_{0} : |x|\leqq 1\}$ .

Then, by the second assumption in (1.6), the right-hand side in the last ine-
quality is not less than

$J_{n}=P_{g^{X}}(\nu_{\mathcal{F}^{X}}(Y_{n})^{-1}Y_{n}\geqq a\nu^{-1})$ , $n\geqq 1$ ,

where
$\nu_{\mathcal{F}^{X}}(Y_{n})=\{E(Y_{n^{2}}|\mathcal{F}^{X})\}^{1/2}(\geqq\nu n^{1\prime 2})$ .

By (1.6) we can apply Essen’s inequality (Petrov [10], p. 111 Theorem 3) on $J_{n}$

to get

$J_{n}\geqq(2\pi)^{-1/g}\int_{a/\nu}^{\infty}\exp(-y^{2}/2)dy-A\gamma\nu^{-3}n^{-1/2}$ , $n\geqq 1$ ,

where $A$ is an absolute positive constant. By a series of estimates given above
we have a positve constant $C_{0}$ such that

$\dot{p}^{(n)}(1,0, F^{\prime})\geqq C_{0}p(n)(1,0, [-1,1]\times R)$

for all large $n$ . Dividing both sides of the inequality by $P^{(n)}(1,0, F)$ , we have
(4.3).

Here we note that, if the component random walks are mutually independent,
$J_{n}$ may be given by

$J_{n}=P(n^{-1/2}Y_{n}\geqq a)$ , $n\geqq 1$ .
Then (4.3) follows from the central limit theorem in this case (see Remark (ii)

in 1).

Second Step. We show (4.2) when $t_{n}=1$ . Suppose, on the contrary, that
it would not hold, that is,

(4.5) $\lim\inf_{n\rightarrow\infty}W^{(n)}(w(1)\in F^{\prime})=0$ .
By Lemma 3 there exists a subsequence of $\{\varpi(n)\}_{n}$ which converges weakly to
a law $\varpi$ ’ in $C[0,1]$ . It follows from (4.3) and (4.5)

(4.6) $W’(w=(w^{1}, w^{2}):|w^{1}(1)|<1)=0$ .
Then, together with $ffl’(C[0,1])=1$ , we may choose $0<s<1$ and $ 0<p<q<\infty$

such that

$\varpi’<|w(S)|<q)=\pi;$ .
Take $s_{n}$ from $\{k/n;0\leqq k\leqq n\}$ such that $s_{n}\rightarrow s$ as $ n\rightarrow\infty$ . By the Markov
property of the random walk
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$\varphi_{(n)}(w=(w^{1}, w^{2}):|w^{1}(1)|<1/2)\geqq p(n)(1,0, F)^{-1}$

(4.7) $\times\int 1_{w}(p\leqq|w(s_{n})|\leqq q;\sigma^{(n)}>s_{n})p(n)(1-s_{n}, w(s_{n}),$ $F$ )

$\times ffl_{w(\iota_{n}).1-s_{n}}(n)(w=(w^{1}, w^{2}):|w^{1}(1-s_{n})|<1/2)W_{0}^{tn)}(dw)$ .
Note that $\varpi_{z.t},$ $z\in\partial F\backslash \{0\}$ and $0<t\leqq 1$ , is the law of the Brownian meandering
process (see Lemma 2). Then we get

$W_{z.t}(w=(w^{1}, w^{2}):|w^{1}(t)|<1/3)>0$

for $z\in F\backslash \{0\}$ and $0<t\leqq 1$ . Hence, by Lemma 2 we have

$\lim\inf_{n\rightarrow\infty}\inf\{W_{z.1-\iota_{n}}(w=(w^{1}, w^{2}):|w^{1}(1-s_{n})|<1/2):z\in F$,
(4.8)

$P\leqq|z|\leqq q\}=2C_{1}>0$ .
By (4.7) and (4.8)

$\varphi_{(n)}(w=(w^{1}, w^{g}):|w^{1}(1)|<1/2)\geqq c_{1}\varpi_{(p\leqq|w(S_{n})|\leqq q)}(n)$

for all large $n$ . Take the limit on both sides of the inequality through the
subsequence to have

$W^{J}(w=(w^{1}, w^{2}):|w^{1}(1)|<1)\geqq C_{1}\varpi’(p\leqq w(s)|\leqq q)>0$ ,

which contradicts with (4.6). Hence we have (4.2) when $t_{n}=1$ .
For the general $t_{n}$ we rescale the space and time of the random walk to get

$\varpi_{(w(t_{n})\in F^{\prime})=W^{(\iota_{n})}(w(1)\in t_{n}^{-1/2}F^{\prime})}0.t_{n}tn)$

$(k_{n}=nt_{n})$ . Then (4.2) is reduced to the one just given above. This completes
the proof of the lemma.

Proof of Lemma 5. For $\epsilon>0$ put

$\epsilon F^{\prime}=\{\epsilon z:z\in F^{\prime}\}$ and $\Delta_{e}=F\backslash (\epsilon F^{\prime})$ .
First we prove (4.1) when $t=1$ , modifying the proof of [5], Lemma 9. Set
$s_{n}=[n/2]/n$ , where $[a]$ is the integral part of $a$ . Since

$\wp_{(n)}(w(1)\in\Delta_{\epsilon})\leqq K_{\epsilon.n}=\int_{F}(w(s)\in dx)p(1-s_{n}, x, \Delta_{\epsilon})$

$\times\{\int_{F^{\prime}}(n)(w(s_{n})\in dx)p(1-s_{n}, x, F)\}^{-1}$ ,

it is enough to show

(4.9) $\lim_{\epsilon\rightarrow 0+}\lim\sup_{n\rightarrow\infty}K_{\epsilon.n}=0$

for the proof. Note that, as $ n\rightarrow\infty$ ,
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$p^{(n)}(1-s_{n}, x, \Delta_{\epsilon})\rightarrow p(1/2, x, \Delta_{\epsilon})$

and
$p^{(n)}(1-s_{n}, x, F)\rightarrow p(1/2, x, F)$

uniformly in $x$ by Lemma 1. Then, together with

$2C_{t}=\inf\{p(1/2, x, F):x\in F^{\prime}\}>0$ ,
we get

$\lim\sup_{n\rightarrow\infty}K_{\epsilon.n}\leqq\sup\{p(1/2, x, \Delta_{\epsilon}):x\in F\}$

$\times\{C_{2}\lim\inf_{n\rightarrow\infty}W_{n_{n}}^{tn)}(w(s_{n})\in F^{\prime})\}^{-1}$ .
Hence, (4.9) follows from Lemma 6 and from

$\lim_{\epsilon\rightarrow 0+}\sup\{p(1/2, x, \Delta_{\epsilon}):x\in F\}=0$ .
Next we consider the general case. Let $W$ ’ be a limit point of $\{W^{(n)}\}_{n}$ ,

and take its subsequence $\{W^{(n^{\prime})}\}$ which satisfies $\varpi(n^{l})\rightarrow w\varpi$ ’ and $W^{()}n^{\prime}t_{n^{\prime}-\rightarrow W^{\prime\prime}}w$

in $C[0,1]$ . Then, for every positive bounded continuous function $f$ on $R^{2}$ ,

we have

$I_{n^{\prime}}=\int f(w(t_{n^{\prime}}))^{ffl(n^{\prime})}(dw)\rightarrow\int f(w(t))W^{\prime}(dw)$

and

$I_{n^{\prime}}p^{(n^{\prime})}(1,0, F)/p^{(n)}(t_{n^{\prime}}, 0, F)=\int_{F}f((t_{n^{\prime}})^{1/2}z)$

$xp^{(n^{\prime})}(1-t_{n^{\prime}}, (t_{n^{\prime}})^{1/2}z,$ $F$)$\pi(n^{\prime}\iota_{n^{\prime}})(w(1)\in dz)$

$\rightarrow\int_{F}f(t^{1/2}z)p(1-t, t^{1/2}z, F)\varphi_{\chi}(w(1)\in dz)$ .
Hence, noting $\varpi’(w(1)\in fl)=1$ just proved in the first part, we get

(4.10) $\dot{p}^{(n^{\prime})}(1,0, F)/P^{(n^{\prime})}(t_{n^{\prime}}, 0, F)\rightarrow H$ as $ n^{\prime}\rightarrow\infty$ ,

where $0<H\leqq 1$ . Thus we have the identity

(4.11) $H\int f(w(t))W^{\prime}(dw)=\int f(t^{1/2}w(1))P(1-t, t^{1/t}w(1),$ $F$)$W^{\chi}(dw)$

for every positive bounded continuous, and so, for every bounded measurable
function $f$ on $R^{2}$ . Taking $f(z)=1.(\partial F)$ in (4.11), we conclude $\varpi’(w(t)\in\partial F)=0$ .
This completes the proof of the lemma.

5. Proof of theorems.

Proof of Theorem 1. Since $\{W^{(n)}\}_{n}$ is tight by Lemma 3, the proof is
complete if we have the convergence of the finite dimensional distributions.
For simplicity we consider the two-dimensional distribution (the generalization
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will be easy). Let $f$ and $g$ be bounded continuous functions on $R^{t}$ , and let
$0<\lambda<s<t\leqq 1$ . Take $s_{n}$ and $t_{n}$ from $\{k/n:0\leqq k\leqq n\}$ which satisfy $s_{n}\rightarrow s,$ $ t_{n}\rightarrow$

$t,$ $ s_{n}\geqq\lambda$ and $ t_{n}\geqq\lambda$ . Set $\lambda_{n}=\max\{k/n:k/n\leqq\lambda\}$ . Put

$I_{\epsilon}^{(n)}=\int 1_{w}(w(\lambda_{n})\in\Delta_{e})f(w(s_{n}))g(w(t_{n}))W^{(n)}(dw)$

and

$J_{e}^{\langle n)}=\int 1_{w}(w(\lambda_{n})\in F\backslash \Delta_{*})f(w(s_{n}))g(w(t_{n}))W^{(n)}(dw)$ .
Then, by Lemma 5 $\lim_{*\rightarrow\theta+}\lim\sup_{n\rightarrow\infty}I_{*}^{(n)}=0$ . Set

$\phi_{n}(x)=\int f(w(s_{n}-\lambda_{n}))g(w(t_{n}-\lambda_{n}))W_{r.1-\lambda_{n}}^{(n)}(dw)$ .
By the Markov property

$J_{\epsilon}^{(n)}=\int 1_{w}(w(\lambda_{n})\in F\backslash \Delta_{\epsilon})\phi_{n}(w(\lambda_{n}))W^{(n)}(dw)$ .
Let

$\psi_{\lambda(x)=\int f(w(s-\lambda))g(w(t-\lambda))}\pi_{x.1-\lambda(dw)}$, $x\in\dot{F}$ .

Note that $\phi_{\lambda}($ . $)$ is a continuous function on $\mathring{F}$. Moreover, by Lemma 2 $\phi_{n}(x_{n})$

$\rightarrow\phi_{\lambda}(x)$ for every $x_{n}\in F$ and $x\in F^{o}$ such that $x_{n}\rightarrow x$ as $ n\rightarrow\infty$ . Let $W^{(n^{l})}$ be a
weak convergent subsequence ( $W^{\prime}$ denotes the limit law). We may assume
$W(w(\lambda)\in\partial(F\backslash \Delta_{\epsilon}))=0$ . Then, by the continuous mapping theorem ([1] Theorem
5.5)

$J^{(n^{\prime})}\rightarrow J_{\epsilon.\lambda}=\int 1_{w}(w(\lambda)\in F\backslash \Delta_{\epsilon})\psi_{\lambda}(w(\lambda))W^{\prime}(dw)$

as $ n^{\prime}\rightarrow\infty$ . Let $\epsilon\rightarrow 0+to$ get

$J_{\epsilon.\lambda}\rightarrow r_{\lambda}=\int 1_{w}(w(\lambda)\in^{o}F)\phi_{\lambda}(w(\lambda))W^{\prime}(dw)$ .
By the scaling property of the Brownian motion,

$\phi_{\lambda}(x)=\int f((1-\lambda)^{1/g}w((s-\lambda)/(1-\lambda)))$

$\times g((1-\lambda)^{1/2}w((t-\lambda)/(1-\lambda)))\pi_{(dw)}(1-\lambda)^{-}1/\epsilon_{x.1}$ .
So, combining $\pi$’( $w;w(\lambda)\rightarrow 0$ as $\lambda\rightarrow 0+$ ) $=1$ with [12] Theorem 2, we have

$J_{\lambda}\rightarrow\int f(w(s))g(w(t))W(dw)$ as $\lambda\rightarrow 0+$ .
Hence we have

$\int f(w(s_{n^{\prime}}))g(w(t_{n^{\prime}}))^{ffl(n^{\prime})}(dw)(=I_{\epsilon}^{(n^{\prime})}+J_{\epsilon}^{(n^{l})})\rightarrow$
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$\int f(w(s))g(w(t))\varpi(dw)$ as $ n^{\prime}\rightarrow\infty$ ,

which implies $\varpi’=\varpi$ . This completes the proof.

Proof of Theorem 2. Let us determine the constant $H$ in (4.10). Since
$ W^{\prime}=W^{\prime}=\varpi$ in (4.11) by Theorem 1, we have

$H=\int_{F}p((1-t)/t, x, F)W(w(1)\in dx)$ .

To calculate the integral we apply the formula (3.2) and Lemma 4 in [12].

(Note that $W(w(1)\in dx)$ and $p((1-t)/t, x, F)$ are equal respectively to $\rho(1, dx)$

and

$\int_{F}\dot{Q}(\log t^{-1}, x, z)$ exp $(-|z|^{2}/2)dz$

in [12]. Refer also the evaluation in [5], Lemma 3 $(b).)$ Then we get $H=$

$t^{ff/a}$ This, together with Theorem 1, implies

$P(Z_{k}\in F, 0\leqq k\leqq n)/P(Z_{k}\in F, 0\leqq k\leqq nt)\rightarrow t^{n/8\alpha}$ as $ n\rightarrow\infty$

for every $0<t\leqq 1$ . Hence (1.7) follows (see Feller [4], 8.8).

Appendix.

Here we prove (2.2) when $S=F$, that is,

(A.1) $\lim_{n\rightarrow\infty}\sup\{|p^{(n)}(t_{n}, z, F)-P(t, z, F)| : z\in F\}=0$ .
(Proof for another $S’ s$ will be given in a similer way.) For $c>0$ set $F_{c}=cF^{\prime}$ .
By Theorem $B$ and by the spatial homogeneity of the random walk and the
Brownian motion, we have the following: For every positive $\epsilon$ we may choose
a positive $M$ such that

$p^{(n)}(t_{n}, z, F)>1-\epsilon/2$ and $p(t, z, F)>1-\epsilon/2$

for every $z\in F_{K}$ and $n\geqq 1$ . This implies

(A.2) $\sup\{|P^{(n)}(t_{n}, z, F)-P(t, z, F)| : z\in F_{H}\}\leqq\epsilon$ for all $n\geqq 1$ .
Hence we have (A.1), if, in addition to (A.2), we show

(A.3) $\lim_{n\rightarrow\infty}\sup\{|p(n)(t_{n}, z, F)-P(t, z, F)| : z\in F\backslash F_{K}\}=0$ .
Suppose, on the contrary, that (A.3) would not hold, that is, we could take a
sequence $\{z_{n^{l}}\}_{n^{\prime}}$ in $F\backslash F_{H}$ such that

(A.4) $\lim_{n^{l}\rightarrow\infty}|p(n^{\prime})(t_{n^{l}}, z_{n^{\prime}}, F)-p(t, z_{n^{\prime}}, F)|=\lambda>0$ .
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Case 1. Assume $\{z_{n^{\prime}}\}_{n^{\prime}}$ is bounded, that is, $\sup_{n^{\prime}}|z_{n^{\prime}}|<\infty$ . Then we may
choose a subsequence $\{z_{n^{\prime}}\}_{n^{\prime}}$ of $\{z_{n^{\prime}}\}_{n^{\prime}}$ such that $z_{n^{\prime}}\rightarrow z^{\prime\prime}$ as $ n^{\prime\prime}\rightarrow\infty$ . So, we
conclude as $ n^{\prime\prime}\rightarrow\infty$

$p^{(n^{\prime})}(t_{n^{\prime}}, z_{n}, F)\rightarrow p(t, z^{\prime}, F)$

by modifying the proof of (2.1), and

$p(t, z_{n^{\prime}}, F)\rightarrow p(t, z^{\prime}, F)$ ,

which, together with (A.4), lead to a contradiction.
Case 2. Assume $\{z_{n^{\prime}}\}_{n^{\prime}}$ is unbounded. In this case we may choose a sub-

sequence $\{z_{n^{\prime}}\}_{n^{\prime}}$ of $\{z_{n^{\prime}}\}_{n^{l}}$ which satisfies

$|z_{n}\cdot|\rightarrow\infty$ and min $\{|z_{n^{\prime}}-z| : z\in\partial F\}\rightarrow\mu\geqq 0$

as $ n^{\prime\prime}\rightarrow\infty$ . Then, again by Theorem $B$ and by the spatial homogeneity of
the random walk and the Brownian motion, we conclude that both $p^{(n^{\prime})}(t_{n^{\prime}},$

$z_{n^{\prime}}$,
$F)$ and $p(t, z_{n^{\prime}}, F)$ converge to $W_{(0.\mu)}(w(s)\in F_{0.\pi}, 0\leqq s\leqq t)$ as $ n^{\prime\prime}\rightarrow\infty$ , which
together with (A.4), again leads to a contradiction.

By the two observation given above we have (A.3), and hence, (A.1). This
completes the proof.
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