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1. Introduction.

In this paper we study a minimax optimal control problem of a system
governed by 'a nonlinear evolution inclusion. Such problems are characteristic
of differential games (see Krasovski-Subbotin [II]). Under mild hypotheses on
the data we establish the existence of admissible trajectories and then we prove
the existence of optimal controls. We also investigate their dependence on the
parameters of the problem and finally for a semilinear form of the problem,
we obtain a necessary and sufficient condition for optimality. An example of
a parabolic distributed parameter system is also worked out in detail.

In the past minimax control problems were studied in the context of finite
dimensional systems. We refer to the book of Krasovski-Subbotin and the
references therein. Our formulation is more general and incorporates a large
class of infinite dimensional control systems (distributed parameter systems).
An additional level of generality is added by allowing the control vector field
to be in general multivalued. Our existence results in this paper include as a
special case the work on nonlinear optimal control of parabolic systems of
Ahmed [1]. Furthermore our sensitivity analysis in section 4 appears to be
the first of its kind for this general class of systems and extends to infinite
dimensional systems the finite dimensional work of Langen and shows
how the various convergence concepts and results developed by Attouch [2]
in his book, can be used to investigate the response of nonlinear systems to
changes in their structure.

2. Preliminaries.

Let (2, 2) be a measurable space and X a separable Banach space. Through-
out this paper we will be using the following notations:
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P;s(X)={AZS X: nonempty, closed, (convex)}
and
Powrrce(X)={AS X : nonempty, (w-)compact, (convex)}.

A multifunction F: 2—P,(X) is said to be measurable, if for every zeX
w—d(z, F(w))=inf{]z—x| : x€F(w)} is measurable. Also a multifunction G:
Q—-2%\{@} is said to be graph measurable, if GrG={(0, x)E2XX: xrEG(w)}
X x B(X), with B(X) being the Borel g-field of X. For closed valued multi-
functions, measurability implies graph measurability. The converse is true if
there exists a complete, o-finite measure p(-) on (£2, 3). For details we refer
to the survey paper of Wagner [18].

Now let (2, X, p) be a finite measure space and F: 2-2*\{¢} a multi-
function. By SZ(1<p=< o) we will denote the set of all LP-selectors of F(.),
i.e.

, SE={f(-)eL?(X): f(w)eF(0) p—a.e.}
(here L?(X) is the Lebesgue-Bochner space of all measurable functions f: 2—X
s.t. Sa" f(®)|dpp(w)< o). This set may be empty. It is easy to see using the

Lusin-Yankov-Aumann selection theorem (see Wagner [18]), that S% is nonempty
if and only if F(-) is graph measurable and w—inf{||x|: xeF(o)}€L}l. So if
F(-) is graph measurable and w—sup{|x|l: x=F(w)} belongs to L% (in which
case we say that F(-) is LP-integrably bounded), then S%+¢ (note that LZ=
{feL?: f(-) is R,-valued}).

On P,(X) we can define a (generalized) metric by setting

h(A, B)=max{sup d(a, B), supd(b, A)}.
acA beB

This is known in the literature as the Hausdorff metric on Py(X). Recall
that since X is complete, so is (Ps(X), h).
If {K.}.>: are nonempty subsets of X, we define

s-limK,={x=X: x=s-limx,, x,€K,, n=1}
(here s-indicates the strong topology on X) and
w-IimK,={x€X: x=w-limx,,, 2., EK,,, 1:<Nn:<o+<np <000}

(here w- indicates the weak topology on X). It is clear from the above defini-
tions that we always have s-limK,Sw-limK,. We will say that the K,’s
converge to K in the Kuratowski-Mosco sense (denoted by KnﬂK ) if and
only if s-limK,=K=w-limK,. Note that in the definition of the Kuratowski-
Mosco convergence we have mixed the topologies. Namely in the definition of
the limit inferior we considered the strong topology and in the definition of
the limit superior the sequential weak topology. This mixing makes the
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Kuratowski-Mosco convergence a powerful tool in variational problems (see the
book of Attouch [2]). When for both lim and Iim we consider the strong
topology, we get the well known Kuratowski convergence of sets denoted by
K. 5 K.

Let Y, Z be two Hausdorff topological spaces. A multifunction G: Y—
22\ {¢} is said to be upper semicontinuous (u.s.c.)(resp. lower semicontinuous
(I.s.c.)), if for all USZ open G*{U)={yeY : G(y)SU} (resp. G (U)={yeY :
G(y)NU+#¢}) is open in Y. If Z is a metric space, then G:Y—P,(Z) is said
to be Hausdorff continuous (k-continuous), if it is continuous from Y into
(Pe(Z), h).

Finally let V be a Banach space and A: V—V* an operator. We say that
A(+) is monotone if and only if (Ax—Ay, x—y>=0 for all x, ycV. Here by
{+, > we denote the duality brackets of the pair (V, V*). We will say that
A(+) is hemicontinuous if and only if the real functions A—<A(x+21y), 2> is
continuous on [0, 1] for all x, y, z€V. If V is a finite dimensional Banach
space, then a monotone hemicontinuous operator A(-) is continuous. If V is
reflexive, then A(-) is maximal monotone (i.e. its graph is not properly con-
tained in the graph of another monotone operator), has property (M) (i.e. if
xa=x in V, A(xa)>7 and Im{A(x,), x.0<<r, x5, then r=A(x)) and is demi-
continuous (i.e. if x,—x in V, then A(x,)>A(x) in V*). Here - denotes con-
vergence in the strong topology while — denotes convergence in the weak
topology. For further details on those concepts we refer to Barbu 6.

3. Existence of optimal controls.

The mathematical setting is the following. Let T=[0, ] and H a separable
Hilbert space. Also X is a dense linear subspace of H carrying the structure
of a separable reflexive Banach space, which embeds in H continuously. Identi-
fying H with its dual (pivot space), we have that X<, Hc, X*, with all embed-
dings continuous and dense. We will also assume that they are compact. To
have a concrete example in mind consider the triple H=L%0, 1), X=H}0, 1)
and X*=H}0, 1)*=H"'0, 1). Such a triple of spaces is usually known in
the literature as “Gelfand triple”. By (-, -) we will denote the inner product
of the Hilbert space H and by <-, -)> the duality brackets for the dual pair
(X, X*). The two are compatible in the sense that <-, ->|yxz=(-, -). Also
by |-l (resp. |-|, I-ll+), we will denote the norm of X (resp. H, X*). We
will model the control space by another separable Banach space Y.

We will be studying a minimax optimal control problem, governed by a
nonlinear evolution inclusion defined on the Gelfand triple (X, H, X*). More
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specifically the problem under consideration is the following. Our system is
governed by the following evolution inclusion

{ 2()+AQ, x@)EFE, x@), u®)) a.e., }

x(0)=x,, ueSh.
b
Also we are given an integral cost functional J(x, u)=SoL(t, x(t), u(t))dt.

Because of the generality of our formulation, given an admissible control
u(+); i.e. u=S} (see section 2), the set P(u) of trajectories of the evolution in-
clusion generated by this control, if it is nonempty, in general it will not be a
singleton. Then our minimax optimization problem is the following :

inf Sup)](x, u). *

1 reP(u
uesy <

Of course when for every usS}, P(u) is a singleton, we get a standard
optimal control problem.

We will start by studying the dynamics of our system and establishing the
existence of trajectories for a given admissible control u(-)&S}.

For this we will need the following hypotheses concerning the data of the
evolution inclusion describing the dynamics of the system.

H(A): A: TxX—X* is an operator s.t.
(1) t—A(, x) is measurable,
(2) x—A(t, x) is hemicontinuous, monotone,
3) IAG, )|x=a®)+blx| a.e., with a(-)e L%, b>0,
4) <A, x), x>=c|x|® a.e., ¢>0.
H(F): F: TxXHXY—P;(H) is a multifunction s.t.
1) @, x, uy~F(t, x, u) is graph measurable,
(2) x—F(, x, u) is u.s.c. from H into H,, where H, denotes the Hilbert
space H with the weak topology,
3) |F¢, x, W <a,@®)+b:@) (| x| +llul) a.e. with a,(-), b(-)e L.
HWU): U: T—-P;,(Y) is a measurable multifunction s.t. UZ)SEW a.e. with
WePyp(Y).

For a given admissible control u<S}, let P(u) denote the set of trajectories

of (*) generated by it. In the next theorem we show that for every u&Sy,
P(u)+¢.

- Theorem 3.1. If hypotheses H(A), H(F) and H(U) hold, then for any uc
St, P(u)+¢, P(u)s C(T, H) and P(u) is compact in L*H).

Proof. Let W(T)={x(-)e L¥X): x= L¥X*)}. It is well known that this
is a separable reflexive Banach space endowed with the norm |x|lwm=
(1% l3ecxs)® and W(T).C(T, H) continuously (i.e. every element in W(T),
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after possible modification on a Lebesgue null set, is equal to an element in
C(T, H)). In addition W(T)c< L*H) compactly (see Lions [13], p. 58). Also
from Barbu (Theorem 4.2, p. 167, see also Lions [13]), we know that
P(u)W(T).

First we will determine some a priori bounds for the elements in P(u). So

let x(-)eP(u). We have:
2O+ AE, x®)=/(1) a.e. fESE. 20 uen
== %), x@)D+CAE, x@), x@®)>={f@), x@))> a.e.

:%i- 2O 4+l xS @), %0 ae..

Integrating the above inequality, we get:
t t 1/2 /(¢ 1/2
201+ 2c| Iz | xol*+2([ 1/ s)Maas) ([ Ixo)nras) ™ M
From Cauchy’s inequality with ¢>0, we have:
t 12/08 172 ] rt t
2() 1r@isds) “([Ixrds) s L[ nads+ e Ixrds. )
Choosing ¢=2c¢ and substituting (2) into (1), we get

2O +26] |2 ds S | xol+ o (17 lds +2¢ Ix(olds
= 1301°S xal*+ o IS (OsdsS | xel 5o F(9) s

= |2()*< | x0| "+ S (2a(s)'+4bi(s)| x(s)|*+4by(s)* | W |)ds,

where |W|=sup{||lull: ucW}. Invoking Gronwall’s inequality, we get
lx@®) <M, teT for some M>0.

Using this bound, we have

2¢[/I(ds < xol+2{ 1 £(5)] - 1 x() ds
<ol "+ M (@s)+bsX M+ W )ds

1
== lxlzecr= 5Ll xe*+ Mllaulli+(M+ W M|l J= M}

== 2l zecxr=M;.
Next let p(-)e LY X)=L*X*)*. We have:
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t

[[ca(s), p(spds+{ <Al 15, plopds={ f(s), pls)ds

t
0

— ‘cato), pwass 1A, =M 1p@lds+ {17 12()Ids

<[ arto1x@D- 16 ds+{ 1 £l 15 ds.

Applying the Cauchy-Schwartz inequality on the integrals of the right hand
side and denoting by <-, ->, the duality brackets for the pair (L2X, L¥}X*)),
we get:

<xy pPo=Llla-)+bllx(ON et Fllzecxod 1Pl zecxs
<(lalle4bllxlzzcx>1+1f lzzcxn) 1Dl Leces
=(lals+doMi+lla:lle+Mbille)- 1Pl z2cx>
= | #hecxn=llale+bMi+llaille+ M bylle=M..
Now define the following new orientor field:
F@t, x, u(t)) if |[x|=M,

Fult, 2) { F(t, lﬂx"l— u®) i 1x|>M.

From the above definition, we see that £, x)=F(, pu(x), u@®)), where pxu(-)
is the M-radial retraction. So from this and the fact that px(-) is continuous,
we deduce immediately that F.(, -) is u.s.c. from H into H,. Also let ¢,:
TxHxH-TXHXY x H be defined by ¢,(t, x, ¥)=(t, x, u(t), y). Clearly ¢.(-, -, )
is measurable and so ¢ ¥ GrF)=GrF(-, -, u(-)€B(T)XB(H)XB(H). Then let
ge: TXHXH—T XHXH be defined by ¢.(t, x, y)=(, pu(x), ). Clearly gs(-, -, *)
is measurable and so ¢z %(GrF(-, -, u()))=GrF (-, )eB(T)XB(H)XxB(H); i.e.,
F.(-, ) is graph measurable. Also we have |F.@, x)|<a,()+bE)(M+|W|)=
7(t) a.e. with 7(-)e L%

Let h(-)e L*(H) and consider the following evolution equation:

{ L)+ AL, x(t)=h(@) a.e.,

}(*) (h).
x(0)=1x,.

From Theorem 4.2, p. 167 of Barbu [6], we know that (*) (k) has a unique
solution p(h)(-)EW(T). Let B(r)={heL*H): |h{)|=7r() a.e.} and consider
the multifunction R: B(y)—Ps(B(r)) defined by R(h)=S% c.ocmrcn. We claim
that R(-)is u.s.c. from L*H), into L*H),. To this end since B(7) is weakly
compact and metrizable with the relative weak L*(H)-topology, it is enough to
check that GrR is sequentially closed in B(y)X B(r) with the relative product
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wXw

weak topology. For this purpose let {(An, g2)}n21EGrR s.t. (An, &2) — (h, Q)
in B(r)XB(r). We have g,t)eF ., p(h,)t)) a.e.. Working as before, it is
easy to see that {p(h.)(-)}.2: is bounded in W(T). So by passing to a sub-
sequence if necessary, we may assume that p(h,)(-)—%(-) in W(T), hence
]‘)(hn)(')’i’ﬂ(’) in L*H). We claim that 7(-)=p(h)(+). Set x.(-)=p(haX").
By definition we have:

Ea(B)+ AR, x.(8)=h,(t) a.e.
== {dn, Xa—e+<A(%n), Xn—920=C Ry Xn—DD0,
where A: L¥X)— L*X*) is defined by A(x)(-)=A(-, x(-)). Hence from Tanabe
[I7], p. 151, we have
T 2By 9B) <, 2 part-CACE), TamDDa=Chns Eam e

Note that by hypothesis H(A) (3) {A(xn)}n=: is bounded in L% X*). So by
passing to a subsequence if necessary, we may assume that A(x,)-—7 in L*(X*).
Also since xniwy in L*(Y) and by considering the continuous versions of those
functions, we have (1/2)|x,(b)—7(b)|>—0. Also <%, x,—5>,—0 and <hn, xoa—7>
=(h, xa—N)r2cy—0. Thus ImCA(x,), xn—2D=0. But A(-) is monotone, he-
micontinuous, since so is A(t, -). Hence it has property (M). Therefore r=A(%);
ie. A(x,)>A(n) in LAX*).

Now let g= L¥X). We have for every n=1:

{Eny o< A(xn), @Po=Chns 0.
Therefore in the limit as n—co we get
| <1, @ot<AM), g20=<h, @o-
Sigce g€ L*(X) was arbitrary, we deduce that
A+ A, 7)=h() a.e., pO0)=xo== 7(-)=p(h)(+).
Since g, =g in B(1),, using of [16], we have
gt)econv w-im{gat)} nz1 Sconv w-imFu(t, p(Ra)E).

But p(h.)=p(h) in W(T) and W(T)c L*H) compactly (see Lions [13],
p. 58). So p(h,)= p(h) in L*H) and by passing to a subsequence
if necessary, we may assume that p(h,)#)— p(h)¢) a.e. in H. Then since
F.t, +) is u.s.c. from H into H,, we have w-iimF,(, p(hn)(t))gﬁu(t, p(h)@))
a.e.. Therefore g@t)sF. ¢, p(h)t) a.e. = (h, g2)=GrR= R(-) is u.s.c. from
L*H),, into L*H), as claimed.
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Apply the Kakutani-KyFan fixed point theorem to get A< B(y) s.t. h< R(h).
Then hA(t)eF (¢, p(h)2) a.e.. So if x(-)=p(h)-), we have

)+ A, x@)=h() a.e., x0)=x0 hESh,c.zen.

As in the beginning of the proof we get:

—— | x@)1*+2cl| O S2e< (), x@)> a.e.

t t t
= 1 +2¢ IxIds< |zl +2({ 1aisds) ([ 1x1ds).
Applying Cauchy’s inequality with e=2¢, we get:
|2O12 | ol 5 IS5 S | xol -+ 1) s

From the definition of £,(-, -), we have that
Lh(s)| S | Fut, x(s)| S ay(s)+by(s)| x(s)|+ W ]).
So finally we have

x| x0]*+ S (2a:(s)+4b:(s)*| x(s)| *+4bs(s)* W |*)d s

and as before, through Gronwall’s inequality, we get
| x(t)| SM == F(t, x(t), u@®)=F (¢, =(t)) == x(-)EP(u).

Finally note that P(u) is bounded in W(T), hence relatively compact in
L*H) (since W(T)c, L®(H) compactly). Furthermore working as above we can
easily check that P(u) is closed in L*H), hence compact in it. Q.E.D.

Remarks. (3.1) Hypothesis H(A) (2) is more general than that of Ahmed
(see Lemma 3.3 in that paper), who essentially considered parabolic systems
which have a linear prinicipal part in their partial differential operator.

(8.2) If X is a Hilbert space, then P(u) is compact in C(T, H). This follows
from the fact that in this case W(T')c.C(T, H) compactly.

Now that we have established the existence of admissible trajectories for
(*), we turn our attention to the solution of the minimax control problem. We
were able to solve it for systems where the differential operator A(t, x) is
linear in x and for multifunctions F independent in x and “convex” in #. Such
multifunctions are important in optimization (see Aubin [3], Ioffe in non-
linear analysis (see loffe [10]) and in game theorem (see Krasovski-Subbotin
and Aubin [4]). So the minimax problem has the following special form:
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J(x, u)zSZL(t, x(t), u())dt — inf sup

ues ) TEPUL)

s.t. x)+AGx@)=F@, u@®)) a.e., (**)
x(0)=1x,, u(-)eSk.
We will need the following hypotheses on the data of (**):

H(A),: A: TxXX— X* is an operator s.t.
(1) t— A(t)x is measurable, .
(2) x— A@t)x is linear and |AQ®)x[+«<blx|l a.e., 6>0, (i.e. AF)-) is con-
tinuous),
3) <A®)x, x>=clx|* a.e., ¢>0, (i.e., A®)(-) is strongly monotone).
H(F),: F: TXY — P;(H) is a multifunction s. t.
(1) (¢, u)— F(t, u) is graph measurable,
(2) u— F(, u) is h-continuous and for all A<[0, 1] and all u,, u.€Y we
have F(¢, Aus+1—2Du,)SAF(t, u,)+(1—DF(t, u,) a.e.,
B) |F(, wl=sup{llyl: yeF(t, u)}<a,@t)+b:@)lu| a.e. with a,(-), by(-)e
L3.
Also we will need the following hypothesis concerning the cost integrand.
H(L): L: TXHXY — R=RU{+ o} is an integrand s.t.
) ¢, x, u)— L({t, x, u) is measurable,
2) (x,u)— L(t, x, u) is L.s.c.,
3) L, x, -) is convex,
4) ¢.(O—M(x|+lul)SLE, x, u) a.e. with ¢,(-)eL!, M =0.

Remark. (3.3) As the work of Ioffe has demonstrated, positively
homogeneous multifunctions satisfying H(F))(2) are the right multivalued analog
of bounded linear operators.

(3.4) Because of the special form of the dynamics, the multifunction u — P(u)
satisfies P(Au;+(1—A)u)SAP(u,)+(1—2)P(u,) for all 2€[0, 1], u,, u,= L¥Y).

Under the above hypotheses, we can state and prove the following existence
result for problem (**).

Theorom 3.2. If hypotheses H(A),, H(F),, H(L) and H(U) hold, then problem
(**) admits a nonempty, closed, convex set of optimal controls.

Proof. It is easy to check using Fatou’s lemma that (x, u)— J(x, u) is
l.s.c. on L*H)XL*Y). Also it is convex in u. Consider the multifunction
P: S} — 2% defined by u — P(u). From [Theorem 3.1 and Remark (3.3) we
know that P(:) is P (L*H))-valued. We claim that P(-) is l.s.c.. From
Delahaye-Denel [9], we know that it suffices to show that for every Un—u in
St = P(u)Ss-limP(u,). To this end, let x(-)=P(u). By definition we have:
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@)+ A, x@)=g@) a.e., x(0)=x0, ZESHc.z¢»-

Observe that

0, Ft, ue)at

su
So YEF(L, Bn("f

= sup | do®, F¢, u@Ddt=  sup  d(3, She.uen).

2 S eg?
YIESEC., upy(e)) VIESEC, upcd

Similarly

b
S sup d(y, F(t, un®dt=_sup  d(y, She.upen).

0 yeF (T, u(t) U(')GS%‘(-.u(-))

Hence we deduce that

b
h(SFc.upcrs S%(-.u(-)))-:Soh(F(t, u.@®), Ft, u@®))dt -0 as n— oo,

Thus we can find g,ESk.u,» S-t. gn — & in L¥H). Consider the following
evolution equations:

{ Fa@)+AW)xa()=g4(t) a.e., }

xn(0)=x° .

Then x,(-)=p(g,)+). From the proof of we know that p(-) is
continuous from S) into L:(H). Hence p(g.)~ p(g) in L¥H)= x, — x=p(g)
and since clearly x,(-)eP(u,), we have P(u)Ss-limP(u,) and so P(-) is l.s.c..
Now let K(u)= ng&)](x, u). Using Remark 3.4 and the convexity of J(x, -)
we can easily check that K(-) is convex. Also from Theorem 1, p. 122 of
Berge [7]), we know that K(-) isl.s.c. on LXY) and is also w-l.s.c., because it
is convex. Then since S} is w-compact in LY (see Proposition 3.1 of [15)),
from Weierstrass’ theorem we conclude that inf K(u) admits a solution and

1
the set of solutions is clearly closed, convex. sudy Q.E.D

4. Variational stability.

In this section we will examine the dependence of the optimal controls on
the data of the problem. Such a stability analysis is useful from both the
theoretical and applied viewpoints. It produces useful continuous dependence
results, robust computational schemes and provides information about the best
possible mathematical model, since it tells us what tolerances are permitted in
the specification of the data.

So we will be examining the following sequence of minimax control pro-
blems:
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Jaln, )= La(t, 2a(®), un(t)dt - inf sup
.6 2O+ Ault, 2a)EFE, 240, 1al®)) 2.,y { (s
220)=%on, ua()EU,(t) a.e.

and the limit problem is (*).

Let U, be the set of optimal controls of (*), and U the set of optimal
controls of (*). We will assume that U,, U#¢, n=1. Of course if the hypo-
theses of are satisfied, then this is automatically the case.

Recall that A,: L¥X)— L%X*) is defined by A,(x)@)= A, x(t)) and
similarly A: L%X)— L%X*). These are the realizations (liftings) of the
operators A,(-, -), A(-, -) on L*X). To prove our variational stability result
we will need the following hypotheses on the problems:

H(A),: A,, A: TxX— X* are operators satisfying H(A), (1)—(4) uniformly in
n=1 and
(5) An.x,>Ax in LYX*) as n—oo for every x,—x in L¥X).
H(F),: Fn, F: TXHXY—P;(H) are multifunctions s.t.
1) @, x, u—-F,t, x, u), Ft, x, u) are graph measurable,
(2) Rh(F(t, x, u), Fo(t, y, w)<k@)|x—y| a.e. for all ucW and with k(-)
eL}, _
3) |Fut, x, | =a,@)+b,)| x| +llul) a.e. with ai(-), by(-)e L},
(4) if up>u in W, then Fo@, x, un)— F(t, x, u) for all (¢, x)&T X H.
HU),: Un,U: T-P;(Y) are measurable multifunctions s.t. U,@), U)W
a.e. with WeP,,(Y) and U,)=>U() a.e..
H(L),: L., L:TXHXY — R are integrands s.t.
(1) t— L., x, u) are measurable,
2) (x, u)— L,(t, x, u) are continuous, convex,
) Lalt, -, )SLE, -, -) a.e. (where u means uniformly on compact subsets
of HXY)
@ | LaGt, %, w) S¢@+r(1 x|+ u]?) a.e. with ¢(-)= L}, r>0.

Assume that the control space Y is a separable, reflexive Banach space.
We have the following variational stability result :

Theorem 4.1. If hypotheses H(A),, H(F),, HU),, H(L), hold and xon = x, in
H, then s-limU,SU in L\Y).

Proof. Let S,={(x, u)e L}(H)XS} : admissible pairs for (*),} and S=
{(x, ) L*(H)X S} : admissible pairs for (*)}. Our claim is that Sn’—K>S as
n-—+ oo, To this end let (x, u)eS. Let u,()=proj(u(t); U,(t)). Because of
hypothesis H(U),, u.(-) is measurable and so clearly u,=Sj,. Also since U,(t)
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X2 U@ a.e., from Theorem 3.33 of Attouch [2], we have u,(t)->u(t) a.e..
So from hypothesis H(F), (4), we get:

h(FR(t, x, ua(t), F@, x, u®))—0 a.e..

Also h(Fu(t, x, unt)), Falt, y, u.(t))<k{t)lx—y| a.e. for all n=1 and all (x, y)
eHxH. By definition we have ~

IO+ AC, xW)=g®) a.e., x(0)=x0 LESkc.2¢r -

 Set ma(t)=proj(g(t); Falt, x(t), ua(t))) and f,{, 2)=proj(m.(t); Fu(t, z, ua(t))).
Observe that m.(t)=fa.(t, x.(t)). Consider the following evolution equation

Zat)+Ant, x2)=fa(t, x,2)) a.e., x,(0)=x0s.

Recalling that f.(t, -) is continuous (see Attouch [2], Theorem 3.33, p. 322),
from [Theorem 3.1, we know that the above Cauchy problem has a solution
xa,(:)EW(T). From the a priori estimates of the proof of [Theorem 3.1, we
know that {x,.},.; is bounded in W(T'). Hence by passing to a subsequence if
necessary we may assume that %, — % in W(T). Then we have

CEa— (1), £a()— 2D+ An(, xa(8))— A, x@)), xalt)—x(t)>
=S alt, x2(1))—8(1), xalt)—x(t)> a.e..

Integrating we have:

| £a)— 5@1*S | Fon— %ol *+2{ <An(s, 5a(6)—Ans, %(s), %a(s)—x(s)>ds
+2{ <Auls, 2(s)—Als, 5(), xals)—x(s)>ds

+2{ <Fals, xa(sN—8(s)y xals)—2(s)ds
= | %a(t)— () |2S | Kon— %o| 4+ 2(Anx— A%, Xa—Xo
+2{ <fals, 2a()—8(s), £als)—x(s>ds.
Observe that |

[ <fats, zalsn—gs) xals)—x(s)>ds
<[ 17265, 2alsD—Fals, KN - | als)=2(5) s

+.1£(s, 2(N—8(®)] - | £a(8)= 2(s)Ids

Recalling that || x| 2cxy<=M,, we have



A MINIMAX OPTIMAL CONTROL PROBLEM 13
| 2a®)—2()1*< | Xon— 20| 24+2M, || A x — Ax || 12 xw
+ZS:[|fn(s: xa(8)—fals, x(sNI+17(s, x(s))—g(s)|]- | xa(s)—x(s)|ds.

Invoking Lemma A.5, p. 157 of Brezis [8], we get

| £2()—2@)| < | xon—xo| +2(My|| Apx— A x|l 2 x0)"*

+ U £as, malo)— 1G5, =DI+1 7G5, 2D +1 £Gs, HN—g(s))ds. Q)

Note that

| Fa(s, xa(8))—fals, 2(s))|=d(ma(s), Fa(s, x(s)))
Sh(Fa(s, x4(5)), Fa(s, x(s)))S k(s)| x(s)—x(s)|
and
| fFa(s, 2(s)—g(s)| S h(Fu(s, x(s)), F(s, x(s))) >0 as n — oo,

Since x,— £ in W(T) and W(T)c, L¥H) compactly, we may assume that x,(¢)
= x(t) in H. So since A,x > Ax in L¥X*), by passing to the limit as n — o
in (1) we get:

40— x(0)| < ()| 4(5)—2(s) | ds.

An application of Gronwall’s inequality gives us £=x. Hence every subsequence
of {xn}nz1 has a further subsequence converging strongly in L*H) to x(-)
(recall W(T)c, L¥(H) compactly). Thus x,—x in L:H). Since (xa, un)ESn
and (xa, ua)—>(x, u) in L¥H)xSl, we conclude that

Sgs-li___msn. (2)

" Next let (xa, #2)ES,, n=1, with (X, un) > (x, u) in L¥H)XSy. By pas-
sing to a subsequence if necessary we may assume that x,(t) - x(f) a.e. in H
and u,,(t)—’»u(t) a.e. in Y. By definition x,(:)=p(r.(+)) with T ESF oz g0 ug -
Using the a priori bounds and the growth hypothesis on F,(-, -, -), we get that

{ra(-)}%=: is bounded in L*(H), hence sequentially w-compact. Thus we may
assume that 7, —7 in L}H). Note that

Rt %a(0), unl®)), F(t, 50), u®)
Sh(Fult, 2a®), ua®)), Falt, 2(0), unO)+h(Falt, 5), un®), F, (), u®)
< h(0)] 2alt)— 2O+ Rt 10), un®), F(t, 50, u®) — 0 a.e.

h
2 2
= SF‘n(-.rn(-). Up()) T Ste.,z¢or. ueen
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== r&Skc.. 2y uee»-
Also we have:
En(t)+ An(t, x2(8))=7a(t) a.e.
== (&ny Qo {An(xn), e=<rs, g0 for g& LAX)
= (&, Pot<AR), Oo=(7, a.
Since g= L¥ X) was arbitrary we conclude that
L)+ A¢, x@)=r@) a.e., x(0)=x0, 7ESFc.z¢ uen
== (x, w)&S
= s-limS,&S. 3)
From (2) and (3) above we conclude that S, £S. Also from hypothesis H(L), we

have that [, % J uniformly on compact subsets of L*(H)x L*Y). Then invok-
ing Theorems 2.11 and 2.15 of Attouch [2], we get that

én(w)= sup [Ja(x, u)=0s,(x, u)]—> sup [J(x, w)=0ds(x, u)]=¢(u)

reL2(H) reL2(H)
where ds,(x, w)=0 if (x, u)ESs, +oo if (x, u)&ESa. Similarly for ds(-, -).
Next let u, — u in L*Y). Because of the compactness of P(u,) and P(u)
in L*H) and the continuity of the cost functionals [.(-, u,) and J(-, u), we
can find x,€P(u,) and x=P(u) s.t. @a(un)=Jn(xr, us) and ¢(u)=J(x, u). We
may assume as before that x, — x in L*H). Then we have:
lmJ a(xn, ua)=J(x, u) = lim@a(ua)=¢(u).

Thus invoking Theorem 2.5 of Langen we get that s-im0,SU in LYY).
Q.E.D.
5. A necessary and sufficient condition for optimality.

In this section we derive a necessary and sufficient condition for a control
function #(-)eS# to be optimal. To get this, we will consider a special version
of problem (*) with linear terminal cost and semilinear dynamics. So the
minimax control problem under consideration is the following :

(¢, x(b)) — il}tf sup
s.t. xO)+AQx@EF{, ut)) a.e., p (¥**)
x(0)=x, u&Ss.

We will need the following hypotheses on the data of (***).
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H(A);: A: TxX-— X* is an operator s.t.
1) 1A x—ADxll«=kIt'—2t|*Ixll, a=(0, 1],
(2) A@)-) is linear and [|[A®)x[|«<b| x| a.e., b>0,
(3) <Al)x, x>=c|x|* a.e..

From Tanabe (section 5.4), we know that {A()}:er generates a strongly
continuous evolution operator S: 4={(t, s): 0<s<t<b}—.L(H), with respect to
which a trajectory of (***) can be written as

x()=5, O)xo+S:S(t, 9f(s)ds, tcT, fESke ucr.

If we also assume hypotheses H(F), and H(U), from [Theorem 4.1, we know
that (***) admits an optimal control.

Theorem 5.1. If hypotheses H(A)s, H(F), and H(U) hold, then 2#<S} is an
optimal control for (***) if and only if

min max (y, S(b, t)*¢)= max (y, S(b, t)*c) a.e..
uelU(t) yeF(t, u) yEF, ut)

Proof. Observe that the attainable set at time b is given by
b
Rb)={x(b)=Sb, Oxo+| S, )g(s)ds, g€ Sheuerm u()ESH} .

So 2= S} will be an optimal control for the minimax problem (***) if and only if

inf sup (¢, x(b))=(c, £(b)) _ (1)
vesh s€5hc., ueen
where

b
#0)=Sb, 0xo+ | S®, 98(5)ds, gk 2.
Then we have:

inf  sup (¢, x(b)=inf  sup (c, S(b, O)xo+S:S(b, $)2(s)ds)

1 2 1 2
uESy 8ESE., u(e)) uESy 8ESE., 4y

=(c, S(b, O)xo)+ inf  sup (e, S:saa, s)g(s)ds).

1 2
uESy 8ESE(., 4y

Note that the summand (¢, S(b, 0)x,) will be cancelled by the corresponding
term in the right hand side of (1). Then we have:

inf  sup S:(c, Sb, $)g(s))ds

1 2
uESy geSF(,. u())

—inf  sup S:(S(b, sYc, g(s))ds

1 2
uUESy 8€ESE(., ueen

= inf sup Sb(y, S(b, s)*c)ds

uesh VEFE. u@)Jo
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= inf \ a(S(s, s)*c)ds

IS F(s.u
uESy S

=Sb inf a(S(b, s)*c)ds,

o uelU(s F(s, u(8))

here Fg( ) ) denotes the support function of F(s, u(s)). So going back in (1)
u(s)
we get:

#(-YeS} solves the minimax control problem (***) if and only if

S” inf_o(S(, s)*c)ds= So(g(('bh syre)ds

oucU(s) Fce,u
& inf (S, s)*c)o(S(b, s)*c) a.e.
uclU(s) F(s,uw) F(s, u(8))
& min max (y, S(b, s)*¢)= max (¥, S, s)*c) a.e.. Q.E.D.

uel (s yeF(s, u) YEF (8, % (8))

6. An example.

We will conclude with an example illustrating the applicability of our work.
So let T=[0, b] and Z a bounded domain in R™ with smooth boundary dZ=I".
We will consider the following minimax distributed parameter control system.

J(x, u)=g:SZL(t, z, x(t, z), u(t, z))dzdt — inf sup

0x(t, 2)

s. t.
ot lal.1B1sm

(—1)'*'D*(a.p(t, 2)DPx(2, 2))

eF(t, z, ut, z)) on TXZ, (rkrk)

Drx(t, 2)=0 on TXxI' for |yr|sm—1,
x(0, 2)=x42) on {0} XZ,

L] ut, 2)|*dz< M.

/
We will need the following hypotheses concerning the data of (****),

H(a): a.p: TXZ - R are functions in LT XZ) s.t.
1) S anpt, 2)xaxp=clx|®* a.e., ¢>0,

lal, 1f1sm
() laapl, 2)|<b(2) a.e. with b(-)e L=(Z).
H(F): F(, z, u)=[b\t, 2)u, by(t, 2)u]S R with b,<b, a.e. b, ), b:(t, )
L>(Z) and t — ||by(t, *)lle, I1be(t, *)llE LE.
H(L);: L: TXZXRXR-— R is an integrand s.t.
(1) L(, -, -, ) is measurable,
2) L@,z -, -)is l.s.c. and convex in u,
(3) é@, 2)—M(z)(| x| +Ilul)S L, 2, x, u) a.e. with ¢(-, -)e LT XZ), M(-)
e LYZ).
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Theorem 6.1. If hypotheses H(a), H(F), and H(L) hold, then (****) admits
a minmimax optimal control.

Proof. Consider the Gelfand triple consisting of the spaces X=HMZ),
H=L*Z) and X*=(H™Z)*=H ™ Z). All the embeddings are continuous and
dense and furthermore by the Sobolev-Kondrachov-Rellich embedding theorem
they are also compact. On H(Z)x H™Z) consider the following time dependent
Dirichlet form :

at, x, )=\, 3 austt, HD*x(2)Dy(2)dz.

From Fubini’s theorem, we see that t—a(¢, x, y) is measurable. Also from the
Cauchy-Schwartz inequality, we get

||, 80st, DDP 22Dz | <laaslo( [ DPxteraz) "({ DPy(eraz)”

== la@t, x, Y| SNnlxlapa 1ylapa.

Let A(t): HYMZ)—> H ™(Z) be the linear operator defined by a(t, x, y)=
(A®)x, y>. Then clearly A¢)(-)eL(X, X*), t—A()x is measurable and be-
cause of hypothesis H(a) (1) we have

CA@)x, x>= m.glsmgzaaﬁ(t, 2)DPx(z)D*y(2)dz

<c X SZD"x(Z)’dz=CI|xIIH;»<z>-

lajsm

Hence A(¢)x satisfies hypothesis H(A),.
Next let £: T X L¥Z)— P;(L¥Z)) be defined by

Ft, wy={ye LYZ): b\t, Du(z)<y(2)<by(t, 2)u(z) a.e.}.
It is easy to check that FY(-, -) satisfies hypothesis H(F),. Also let L: Tx
L¥Z)x L¥Z)— R be defined by
L@, x, u)=SZL(t, z, x(2), u(2))dz.
From Lemma 2 of Balder [5], we know we can find L,: TXZXRXR— R.
Caratheodory functions s.t. L, 1 L and é(t, 2)—M(2)(| x|+ |ul)S L, 2, x, u)<
k. Set L,@, x, u)=SZL,,(t, z, %(2), u(z))dz. Then L,(-, -, ) is measurable in

t and continuous in (x, u) (i.e., a Caratheodory function), hence it is jointly
measurable. Furthermore the monotone convergence theorem tells us that L, 1
L=L is jointly measurable. Also an application of Fatou’s lemma tells us that
L@, -, -) is lLs.c. and it is also convex in u. Furthermore note that o@t)—
Ml %l 2+l 2c)S Lt, x, u) a.e. with $@)=Ilg(t, ) M=|M(-)|,. Let £,=
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xo()E L¥Z).

Finallylet Y =L%Z)and set Ut)=W={ucs L¥Z): |ull}ecySM}E Pur(L¥Z)).
Then (****) is equivalent to the following abstract minimax control problem
defined on (X, H, X*,Y):

a b

Jx, w={ 1, x@), u®)dt - int sup

s.t. ) +AD xS, u®)) a.e., p (FEERy
x(0)=2%,, u@)sW a.e..

Invoking we get that (****)’, hence (****) too, admits a minimax
optimal control 2 L T XZ). Q.E.D.
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