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Abstract. We construct arbitrarily many skein equivalent 2-bridge knots
(resp. links) with the same Kauffman polynomial (resp. Kauffman and 2-
variable Alexander polynomials). We also consider a similar example for a
3-braid knot or link.

In [4, Proposition 4.1], we give a method to construct a pair of 2-bridge
knots or links sharing the same Kauffman polynomial, and using this we obtain
the following examples: a pair of fibered, amphicheiral, skein equivalent 2-
bridge knots with the same Kauffman polynomial [4, Theorem 4], and a pair
of fibered, skein equivalent 2-bridge links with the same 2-variable Alexander
and Kauffman polynomials [4, Theorem 6]. Also we have the following
examples : arbitrarily many skein equivalent, amphicheiral, fibered 2-bridge
knots [4, Theorem 1], and arbitrarily many skein equivalent, fibered 2-bridge
links with the same 2-variable Alexander polynomial [4, Theorem 7]. In this
paper we prove the following :

Theorem 1. For any positive integer N, there exist 2%, mutually distinct,
amphicheiral, fibered 2-bridge knots, which are skein equivalent and have the same
Kauffman polynomial.

Theorem 2. For any positive integer N, there exist 2¥, mutually distinct,
fibered 2-bridge links, which are skein equivalent and have the same Kauffman and
2-variable Alexander polynomials.

The numbers of pairs of 2-bridge knots and links through 20 crossings which
share the same Kauffman polynomial are 58 and 37 [6], respectively, where
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a knot (or link) and its mirror image are counted as one. Among them the
two pairs of 2-bridge knots of 20 crossings cannot be explained by [4, Proposi-
tion 4.1]. Observing these pairs, we obtain which is an extended
version of this proposition, and prove the above theorems. In Sect. 4, we list
all the above pairs putting in the form applicable to

In Sect. 3, we give a method to construct many 3-braid knots or links
having the same Kauffman polynomial, which is a generalization of [4, Propo-
sition 5.5].

We refer to [8] for the definition of a skein triple and a skein equivalence.
If two links L, and L, are skein equivalent, we write L,~L,. We refer to
for the definition of the Kauffman and the L polynomials. We consider the
2-variable Conway potential function rather than the 2-variable Alexander
polynomial.

Acknowledgement. I would like to thank Toshio Sumi for supplying a
computer program for making the tables.

1. Preliminaries

Let @ be a 3-braid, a=B,. We denote a 3-knit aSf:a~'S%a .- a 'S¢ra
with n even and aSfia™'S{2a - aSira™' with n odd by ala., a, -, ay,),
a;€ZU{x}. For n=0, we interpret a(a,, a,, -, a,) as a. Here S,, S, are
elementary 3-braids and ST, ST are braid-like elements as shown in Fig. 1. If
a is a pure 3-braid and a; is even, then we denote an oriented 2-bridge knot
and an oriented 2-bridge link as shown in Fig. 2 by Kace, ap.ap- The
notation is the same as in [4].

Fig. 1.
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)

a(@,, =+, @)

n odd

a(alp tty an)

n even
Fig. 2.

Proposition 1. If a is a pure 3-braid, then the 2-bridge knots or links
Kacanyang, 20> aNA Kocop,,, ... 205,20, Gre skein equivalent.

Proof. We prove by induction on n. The case n=2 is [4, Proposition 3.2].
Suppose that Kaces,, 205,20, a0d Kaces,,.... 285,25, aT€ skein equivalent for n<k—1,
where £>3. For a=S%:S% ... S2:S%, we define @=S;%Si?t--- S;u1S771. We
have skein triples (Kaces,, ... 205,20 y-2.205)9 Kaceby . 20p-2.20 1,205 Kacopg,o 20, -
Kpgcan,)and (Kaces g, 2p - y-2,205 g, 2073 Kacey, 205 1,205 <90 2095 Kacos ¥ Kacany g, 200)s
where 8 is either @ or & according as if % is odd or even. We can prove that
Koy and Kaa,, are skein equivalent by induction on b.. If b,_,=0, then
Ka(zbl""'2bk—2'2bk—1-2bk)=Ka(2b1.-u.2bk_2+2bk) and Ka(zb,,.zb,,_,,zbk_g.---.zbl)=Kaceb,,+
255,20, are skein equivalent by the inductive hypothesis. Thus by induction
on b,.,, we can prove for the case n=~k. This completes the proof.

Let Vaceo,, 205,25, be the Conway potential function of the 2-bridge link
Kacoy, 005,20, Where a is a pure 3-braid and = is odd.

Pl'OpOSltlon 2. Va(zbl,gbz_...,2bn)=va(zan,..._gbz,zbl).

Proof. Since Va(zbl.....zbn_,,.zb,,_,.zbn)=va<zb1.---.2bn_2.207,_1-2,2»")—(tx—ti'l)(tz—t?)
Vacesy, o 2059 Vaczoy) = Vaczsy, .20, _gtedg) — Dn-a(tr — 17 )¢ — 12 )WV e 20y, 20 9> Y aC2b >
by [1, p. 338], we can prove by induction on .

Let ﬁs be the subset of the 3-braid group B, consisting of the 3-braids of
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the form (S§:Sf2---)(--- S3°2S1™). Let Aacay.ay.-.a,> be the L polynomial of the
unoriented diagram as shown in Fig. 3.

a(al’ T an) j

n odd

a(ay, -+, an) —D

n even
Fig. 3.

() A

Proposition 3. If ﬁeﬁs and p;Z for each i, then
Alg(pllpz,...,pn)zAﬁ(pn'..._pzvpl). (1)

Proof. We prove by induction on n. For n=2,3, (1) is true by [4,
Proposition 4.1]. First, supposing that (1) holds for n<k—1, where £=3, we
prove the following special form of (1) for j=0:

Aﬁ(pl,..._pi,%:_,}'qi,...,q1)=.Aﬁ(q1,...,qi,];,_.f;._,/],,pi_...,pl), (2)
where k=2i+j, ¢1:=ps, g2=pr-1, ', ¢i=Pr-:1+1. For i=1, (2) is true by [4,
Proposition 4.1], so we assume that />1. If either p; or ¢, is either 0 or o,
then (2) holds by inductive hypothesis. Thus by [4, Proposition 2.2] and induc-
tion on i, (2) is proved. This also proves (1) for the case n=F is even, and
for the case n==F is odd and pcr+1y/2=1, and so we consider the case n=%k is
odd and pcrsnyie#1l. If Ppersse is either 0 or oo, then (1) holds by inductive
hypothesis, thus by [4, Proposition 2.2], (1) holds in this case. This completes
the proof.

For a 3-braid 8, we define a 3-braid S<p,, ps, -, Pn), P:EZ, as follows:

,B<P1>:.8(p1, —p1),
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/8<p1; pB) Tty pn-n pn>:ﬁ<p1) pZ: Ty Pn—1><pn>-
Note that if ,Beﬁs, then B<pi, ps, -, pn>el§3. It is easy to see the following :

Lemma 1.

B<pl: p2, ) pn>:ﬁ<p1; sz Tty pi-l><pi; Tty pn>; 2§i§n-

Let pi, P2, =+, Dy ¢4, @3, -, qm be integers, m=3"—1, satisfying p.=¢,q;,
where j=0 (mod3*™*), 70 (mod 3*), and

{ 1 if j/3*"'=1 (mod3);
—
T =1 i j/3t1=2 (mod3).

Then ﬁ(i’u D2y =05 Do> = .3(4’1, G2, *** 5 Gm)- Thus /3<—p1» —bz s —Da>=
B@m, =+ 5 2, q1). Also we have B<py, ps, =+, PoXD)=P(q1, @25 ***, Gms» Dy —Qqm, ***,
—gs, —¢q,)and .3<_P1; —Dss “anp):ﬂ(—%; —Qz s —qms Dy Gms 5 G2, Q1)-
Therefore from Propositions 1-3, we obtain:

Lemma 2. (i) If a is a pure 3-braid and b;, bEZ, then
Ka<2b1.2b2.-..,zbn>~Ka<-2b1.—2b2.---.—2bn>n and
Ka<2b1. 2bg, - .2b,,>(2b)'\‘Ka<-2bl. =2bg, e, =20, >(20) «
(ii) If a is a pure 3-braid and b;, b Z, then
va<2b1.2bg.'-- 2 2b,>(20) =Va<—2bl. —2Bg, e, =20 >(20) ¢
Gii) If BB, and pi, p=Z, then
Aﬂ<Pl-1’2""-Pn>=Aﬁ<-P1'—P2-"---pn>: and

—/119<p1. Dorers pn>(p)=Aﬁ<—p1, =D =D >(P)

2. Proofs of Theorems

Proof of Theorem 1. Let B=(S%1S5%%...)(--- S72%2S7%1) be a nontrivial 3-
braid in By, ,=+1. Then all the 2¥ knots in K s, #={Kpc<se; 269,26 y>] 6=+ 1}
are mutually distinct (cf. [4, Lemma 3.1]), amphicheiral (cf. [4, Lemma 3.2]),
and fibered (cf. [4, Lemma 3.3]). From Lemma 1 and Lemma 2 (i), we have:

Kﬂ<251.252.--- ,2eN>=Kﬁ<2¢1.2sg.--- ey 1< g, e, 26 N>
"’Kﬂ<2:,, 289, 1264 =1 0<~28¢, =261 41, 0, =26 N>
=K/3<231.252.--~ 12601, ~2640<-28441. , =28 N>

NKﬂ<2sl,2.2, e 2801, =26i5<26 441, . 28 D>
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:I{ﬁ<251'252-‘“'25i—1-‘2$i-25i+1""'25N>
In the same way, we can prove:
Aﬁ<231,252,...,25N>=-Aﬁ<2:1.2;2....,25;-1.-251.251.;.1.---.25N>

Thus Kp,~ is a desired set of 2-bridge knots.

Proof of Theorem 2. Let B be as in the above. Then the set of 2-bridge
links £ y={Kp<ze; 269, .2: y>r| €s==1} is a desired one. The proof is similar
to the above.

Remark. In a similar way, we can prove that the 2-bridge links in the
above Lz y have the same dichromatic link invariant defined by Hoste and
Kidwell [2], which is a extension of both the 2-variable Jones and the 2-variable
Alexander polynomials. This invariant also extends the dichromatic link
invariant defined by Hoste and Przytycki [3], which specializes to the Jones
polynomial.

3. Closed 3-braids

Let a be a 3-braid and let a[2n; p,, ps, -+, Pem] be the closed 3-knit
(A*aS%ia~'S%2a --- a”'SE2n)", where A’=(S,S.S,)? is a generator of the center
of By, n€Z, py=2Z\J{o}.

Proposition 4. If a is a 3-braid and n, p,=Z, then va[2n; D15 Day ++ » Dam]
and a[2n; pam, -** , Ds, D1] are skein equivalent.

Proof. We prove by induction on m. The case m=1 is [4, Proposition
5.1]. Supposing that the proposition is true for m<k—1, k=3, we prove:

al:zn; pl: T pi; T pzk]""a[zn; ka, ot Pt; Tty pl] (3)

If p;=0, then (3) holds by the inductive hypothesis. From the skein triples:
(@[2n; py, - s Day == s Derls @205 Py, oo+, Pi—2, -+, Par], @[2n; Py, o+, ps—1, -, P2z ]),
and (a[2n; pax, =+ 5 Diy =+ » D1l, @[2n; Do, -+, ps—1, -+, D11, a[2n, Pes, -+, Di—2,
-, p.]), if (3) holds for p;=1, then (3) holds for all p,=Z. When p,=1 for all

7, (3) is trivial. Thus the proof is complete.

Proposition 5. If ﬁeﬁs, and n, p;<Z, then
Aﬁ[zu; pl.pg.---.pgm]=Aﬁ[2n; pzm;---.pz.pll (4)

(Note that Fﬁ[zn; D1sDo .pzm]=a-(en+p1+p2+~-~ +p2m)Aﬁ[2n; Dy Poeeers pzm].)

Proof. We prove by induction on m. The case m=1 is trivial and the
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case m=2 is [4, Proposition 5.5]. Supposing that the proposition is true for
m<k—1, k=3, we prove (4) for m==%k. If p;=0, then (4) is true by the induc-
tive hypothesis. If p,=oc0, then

—p—2n
Aﬁ[2n; P1.Doie ,pzk]'—a Aﬁ(pi-(-l--'- v Pop P1e s Pi-1)
and
—pn—2n
Aﬁfzn; Pog P2 P10 A19<Pt—1-"' 1 P31 Pogr  Pit1)?

which equal by Proposition 3. Thus from [4, Proposition 2.2], if (4) holds for
p:=1, then (4) holds for all p,=Z. When p,=1 for all 7, then (4) is trivial,
and so the proof is complete.

For the integers pi, Pz, - » Dams G5 ¥1, Y2, *** » Yem, if

Diss if 7=0 (mod3),
ri=y q if =1 (mod3),
—q if /=2 (mod3),

then alg>[2n; P, Doy -+ » Peml=al[2n; ry, 7s, =+, ¥em], Where a€B; and ne’z.
Hence al—q>[2n; pam, =+ » Doy Prl=al2m; rem, =+, 72, 71]. Thus if ,8653, then
from Propositions 4 and 5 the following four closed 3-braids are equivalent and
have the same Kauffman polynomial: ‘

ﬁ(i‘D[zn; Py Doy =5 Dam], ,3<.-tq>[272; Dem, =+ 5 Dos Pil.

In general, we have:

Proposition 6. If ,Beﬁs, and pi, g;=Z, then all the closed 3-braids in the
following set are skein equivalent and have the same Kauffman polynomial

{,3<5qu, €232, e1qi>[2n; p1, P2y s Deml,
ﬁ(elql, €2q2, ", 5141>[2n; Dems =+ 5 Do Px]; e,=i1} .
However, the classification of the above closed 3-braids is not easy.
Example. Let 8=S3Si%. Then by the computer calculation, we can show

the Jones polynomials of the 3-parallel links of the following four closed 3-
braids are mutually distinct using [9, Corollary 4.4.9]:

B<x1>[0;3, —1,1,1],  p<«x1>[0;1,1, —1,3].

4. Tables

Tables 1 and 2 give all the pairs of 2-bridge knots and links through 20
crossings sharing the same Kauffman polynomial. We list only one member
from each pair putting in the form Ka p, 0.0, Where a,=SiS78,
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Kal(p' a
cr P q det
13 2 1 245
2 -1 255
14 2 -2 505 P
15 4 1 495
4 -1 505
3 2 745
3 -2 755
16 4 2 995 P
4 -2 1005 P
17 6 1 745
6 -1 755
5 2 1245
5 -2 1255
4 3 1495
4 -3 1505
18 6 2 1495 P
6 -2 1505 P
4 —4 2005 P
19 8 1 995
8 -1 1005
7 2 1745
7 -2 1755
6 3 2245
6 -3 2255
5 4 2495
5 —4 2505
20 8 2 1995 P
8 -2 2005 P
6 4 2995 P
6 —4 3005 P

T. KANENOBU

Table 1.

Ka;(p. q.7)

cr ? q r det

16 1 1 -1 625

17 2 1 1 1175
2 -1 —1 1225
2 1 —1 1275
3 -1 1 1325

18 3 1 1 1775
3 -1 ~1 1825
3 1 -1 1925
3 —1 1 1975
1 3 -1 1875
2 2 1 2425 P
2 —2 -1 2475 P
2 2 —1 2525 P
2 -2 1 2575 P

19 4 1 1 2375
4 -1 -1 2425
4 1 -1 2575
4 -1 1 2625
3 1 2 3625
3 —1 —2 3725
3 1 -2 3775
3 —1 2 3875
2 3 1 3675
2 —3 -1 3725
2 3 -1 3775
2 -3 1 3875

20 5 1 1 2975
5 -1 -1 3025
5 1 -1 3225
5 -1 1 3275
1 5 -1 3125
4 2 1 4875 P
4 —2 -1 4925 P
4 2 -1 5075 P
4 -2 1 5125 P
2 4 1 4925 P
2 —4 —1 4975 P
2 4 —1 5025 P
2 —4 1 5075 P
3 3 1 5525
3 -3 —1 5575
3 3 —1 5675
3 -3 1 5725
3 2 2 7375 P
3 -2 —2 7475 P
3 2 —2 7525 P
3 —2 2 7625 P
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Table 1 (continued)
Kayp.g.ros Kayn. o
cr b q r s det cr b q det
20 1 1 1 -1 2995 19 2 1 4381
1 1 -1 —1 3005 DAY 2 -1 4407
1 1 -1 1 3245 20 2 —2 8801 P
1 —1 1 —1 3505 PAe
Table 2.
Koo o> Kayp.q.7>
cr b q det cr j) q r det
12 1 —1 130 17 1 2 —1 1250 P
14 3 1 370 18 2 1 —2 2500
3 -1 380 19 1 4 —1 2500 P
16 5 1 620 3 2 1 3650 P
5 —1 630 3 -2 -1 3700
3 -3 1130 3 2 —1 3800
18 7 1 870 3 —2 1 3850
7 —1 880 2 2 -2 5000 PA
5 3 1870 20 4 1 2 4850
5 -3 1880 4 -1 —2 4950
20 9 1 1120 4 1 -2 5050
9 —1 1130 4 —1 2 5150
7 3 2620 2 3 —2 7500
7 -3 2630
5 —5 3130
Kaz(P-q) Kascp. Q)
cr P q det cr b q det
18 1 -1 2210 18 1 -1 1010 PA
20 3 1 6578 19 2 1 1990 PA
3 -1 6604 2 —1 2010 PA
20 3 1 2990 PA
3 —1 3010 PA
2 -2 4010 PA

a,=S352532S7%, a,=S3iS7%.
determinants (=det).

We also list the crossing number (=cr) and the
An entry “P” (resp. “A”) indicates that the pair are skein

equivalent (resp. have the same 2-variable Alexander polynomial) endowed with

suitable orientation.

[4, Proposition 4.1].
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