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Abstract. ' In this paper, we study a general central limit theorem and a general
law of the'iterated logarithm for partial sums of a generalized linear process
X=X %—wan-jej, where {a,} is a sequence of invariant random variables
and {¢,} is a strictly stationary sequence of martingale differences.

1. Introduction. Let 2 be the Cartesian product II3-_..R of copies of the
real line, and let &,: 2—R be the coordinate functions e (@)=w,, o={w,}. 2
is given the o¢-field & which is the smallest g-field containing all sets &3'B,
with B a Borel subset of R. Let T be the shift transformation, T {®w,}= {@n+}-
We consider any T-invariant probability P (i.e. P(TA)=P(A) for all A€%)
defined on (2, ). Then {e,, —co<n<oo} is a (strictly) stationary sequence on
(2, ¢, P) and any stationary sequence has the coordinate representation as just
described, see, for example, Stout (1974). Let J denote the invariant o-field;
that is, 4 is the collection of A= g such that TA=A. If for all A=y either
P(A)=0 or P(A)=1, then P is said to be ergodic. Let &, be the sub-o-field
of § generated by the en,; m<n, and write F_.=N\Fe_uF.. Since F,T Z (i.e.

n=-Fn generates ), from the entropic ergodic theory it follows in general
that JCF_.mod P (which means that for every A,EdJ, there exists A;:€EF_
such that P(A,;AA,)=0, where A;AA,=A,\JA,—A,NA,), see Parry (1981), p. 68;
evidently JC P(T) where @(T) is the Pinsker o-field. We shall say that P is
weakly regular if F_.,=d9modP (i.e. F_.CImodP as well). On the other
hand, P is called regular if P(A)=0 or P(A)=1 for all A=Z_.., see Ibragimov
and Linnik (1971). Clearly P is regular if and only if P is ergodic and weakly
regular,

In this paper we shall be concerned with a stationary process on (2, &, P)
which may be represented in the form

¢y Xo= 3 an_s,

where the a; are J-measurable random variables such that
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2) i a?<x a.s., and

J=~—c0

3) E(egl9_,)=0 a.s. and E(ei|I)<x a.s.

Since E(en|Frn-1)=E(eo] F_1)eT"=0 a.s. for all n, {g,, F,, —oo<n<oo} forms a
stationary sequence of (not necessarily square integrable) martingale differences.
We note that the conditional expectation E(eZ|9) is defined as an J-measurable

function even when FEei=oo, and that if the measure 2(A)=SAs§dP, Aey, is

o-finite, then E(sl|J)<oo a.s. by the Radon-Nikodym theorem. Given any o-
field cC &, there exists (see Loeve (1978), pages 19 ff.) a family of regular
conditional probabilities (P,: w<£) on ¢ induced by €. That is, P, (A) is a
function defined for A= and w=Q such that

(a) for each A%, P,(A) is a version of P(A|C), and

(b) for each w=Q2, P,(-) is a probability measure on .

We consider only the case C=J. In this case, any J-measurable function X is
P,-almost surely equal to X(w) for P-almost all w=£. Hence for any F-measur-

able function Y with |EY|<oo, we have E(Y[J)=SYdP,,, P,a.s. for P-almost

all w=f. Moreover, P, is a T-invariant and ergodic measure on (2, ) and
because of (3), {¢,} is a stationary sequence of square integrable martingale
differences on (2, &, P,), at least for P-almost all w=£, see Eagleson (1975)
and Volny (1987). In view of (2) and the remark stated here, the series in (1)
converges almost surely on (£, &4, P,)—at least for P-almost all w2, and

hence X, is well defined on (2, &, P), since P(A):SP,,,(A)P(dw)=1, where A=
(X7 -xn.j&; cOnverges].

We shall obtain in this paper a general central limit theorem for S,=37.X;
and the corresponding iterated logarithm law which provides information on the
rate of almost sure convergence of S,. The ergodic version of Theorem 1 was
given by Heyde (1974). Theorem 2 appears to be new even in the ergodic
case.

Under the assumptions (2) and (3) define

@ fD=QayEel )| B aes|’,  —zsiss.

In view of the remark stated above, f,(A)=[f(1)](w) is a spectral density of the
process {X,} considered on (2, &, P,) for P-almost all w=2.

Theorem 1. Suppose that (2) and (3) hold and f(R) (given by (4)) is continuous
at 2=0 with probability one. Then n™'/*S, converges in distribution as n—oo to
a limit law with characteristic function
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go(t)':-SeXp[—- 7 F(O)X*1dP.

Theorem 2. Suppose in addition to the assumptions of Theorem 1 that
E(leo|"|9)< o a.s. for some r>2, and
E(e¢|F_n)SCE(2|9) a.s. for some positive integer m and some C<oo.

Then
lim sup S,/(2nloglog n)'/2=(2x f(0))!/* a.s.

The last assumption of Theorem 2 is satisfied if P is weakly regular and
E(e}| F_,) converges uniformly as n—oo, by means of the decreasing martingale
theorem.

A process of the kind (1) is widely used in time series analysis. In this
context, a stationary sequence {X,} will be given first and the &, will be given
as functions of the X,. In this case, we shall work with the coordinate
representation of {X,}. The results still hold, since the proofs are essentially
based on the existence of regular conditional probabilities. As an example, let
{X.} be the coordinate representation of a stationary sequence. Assume that
EXy=0 and E(X%|9)<o a.s. and let e,=X,—E(X,|F._,) be the prediction
errors (here &, is the o-field generated by the X,;m<n). Then {e,} is a
stationary martingale difference sequence with E(e|9)<oo a.s. As usual, let
(P,: w=8) be a family of regular conditional probabilities on & induced by J,
and E,(-) denote the expectation with respect to P,. Then we have e,=X,—
E (Xn|Fn_y) P,-a.s. for Palmost all w=, see Eagleson (1975). If P is weakly
regular, then for P-almost all w=®, P, is regular (i.e. {X,} is a stationary
purely non-deterministic process on (2, &, P,) if E,(¢2)>0, see, for example,
Hannan (1970)) and so

n
an_z Ap_j€j Pa,-a.S.
j==co

where a;=E Y (ed)E,(Xnen-;); =0 if E,(e3)=0, and satisfies X7 ,a5<co. There-
fore X, can be written as

n
Xn: 2 an_ij a.S.
J==oa

where aj(w)=[E ' (e|9E(Xren-;19)](w); =0 if E(e}|I)w)=0, and satisfies
Srheaj<oo a.s. Let @, be the o-field generated by the &¢,; m<n. Then it is
easy to see that ¥,=0(2,UJd)mod P. Thus if in addition P is ergodic, then
the best linear predictor is the best "predictor :(both being best in the least
squares sense ; see Hannan and Heyde (1972)), and this remains true on (2, &, P,)
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for P-almost all = even if P is not ergodic.

2. Proofs. Proof of Theorem 1. The following lemma has proved to be
of considerable use in obtaining general central limit theorems from their ergodic
versions, see Volny (1984, 1987).

Lemma. Let X be a random wvariable on (R, F, P) and set s,(w)=
n 230 X(T'w) for wsf. Let (P,:w<ER) be a family of regular conditional
probabilities on F induced by 9. If s,, considered on (2, &, P,), converges in
distribution as n—oo to a limit law with characteristic function ©u(t) for P-
almost all w0, then s,, considered on (2, F, P), converges in distribution as
n—oo to a limit law with characteristic function

o= pu)P(dw).

As we have remarked in Section 1, at least for P-almost all w=Q, {e,}
forms a stationary ergodic sequence of square integrable martingale differences
on (2, ¢, P,), and f,(A) is a spectral density of the process {X,} considered on
(2, ¢, P,). f(2) being continuous at A=0 with probability one, by a result of
Heyde (1974), n~'/%S,, considered on (2, ¢, P,), converges in distribution to the
normal law with mean zero and variance 2zf,(0) for P-almost all w2, from
which and the above lemma the desired conclusion follows.

Proof of Theorem 2. Put
A={w': liril_’swup Sn(@’)/(2nloglog n)*=2x f,.(0))!/2} and
A,={w: lirpﬂiup Sa(w’)/(2nloglog n)'/=(2x f ,(0))"/2} .
In view of the remark stated in Section 1, for P-almost all w2, P,(A)=P,(A,).

If we can show that P,(A,)=1 for P-almost all w2, then P(A):SP,,,(A)P(dw)

=1 which is desired to obtain. Thus in order to prove Theorem 2, we may
restrict ourselves to the case when P is ergodic. In this case

E(el|9)=FEsi=0% a.s. and FE|e&| <o for some r>2.

Without loss of generality, assume that the a; are constants and

2

fD)=Q@r)7a*

1_2 a0t

For n=1, put

Y,,-_—( 3 aj)sn, Z,=X,—Y, and T,=3XZ,.
Jj==00 i=1




CLT AND LIL FOR STATIONARY LINEAR PROCESSES 133

Since |XF_.a;|<co and {e,} has been assumed to be a stationary ergodic
sequence of square integrable martingale differences, it follows from a result
of Stout (1970) that

lim sup i Y.)/2nloglog n)'*=2x f(0))!/? a.s.
N—00 i=1

Thus it suffices to show that
Liglo T./(nloglogn)/*=0 a.s.
T, can be written as
Tn*——jg}wanjs,-,

where

neg o n=g :
Anj=— > ai— > a; if l§]§n and Apnj=— ? a; OtherWlse)
7 i=—-oc0 1=1-7

i
and it is easy to see that

lan;|=K for all n, all ; and some K< .
We shall prove that for all ¢>0 and >0
4) P[|T,|>¢e(nloglogn)*]1=0((log n)~%).

Under the assumption of continuity of f(1) at 1=0,
ET%’:GZ,i at;=nd,, 0,—0 as n—oo
J=—0c

(see Heyde (1974)). We assume without loss of generality that §,>0 for all #,
and put K,=d3". For any 6>0,

6) Pllan;e;|>Kq(n/loglogn)!/? for some j]

< 3 |an;|"Eleol K37 (n/loglog n)""
J==oc0

SK™Eleol"( 53 a3;)K7" (n/loglog n)™"/?

=K"2072E|¢eo| "n~""P/%(loglog n)"/*
=o((log n)9).
Let for n=1 and —oo<j<oo,

enj=e;1[|anse; < K,(n/loglog n)/?]
and let
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snjze;tj—E(S;tjl gj—m) .

Then {eq, mj+t, Fmjer, —0<j<oo} is a martingale difference sequence for each
n=1 and 0L/<m, and

| @njenil S2Ku(n/loglog n)'*=c,, say,

and by the condition of the theorem and the property of measure-preserving
transformation,

E(ei;1F;_n)<E(e}|F;-n)=Ca® a.s. for all ;.

Put A,=c3!, An=(2/2)1+2,c./2)=B/4)2%2 and Un=3F_wln mj+iEn mj+l-
Then for any ¢>0, ‘

@ P £ ausns>elnloglogn)]
j=—
= 1:2_01 P[U..>em™*(nloglog n)"*]
="5) PLexp(R,U ) >exp{em ™ 2a(n loglog n)'/*}]

< 1:%1 P[W .. >exp{em™A,(nloglog n)'*—CnA,0.}],

where W, =exp{A,Uni—An 35l mjr1 E(€%. mjr1| Fmej-1p+1)}. By a result of
Stout (1974), Lemma 5.4.1 and the Fatou lemma, EW,;<1, and hence for any
>0, the right-hand side of (7) is dominated by

mexp{—em™2,(nloglogn)'*+CnA,0.}
=mexp[—{(e/2mK,)—(3/16)CK7*}(log log n)]
<(logn)~?

for all n large enough, since K,—0 as n—co. Repeating the same argument
for —an.sen; we obtain that

¢) P[‘jgmanjsnj

>¢(n log log n)m]gzaog )=

for all n large enough. Using the martingale property, we have for any >0
and >0,

€ P[ \ jgwa nsE(ens| Fjom) ‘ >7(nloglog n)"z]

Stoi(nloglogn)™* 53 E[|anse; | I{l anses > Ka(n/loglog n)*}]
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<77 'Eleo|"(nloglog n) [ K.(n/loglog n)/*]*"" .209‘, fan;|"
j==—o0
<t'K7" 207 2E | go| T Kon ™" "®/%(log log n)<" "2/2

=o((log n)™?).

Since [Tl S| Df-wlnjtnjl + | D5=-wln;E(ens|F-n)| on the event [|ansen;]=
K.(n/loglogn)/? for all j], we obtain (5) from (6), (8) and (9).

Fix #>1 sufficiently large and choose 0<a<1 such that a6>1 and
(1—a)r/2>1. Let ny,=[expk®] for k=1. Then Xg.(logn;) ?<co, and hence
by (5)

él PL|Tq,|>¢e(nsloglogn,)/?]<eo.

Since ¢ is arbitrary, by the Borel-Cantelli lemma

T.,/(niloglogn,)/* —> 0 a.s. as k—oo.
Let
My=maXn <nznzey| To—Ta,l/(nrloglogn,:)’?, kzl.

For each 221,
|Tol/(nloglogn)'?< | Ty, |/(neloglogng)'®-+M,

for each n,<n=<nss.. Thus it suffices to show that M,—0 a.s. as k—o to
complete the proof. By Burkholder’s and Holder’s inequalities, there exists a
constant C,<co depending only or » such that

q T q A ri/2
El jzp Anj€j éCTE j—zp aﬁjej)

! @r-4)/r 4/1 2 T2
=C,E( 3 1an,| & a0 763)

Hence by the Fatou lemma,
»ElTnI'_S_Bln”Z for all n=1 and some B;<oo.
Since {Z,} is stationary, there exists a constant B,<co such that
E(maX,smsal Tm!) <B,n™* for all nz=l,

see Serfling (1970), Theorem B. Hence we have
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EM;;:E(maxlsmsnk.;_l—nk | Tm l )T/(nk IOg log nk)rlz
S Bu(ner1—n2)"?/(nrloglogn,) '
éBak-(l—a)r/z(log k)—r/z

for all £ and some B,<co. 37 ,EM}<co, since (1—a)r/2>1, and hence M,—0
a.s. as desired.
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