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Summary: Let $BG$ and $B$ Aut (X) be classifying spaces of a Lie group $G$

with finite connected components and a topological monoid Aut(X) of self
homotopy equivalences of finite complex $X$ respectively. We determine a
homotopy set of maps between $BG$ and $B$ Aut (X) which are homotopic to
the constant map on skeletons. By applying this result to the canonical map
[X, $BG$] $\rightarrow$ [ $X,$ $B$ Aut $(G)$ ], we give some examples of fibre bundles and fibre
spaces and study the relations between the fibre bundles isomorphism and the
fibre homotopy equivalence.

Introduction

A continuous map $f$ : $X\rightarrow Y$ from a $CW$ complex $X$ to a topological space
$Y$ is called a phantom map, if the restriction map $f|X^{n}$ is homotopic to the
constant map for all $n\geqq 0$ . More generally, two maps $f,$ $g;X\rightarrow Y$ are called a
phantom pair, when the restriction maps $f|X^{n}$ and $g|X^{n}$ are homotopic for all
$n\geqq 0$ . We call the map $g:X\rightarrow Y$ an $f$-phantom map. In [5], we characterized
a phantom pair by using the localization and completion and described a homo-
topy set of phantom pairs by the ordinary cohomology group under some con-
ditions.

Let $BG$ and $B$ Aut(X) be classifying spaces of a Lie group $G$ with finite
connected components and a topological monoid Aut(X) of self homotopy equi-
valences of finite complex $X$ respectively. We determine a homotopy set of
maps between $BG$ and $B$ Aut (X) which are homotopic to the constant map on
skeletons. We give uncountably many distinct fibrations $E\rightarrow BG$ with a fibre
$G$ which are fibre homotopy equivalent to the trivial bundle on skeletons for
some Lie group $G$ .

Our main results are as follows.

Theorem 2.2. Let $G$ be a Lie group with finite connected compOnents and $X$

a connected finite $CW$ complex which is a rational $H$-space. Then, a ($BG,B$ Aut $(X)\rangle$
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is weak homotopy equivalent to a pr0duct $\prod_{k\geqq 0}K(A_{h}, k)$ of Eilenberg-MacLane

spaces where $A=_{f\geq}H^{j-\ell}(X;\pi_{j}(X))\otimes Z^{\wedge}/Z$.

Theorem 2.4. Let $X$ be a connected CW-complex of finite type and $G$ a
top0l0gical monoid. Then, for any map $f:X\rightarrow B$ Aut $(G)$ the inverse image $j_{*}^{-1}(f)$

of the induced map $j_{*}:$ $[X, BG]\rightarrow[X, BAut(G)]$ is the inverse image of the map
$Lim^{1}\pi_{1}C_{f}(X^{n}, BG)\rightarrow Lim^{1}\pi_{1}C_{f}$ ($ X^{n}\leftarrow\leftarrow$ ’ BAut $(G)$). IfX is fimte complex, the induced
map $j_{*}$ is a monomorphism. Moreover, the analogous result holds also for
$i;BAut_{*}(G)\rightarrow B$ Aut $(G)$, and [X, $BG$] $\cap[X, BAut_{*}(G)]=*in$ the homotopy set
[X, $B$ Aut $(G)$].

Example 3.1. Let $G$ be a connected Lie group such as $SO(n)(n>4),$ $Sp(n)$

\langle $n>1$ )
$,$ $U(n)(n>1),$ $SU(n)(n>3)$ and the exceptional Lie groups $G_{2},$ $F_{4},$ $E_{6},$ $E_{7}$ ,

$E_{8}$ . There are uncountably many distinct fibrations $E\rightarrow BG$ with a fibre $G$

which are fibre homotopy equivalent to the trivial bundle on skeletons.

1. Preliminaries

In this paper, we work in the category of compactly generated Hausdorff
spaces with base points and base point preserving maps. Two maps $f,$ $g:X\rightarrow Y$

are called a phantom pair, when the restriction maps $f|X^{n}$ and $g|X^{n}$ are
homotopic for all $n\geqq 0$ . We call the map $g:X\rightarrow Y$ an $f$-phantom map. Espe-
cially, when $f=*$ , a continuous map $g:X\rightarrow Y$ is called a phantom map.

We use the notations and definitions in our paper [5] and the following
notations. Base point free maps are used only in the definitions of Map (X, Y).
$\overline{C}_{f}(X, Y),$ $Aut_{1}(X)$ and Aut (X).

$Map_{*}(X, Y)$ : the space of continuous based maps from $X$ to Y.
Map(X, Y): the space of continuous base point free maps from $X$ to Y.
$C_{f}(X, Y)$ : the connected component of $Map_{*}(X, Y)$ which contains $f$ : $X\rightarrow Y$ .
$\overline{C}_{f}(X, Y)$ : the connected component of Map (X, Y) which contains $f:X\rightarrow Y$ .
$\tilde{\theta}_{f}(X, Y)$ : the space of $f$-phantom maps.
$\theta_{f}(X, Y)$ : the set of the connected components of $ff_{f}(X, Y)$ .
$Aut_{*}(X)$ : the space of self homotopy equivalences of $X$ in $Map_{*}(X, X)$ .
Aut (X): the space of self homotopy equivalences of $X$ in Map (X, $X$ ).
$Aut_{1}(X)=Aut(X)\cap\overline{C}_{\ell d}(X, X),$ $Aut_{*1}(X)=Aut_{*}(X)\cap C_{id}(X, X)$ .
$\cong_{w}$ : the weak homotopy equivalence.

For a general space $X$, we shall use the localization and completion of the
geometric realization of the singular complex of $X$. This is sufficient for our
purposes.



FIBRATIONS OVER CLASSIFYING SPACES 123

Proposition 1.1. Let $W$ be a connected nilpotent CW-complex of fimte type
and $X$ a connected mlpotent $CW$ complex. For any map $f:W\rightarrow X$ ,

(1) $C_{f}(W, X)^{\wedge}$ is weak homotopy equivalent to $C_{f}(W, X^{A})$ and $C_{f}(W^{\wedge}, X^{\wedge})$ .
(2) $C_{f}(W, X)_{Q}$ is weak homotopy equivalent to $C_{f}(W, X_{Q})$ and $C_{f}(W_{Q}, X_{Q})$ .

where $e^{\wedge}:$ $X\rightarrow X^{\wedge}$ is the Sullivan completi0n and $l_{Q}$ ; $X\rightarrow X_{Q}$ is the rationalization.
For $\overline{C}_{f}(W, X^{\wedge})$ and $\overline{C}_{f}(W, X)_{Q}$ , the analogous results hold also.

Proof. When $W$ is a connected finite $CW$ complex, the above statement
(1) is true by Proposition 5.1, 5.4 and 7.1 of Chapter 6 in [2]. When $W$ is a
connected infinite CW-complex, the Lim1 groups of the homotopy groups of
$C_{f}(W^{n}, X)^{\wedge}$ vanishes, because of Proposition 3.5 in [5]. For the statement (2),

we use the analogous methods and Theorem 2.1 in [7].

Theorem 1.2. Let $G$ be a Lie group with finite connected components, $X$ a
connected nilp0tent finite $CW$ complex and $Y$ a connected CW-complex of fimte
type. Then, for any $f:Y\rightarrow X$ where $\theta(X, Y)=\theta_{g}(X, Y)$ for $g=*$ .

(1) $Map_{*}(BG, C_{f}(Y, X))$ is equal to $\tilde{\theta}(BG, C_{f}(Y, X))$ .
(2) $Map_{*}(BG, C_{f}(Y, X))$ is equal to $\tilde{\theta}(BG,\overline{C}_{f}(Y, X))$ .

Proof. Since $Map_{*}(BG, X^{\wedge})$ is weak contractible by Theorem 3.1 in [3],

$Map_{*}(BG, C_{f}(Y, X^{\wedge}))$ is weak contractible by Theorem $C(c)$ in [8]. Hence,
$Map_{*}(BG, C_{f}(Y, X)^{\wedge})$ is weak contractible by Proposition 1.1. For any map
$h:BG\rightarrow C_{f}(Y, X)$ , it satisfies $e^{A}h\cong*$ . Then $h$ is a phantom map by Theorem
3.6 in [5]. The second statement is analogously proved.

We define $\rho:X\rho\rightarrow X$ by the homotopy fibre of $e^{\wedge}:$ $X\rightarrow X^{\wedge}$ . If $X$ is a con-
nected nilpotent CW-complex of finite type, $ X\rho$ is also the homotopy fibre of
$l_{Q}$ : $X_{Q}\rightarrow X_{Q}^{\wedge}$ by the arithmetic square. If $X$ is a rational H-space of finite type,
$ X\rho$ is a product of Eilenberg-MacLane spaces. In this case, there is a fibre
sequence $ X\rho\rightarrow X\rightarrow X^{\wedge}\rightarrow BX\rho$ where $ BX\rho$ is a classifying space of $ X\rho$ .

Proposition 1.3. Let $V$ be a connected nilpOtent $CW$-complex of finite type
which is a rational $H$-space. Then, for all $i\geqq 0$ and $Y$ a connected $CW$-complex,

the following formula holds.

$\pi_{i}(Map_{*}(Y, BV\rho))=\prod_{j>i}H^{j-i}(Y;\pi_{j}(V))\otimes Z^{\wedge}/Z$

Proposition 1.4. Let $X$ be a connected CW-complex which is a rational H-
space of finite type. Then, the following formula holds for all $i>0$ .

$\pi_{i}(Aut_{*1}(X)_{Q})=\prod_{J>i}H^{j-i}(X;\pi_{j}(X))\otimes Q$ .
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Proof. For $i>0$ , one obtains the following equalities by Proposition 1.1
and the properties of a rational H-space.

$\pi_{\ell}(Aut_{*1}(X)_{Q})=\pi_{\ell}(Aut_{*1}(X_{Q}))=[\Sigma\ell X_{Q}, X_{Q}]$

$=\prod_{J>\ell}H^{j-\ell}(X_{Q} ; \pi_{j}(X_{Q}))=\prod_{J>\ell}H^{j-\ell}(X;\pi_{f}(X))\otimes Q$ .

2. Main Results

Let $\Gamma$ be a family of CW-complexes $X$ such that $C_{0}(BG, X),$ $C_{0}(BIC, X^{\wedge})$

are weak contractible for all Lie groups $G$ with finite connected components
and all connected Eilenberg-MacLane spaces K. $\Gamma$ contains a finite CW-com-
plex $X$ , a classifying space of a Lie group and $C_{f}(Y, X)$ for a connected CW-
complex Y.

Theorem 2.1. Let $G$ be a Lie grouP with finite connected components and $V$

a connected nilpotent CW-complex of $\Gamma$. Then, the $follou\eta ng$ results hold.

(1) $ff(BG, V)$ is weak homotopy equivalent to $ff(BK, V)$ where $K$ is a product
of Eilenberg-MacLane sPaces with $G_{Q}\cong K_{Q}$ . For $k\geqq 0,$ $\pi_{k}(\theta(BG, V))$ is
isomorPhic to $A_{k}=\prod_{ki>}H^{\ell-k}(BG;\pi_{i+1}(V))\otimes Z^{\wedge}/Z$. Moreover, when $V$ is a

rational $H$-space, $ff(BG, V)$ is weak homotopy equivalent to a product of
Eilenberg-MacLane spaces $\prod_{k\geq 0}K(A_{k}, k)$ .

(2) For $k\geqq 0,$ $f:BG\rightarrow V,$ $\pi_{k}(ff_{f}(BG, V))$ is isomorphic to a quotient group
of $A_{k}=\prod_{\ell>k}H^{\ell-k}(BG;\pi_{i+1}(V))\otimes Z^{\wedge}/Z$.

Proof. By the principal fibration $Map_{*}(BG, V\rho)\rightarrow Map_{*}(BG, V)\rightarrow Map_{*}(BG, V)$

and $C_{0}(BG, V^{\wedge})\cong*w$
’ we have $Map_{*}(BG, V\rho)\cong w\tilde{\theta}(BG, V)$ . By the Properties of

localization, we have $Map_{*}(BG, V\rho)\cong wMap_{*}(BG_{Q}, V\rho)\cong wMap_{*}(BK_{Q}, V\rho)\cong w$

$Map_{*}(BK, V\rho)$ . By $C_{0}(BK, V)\cong*w$
’ we have $Map_{*}(BK, V\rho)\cong w\tilde{\theta}(BK, V)$ . Hence

we have the result. The second part of (1) is easily proved by the above rela-
tion. The second statement is proved by a fibration $\tilde{\theta}_{f}(BG, V)\rightarrow C_{e^{\wedge}f}(BG, V^{\wedge})$

$\rightarrow C_{0}(BG, BV\rho)$ .

Let $X$ be a connected nilpotent finite CW-complex which is a rational H-
space. Then there are the following fibrations:

$Aut_{*}(X_{Q})\rightarrow Aut(X_{Q})\rightarrow X_{Q}ev$ , $BAut_{*}(X)\rho\rightarrow B$ Aut $(X)\rho\rightarrow BX\rho$

Here $ev$ has the canonical cross section. By the fibration $ BAut_{*}(X)\rho\rightarrow BAut(X)\rho$

$\rightarrow BX\rho$ ($X$ ; a rational H-space), the dimensional reason of H-space and Proposi-
tion 1.3, 1.4, we have the following results.
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Theorem 2.2. Let $G$ be a Lie group with finite connected comp0nents and $X$

a connected finite $CW$ complex which is a rational H-space. Then, $\theta(BG, BAut(X))$

is weak homotopy equivalent to a pr0duct $\prod_{k\geqq 0}K(A_{k}, k)$ of Eilenberg-MacLane

spaces where $A_{k}=\prod_{f\geqq\ell>k}H^{i-k}(BG;H^{j-\ell}(X;\pi_{j}(X))\otimes Z^{\wedge}/Z$.

Theorem 2.3. Let $J$ be a simply connected $CW$ complex which has a finite
Postnikov system and $X$ a connected finite $CW$ complex which is a rational $H$-space.
Then, ff($J,$ $B$ Aut $(X)$ ) is weak homotopy equivalent to a pr0duct of Eilenberg-
MacLane spaces

$\prod_{k\geq 0}K(A_{k}, k)$ where $A_{k}=\prod_{j\geqq i>k}H^{\ell-i}(J;H^{j-\ell}(X_{j}\pi_{j}(X))\otimes Z^{\wedge}/Z$.

Let $j;G\rightarrow Aut(G)$ be the canonical homomorphism induced by the multiplica-
tion $G\times G\rightarrow G$ where $G$ is a topological monoid.

Theorem 2.4. Let $X$ be a connected CW-complex of fimte type and $G$ a
top0l0gical monoid. Then, for any map $f:X\rightarrow B$ Aut $(G)$ the inverse image $j\overline{*}1(f)$

of the induced map $j_{*}:$ $[X, BG]\rightarrow$ [$X,$ $B$ Aut $(G)$] is the inverse image of the map
$Lim^{1}\pi_{1}C_{f}(X^{n}, BG)\rightarrow Lim^{1}\pi_{1}C_{f}$ ( $X^{n},$ $B$ Aut $(G)$). If $X$ is finite complex, the induced
$\overline{map}1*$ is a $mono\overline{morp}hism$ . Moreover, the analogous result holds also for
$i:BAut_{*}(G)\rightarrow B$ Aut $(G)$, and [X, $BG$] $\cap[X, BAut_{*}(G)]=*$ in the homotopy set
[X, $B$ Aut $(G)$].

Proof. There is the following fibration where $ev$ has the canonical cross
section.

$Aut_{*}(G)\rightarrow Aut(G)\rightarrow^{ev}G$ , $BAut_{*}(G)\rightarrow B$ Aut $(G)\leftarrow BG$ .
Since the homotopy group $\pi_{\ell}$ ( $B$ Aut $(G)$) is splited as the direct product
$\pi_{\ell}(BAut_{*}(G))$ and $\pi_{\ell}(BG)$ , the induced morphism $i*$ of cohomology groups
$H^{i}(X, \pi_{i}(BB))\rightarrow H^{\ell}$($X,$ $\pi_{\ell}(B$ Aut $(G))$) is monomorphism. Hence Proposition is
true for a finite $CW$ complex $X$ by Theorem 1.1 of [5]. By Theorem 3.1 of
Chapter 9 of [2] and the next diagrame, we obtain the result.

$*\rightarrow\underline{Lim}^{1}\pi_{1}C_{r}(X^{n}, BG)\rightarrow[X, BG]\rightarrow\underline{Lim}[X^{n}, BG]\rightarrow*$

$\downarrow$ $\downarrow$ $\downarrow$

$*\rightarrow\underline{Lim}^{1}\pi_{1}C_{f}(X^{n}, BAut(G))\rightarrow[X, BAut(G)]\rightarrow\underline{Lim}[X^{n}, BAut(G)]\rightarrow*$

Corollary 2.5. Under the above $assumpt\iota ons$, the map $\underline{Lim}^{1}\pi_{1}C_{f}(X^{n}, BG)\rightarrow$

$Lim^{1}\pi_{1}C_{f}$($X^{n},$ $B$ Aut $(G)$) is 1: 1 for $f=*orX=BH$ a classifying space of a con-
$\overline{nect}ed$ Lie group $H$.

Proof. Since it holds $[\Sigma X, BG]\times[\Sigma X, BAut_{*}(G)]=$ [ $\Sigma X,$ $B$ Aut $(G)$], the
Lim’ group splits. Hence the first part is true. Since it holds $\theta_{f}(BH, BG)=0$
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for all $f:BH\rightarrow BG$ by Theorem 2.1, the second part is true.

3. Example

In this section, we give some examples of fibre bundles and fibre spaces,
and study the relations between the fibre bundle isomorphism and the fibre
homotopy equivalence.

Example 3.1. Let $G$ be a connected Lie group such as $SO(n)(n>4),$ $Sp(n)$

$(n>1),$ $U(n)(n>1),$ $SU(n)(n>3)$ and the exceptional Lie groups $G_{\mathfrak{g}},$ $F_{4},$ $E_{6},$ $E_{7}$ ,
$E_{8}$ . We calculate $\theta$ ($BG,$ $B$ Aut $(G)$) by Theorem 2.2. For $G=SO(n)(n>4)$,
$Sp(n)(n>1),$ $SU(n)(n>3)$, we take $i=4,$ $j=7$ . For $G=U(n)(n>1)$ , we take
$i=2,$ $j=3$ . For $G=G_{2},$ $F_{4},$ $E_{6},$ $E_{7}$ , we take $i=8,$ $j=11$ . For $G=E_{8}$ , we take
$i=12,$ $j=15$ . Then, we have $H^{\ell}(BG,$ $H^{j-\ell}(G, \pi_{j}(G))\otimes Z^{\wedge}/Z=Z^{\wedge}/Z$. Since fibre
homotopy equivalence classes of fibrations $E\rightarrow BG$ with a fibre $G$ are classified
by $BG\rightarrow B$ Aut $(G)$ [6], there are uncoutably many distinct fibrations $E\rightarrow BG$

with a fibre $G$ which are fibre homotopy equivalent to the triviaI bundles on
skeletons. For a general Lie group $G$ , principal fibre bundles $E\rightarrow BG$ with a
fibre $G$ which are fibre homotopy equivalent on skeletons are isomorphic as
fibre bundles by Corollary 2.5.

For $G=SO(n)(n<5),$ $Sp(1),$ $U(1),$ $SU(n)(n>4)$, fibrations $E\rightarrow BG$ with a
fibre $G$ which are fibre homotopy equivalent on skeletons are unique in the
sense of a fibre homotopy equivalence by Theorem 2.2. For a fibration $E\rightarrow BG$

with a fibre $G$ which is fibre homotopy equivalent to a fibre bundle on skeletons,

there is a unique fibre bundle which is fibre homotopy equivalent to the
fibration $E\rightarrow BG$ by Theorem 2.2 and 2.4.

Example 3.2. The cohomology ring of a symplectic group $Sp(n)$ is the
exterier algebra $\Lambda(x_{1}, \cdots , x_{n})$ deg $x_{i}=4i-1(i=1, \cdots , n)$ . Cohomology operations
are calculated in \S 13 of [1]. For example, $P^{1}(x_{i})=2x_{1}x_{1}-(2i+2)x_{i+1}$ for the
reduced power operation mod 3. We assert that $C_{ia}(BSp(n), BSp(n))$ and
$C_{e^{\wedge}}(BSp(n), BSp(n)^{\wedge})$ have non trivial homotopy groups for infinitely many
dimensions. If $\pi_{3}(C_{ia}(BSp(n), BSp(n)))$ is zero, the generator $h:S^{4}\rightarrow BSp(n)$ is
lifted to $k:S^{4}\rightarrow C_{ia}(BSp(n), BSp(n)))$ . This case is not possible by using the
above cohomology operations for the adjoint map $k^{\sim}:$ $S^{4}\times BSp(n)\rightarrow BSp(n)$ with
$k^{\sim}|BSp(n)S^{4}=idh$ . Hence $\pi_{S}(C_{id}(BSp(n), BSp)n)))$ is not zero. By Proposi-
tion 1.2 or Theorem $C(c)$ of [8], it hold $C_{0}(BS^{1}, C_{id})=\theta(BS^{1}, C_{\ell d})$ and
$C_{0}(BZ/p, C_{id})=0$ . There is the homotopy spectral sequence of [4], $E_{g}^{st}=$

$H^{\iota}(BS^{1}, \pi_{t}(C_{\ell d}))$ which converges to $0$ . By the similar arguement of Theorem
4 of [4], we obtain the result. But $C_{0}(BSp(n), BSp(n)^{\wedge})$ is weakly contractible
by Theorem 3.1 of [3].
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Example 3.3. Let $G$ be a connected Lie group with $\pi_{3}(G)\neq 0$ . By Theorem
2.3, $\theta(K(Z, 3),$ $BG$ ) is isomorphic to $Z^{\wedge}/Z$. Hence there are uncoutably many
distinct fibre bundles $E\rightarrow BG$ with a fibre $G$ which are the trivial bundle on
skeletons. These fibre bundles are isomorphic by Theorem 2.4 and Corollary
2.5, if they are fibre homotopy equivalent.

References

[1] Borel, A. and Serre, J. P. : Groups de Lie et puissances r\’eduites de Steenrod, Am.
J. Math. 75 (1953) , 409-448.

[2] Bousfield, A. K. and Kan, D. M. : Homotopy Limits, CompletjOns and Localizations,

Lecture Notes in Math. 304, 1972.
[3] Friedlander, E. M. and Mislin, G. : Locally finite aPproximation of Lie group 1,

Invent. Math. 83 (. 986), 425-436.
[4] Oda, N. and Shitanda, Y. : On the unstable homotopy spectral sequences, Manu-

scripta Math. 56 (1986), 19-35.
[5] Oda, N. and Shitanda, Y. : Localization, completjOn and detecting equivariant maPs

on skeletons, Manuscripta Math. 65 (1989), 1-18.
[6] Stasheff, J. D. : A classification theorem for fibre spaces, Topology 2 (1963), 239-

246.
[7] Steiner, R. J. : Localization, completion and infinite complexes, Mathematika 24

(1977), 1-15.
[8] Zabrodsky, A. : On phantOm maps and a theorem of H. Miller, Israel J. Math. 58

(1987), 129-143.
Kurume Institute of Technology
Kurume 830, Japan


	Introduction
	Theorem 2.2. ...
	Theorem 2.4. ...

	1. Preliminaries
	Theorem 1.2. ...

	2. Main Results
	Theorem 2.1. ...
	Theorem 2.2. ...
	Theorem 2.3. ...
	Theorem 2.4. ...

	3. Example
	References

