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Summary. We deform the 3-sphere into non-commutative $c*$-algebras $S_{\Theta}^{l}$ by
continuous functions $\Theta’ s$ . We then prove that the fixed point $C^{*}$-subalgebra
of the non-commutative 3-sphere $S_{\Theta}^{3}$ under the action of the unit circle $S^{1}$ is
isomorphic to the $c*$-algebra of all continuous functions on the 2-sphere.
This means that the non-commutative 3-spheres have Hopf fibered structures
in non-commutative sense.

1. Introduction.

In the last ten years, many operator algebraists have investigated non-
commutative geometry and topology on some kind of $C^{*}$-algebras, which are
sometimes called “non-commutative manifolds” cf. [1], [2], [3], [5], [10], [12],
[15], $\cdots$ , etc. Although the decisive definition of “non-commutative (topological)

manifolds” has not been given yet, it seems to be very natural to think of
them as a subcatgory of the category of the $c*$-algebras as seen in many ex-
celent works as above.

In [6], the author has deformed the ordinary 3-sphere $S^{3}$ into non-commuta-
tive $c*$-algebras along one parameter. These deformed $c*$-algebras are thought

1 of non-commutative versions of $S^{3}$ and examples of a family of ”non-commuta-
tive manifolds”. They are realized as a one parameter family of $c*$-algebras
$\{S_{\theta}^{3}\}_{\theta\in R}$ called non-commutative 3-spheres. For each parameter $\theta\in R$, the $C^{*}-$

algebra $S_{\theta}^{8}$ becomes the universal $c*$-algebra generated by two normal operators
$S$ and $T$ satisfying the following three relations:
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$\left\{\begin{array}{l}TS=e^{2\pi i\theta}ST\\(1-T^{*}T)(1-S^{*}S)=0\\\Vert S\Vert=\Vert T\Vert=1.\end{array}\right.$ (1)

On the other hand, as in [8, Proposition 8.1], it is also realized to be the
universal $c*$-algebra generated by two normal operators $Z$ and $W$ satisfying
the following two relations:

$\left\{\begin{array}{l}ZW=e^{2\pi i\theta}WZ\\Z^{*}Z+W^{*}W=1.\end{array}\right.$ (2)

In deformations of ordinary manifolds into non-commutative $c*$-algebras,
one parameter deformation would not always be suitable especially in deforma-
tions of higher dimensional manifolds (cf. [3], [10]). In fact, in the above
non-commutative 3-spheres, one knows that they are deformed along one certain
direction in the manifold $S^{3}$ so that they might be regarded as “partially” non-
commutative 3-spheres in a sense. In order to deform the 3-sphere and construct
“totally” non-commutative 3-spheres, it would be one way to adopt a class $\mathcal{F}$

of continuous functions as deformation parameter including one parameters as
constant functions and enlarge the direction of deformations.

In this Paper, we shall first generalize the construction of the above non-
commutative 3-spheres $\{S_{\theta}^{3}\}_{\theta\in R}$ to provide “totally” non-commutative 3-spheres
$\{S_{\theta}^{3}\}_{\theta\in ff}$ as deformation $c*$-algebras of $S^{3}$ parametrized by continuous functions
$\Theta’ s$ and describe briefly their structures as $c*$-algebra (Proposition 2, Theorem
3). We shall second study the structure of these (totally) non-commutative 3-
spheres from the aspect as non-commutative topological manifolds. Namely, in
studying the topological structure of the ordinary 3-sphere, it is remarkable
that the 3-sphere has the structure as principal S’-bundle over $S^{2}$ , so called Hopf
fibered structure. We shall show that our non-commutative 3-spheres are also
regarded to be non-commutative $S^{1}$-bundle over $S^{2}$ (Theorem 6). This means
that they are realized as the non-commutative Hopf fibered spaces.

The author would like to express his thanks to professor J. Tomiyama and
professor Y. Nakagami for their helpful suggestions in the presentation of this
paper.

2. Deformations of the 3-sphere by continuous functions.

Let $\mathcal{F}$ be the set of all real valued continuous functions on the closed interval
$I=[0,1]$ . For any but fixed function $\Theta$ in 9, we consider the following operator
relations for normal operators $Z$ and $W$ on a Hilbert space:
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$\left\{\begin{array}{l}ZW=e^{2\pi\ell\Theta}ZW\\Z^{*}Z+TV^{*}W=1\\\hat{\Theta}=\Theta(Z^{*}Z)\end{array}\right.$ (3)

where $\hat{\Theta}=\Theta(Z^{*}Z)$ means the self-adjoint operator obtained by the functional
calculus of the operator $Z^{*}Z$ by the continuous function $\Theta$ .

Note that, when the function $\Theta$ is constant number $\theta$ , the above relation
(3) is nothing but the relation (2). Therefore the relation (3) is a generalized
form of (2).

Let’s construct concretely the $c*$-algebra generated by two normal operators
$Z$ and $W$ determined by only the relation (3), which will be written as $S_{\Theta}^{3}$ . This
is our “totally” non-commutative 3-sphere cited in the previous section.

Let $S^{1}$ be the unit circle in the complex plane $C$. Fix the function $\Theta$ and
consider the homeomorphism $\alpha_{\theta}$ on the annulus $I\times S^{1}$ defined by

$\alpha_{\Theta}(r, e^{2\pi i\xi})=(r, e^{2\pi i(e_{(r)+\xi)}})$ , $r,$ $\xi\in I=[0,1]$ .
It induces an automorphism on the $c*$-algebra $C(I\times S^{1})$ of all complex valued
continuous functions on $I\times S^{1}$ , which is also denoted by $\alpha_{\theta}$ or simply $\Theta$ . We
fix a point $r$ in $[0,1]$ . Let $\alpha_{\theta(r)}$ be the automorphism on $C(S^{1})$ induced by the
rotation around origin with angle $\Theta(r)$ . It is also simply written as $\Theta(r)$ . The
restriction of a function on the annulus $I\times S^{1}$ to the circle $\{r\}\times S^{1}$ at level $r$

induces the surjection from $C(I\times S^{1})$ to $C(\{r\}\times S^{1})=C(S^{1})$ . The surjection is
compatible with actions $a_{\theta}$ and $\alpha_{\Theta(r)}$ so that it is extended to a surjection $\pi_{r}$

on crossed products by the actions:
$\pi_{r}$ : $C(I\times S^{1})\times eZ\rightarrow C(S^{1})\times\Theta(r)Z$ , $r\in[0,1]$ .

The $C^{*}$-algebra $C(S^{1})\times\theta(r)Z$ is known as non-commutative 2-torus of angle $\Theta(r)$ ,
which is denoted by $A_{\theta(r)}$ . It is also well known that $A_{\theta(r)}$ is generated by
two unitaries $V(r)$ and $U(r)$ satisfying the following familiar relation:

$V(r)\cdot U(r)=e^{2\pi\ell\Theta(r)}U(r)\cdot V(r)$ , $r\in[0,1]$

where $V(r)$ is the unitary coming from the positive generator of the integer
group $Z$ and $U(r)$ is the canonical unitary generator of the algebra $C(S^{1})$ .

Now take the homomorphisms $\pi_{0}$ and $\pi_{1}$ at boundaries of the annulus $I\times S^{1}$ .
We shall define our (totally) non-commutative 3-sphere as a deformation by the
given continuous function $\Theta$ in the following way:

Definition (non-commutative 3-sphere).

$S_{e}^{3}=\{a\in C(I\times S^{1})\times\theta Z|\pi_{0}(a)\in C^{*}(V(0)), \pi_{1}(a)\in C^{*}(U(1))\}$
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where $C^{*}(V(O))$ and $C^{*}(U(1))$ mean the $c*$-subalgebras of $A_{\Theta(0)}$ and $A_{\theta(1)}$ gener-
ated by $V(O)$ and $U(1)$ respectively.

When the function $\Theta$ is constant real number $\theta$ , the crossed product
$C(I\times S^{1})\times\theta Z$ is isomorphic to the tensor product $C^{*}$-algebra $C(I)\otimes A_{\theta}$ . Hence
the $Cf$-algebra $S_{\theta}^{3}$ is nothing but the original non-commutative 3-sphere
$S_{\theta}^{8}(=L_{\theta}(1,0))$ deformed by the parameter $\theta$ as seen in [8, Theorem $B$]. And
it is the universal $c*$-algebra generated by two normal operators with relations
\langle 2) and hence (1) as we stated in the previous section. Furthermore, when the
function $\Theta$ is constantly zero, $sg$ becomes the commutative $c*$-algebra of all
complex valued continuous functions on 3-sphere. Therefore the $c*$-algebra $sg$

is thought of a deformation of 3-sphere by the continuous function $\Theta$ .

Next, we shall briefly describe the reason why S\S can be regarded to be
the universal $C^{*}$-algebra determined by the relation (3). We shall first investi-
gate the structure of the crossed product $c*$-algebra $C(I\times S^{1})\times\theta Z$ .

Recall that there exists a surjective homomorphism $\pi_{r}$ from $C(I\times S^{1})\times\theta Z$

to the $c*$-algebra $C(S^{1})\chi_{\theta(r)}Z=A_{\Theta(r)}$ for each $r\in[0,1]$ . These continuous
family of surjections $\{\pi_{r}\}_{r\in[0.1]}$ onto $\{A_{\theta(r)}\}_{r\in[0.1]}$ give rise to continuous cross
sections from $C(I\times S^{1})\times\theta Z$ in fibered space $\{A_{\theta(r)}\}_{r\in[0.1]}$ . By slightly generalizing
the proof of Proposition 6.4 in [8] or directly the results of [11] and [14], we
have the following:

Lemma 1. The $c*$-algebra $C(I\times S^{1})x_{\theta}Z$ is realized to be the $C^{*}$-algebra
consisting of $cont_{l}nuous$ cross sections of continuous field $\{A_{\theta(r)}\}_{r\in[0.1]}$ of $C^{*}-$

algebras.

Namely, the crossed product $C(I\times S^{1})\times\Theta Z$ is regarded as an algebra consist-
ing of continuous cross sections of non-commutative torus bundle over the
closed interval.

Since the non-commutative 3-sphere $S_{\theta}^{3}$ is a $c*$-subalgebra of $C(I\times S^{1})\times\theta Z$

with suitable boundary conditions as in Definition, one easily sees the following:

Proposition 2. For each $\Theta$ in $\mathcal{F}$ , non-commutative 3-sphere S\S is the $C^{*}-$

algebra of continuous cross sections of the fibered space $\{A_{\theta(r)}\}_{r\in[0.1]}$ over the
interval $[0,1]$ each of whose fiber is non-commutative 2-torus $A_{\theta(r)}$ with angle
$\Theta(r)$ for $\gamma$ in $(0,1)$ and $C^{*}(V(O)),$ $C^{*}(U(1))$ on the boundary points $\{0,1\}$ respec-
tively, where the $c*$-algebras $C^{*}(V(O))$ and $C^{*}(U(1))$ are ones seen in the definition
of S\S .

By generalizing discussions given in the proof of Theorem $C$ in [8], one
sees that the following two cross sections $Z$ and $W$ generate S\S as $c*$-algebra:
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$Z(r)=\sqrt{}\overline{1-r}\cdot V(r)$ , $W(r)=\sqrt{}\overline{r}\cdot U(r)$ , $r\in[0,1]$

where $V(r)$ and $U(r)$ are the unitary generators of non-commutative 2-torus
$A_{\Theta(r)}$ cited before. One then knows that the above two normal operators $Z$ and
$W$ satisfy relation (3) and have no more operator relations than (3). Hence we
have:

Theorem 3. For each function $\Theta$ in $\mathcal{F},$ $S_{\Theta}^{3}$ is realized to be the universal
$c*$-algebra with relation (3).

The proof of Theorem 3 is completed by modifying the discussions seen in
the proof of the special case of Theorem $C$ in [8].

Remark 4. We are also able to extend the almost all discussions in [8] to
the deformation $c*$-algebras obtained by continuous functions. Hence we have
non-commutative lens spaces $\{L_{\Theta}(p, q)\}_{\Theta\in 9}$ parametrized by continuous functions
as a wider class than the class of the original non-commutative lens spaces
$\{L_{\theta}(p, q)\}_{\theta\in R}$ parametrized by one parameter defined in [8]. They are also
realized as fixed point subalgebras of $S_{\Theta}^{8}$ under suitable cyclic group actions.

Remark 5. The author is planning to discuss on the classification of $\{S_{\theta}^{3}\}_{\theta\in 9}$

up to isomorphism or stable isomorphism concerning about $\Theta’ s$ and non-com-
mutative differential structures on $S_{\theta}^{3}$ in [7].

3. Non-commutative Hopf fibering.

We first recall the ordinary Hopf fibered structure of the 3-sphere $S^{3}$ . We
represent $S^{3}$ as the unit sphere of complex 2-plane $C^{2}$ , namely

$S^{3}=\{(z, w)\in C^{2}||z|^{2}+|w|^{2}=1\}$ .
Then, the unit circle $S^{1}$ in complex plane $C$ acts on $S^{3}$ as in the following
way:

$\gamma_{\lambda}$ : $(z, w)\in S^{3}\rightarrow(\lambda z, \lambda w)\in S^{3}$ , $\lambda\in C,$ $|\lambda|=1$ .
It is well known that the orbit space of $S^{3}$ under the action $\gamma$ is homeomorphic
to 2-sphere $S^{2}$ . That is, $S^{3}$ becomes the principal $S^{1}$-bundle over $S^{2}$ . This
fibered space is called Hopf fibered space.

We second consider the non-commutative version of the above discussions.
Fix a continuous function $\Theta$ in $\mathcal{F}$ and represent our non-commutative 3-sphere

S\S as the universal $c*$-algebra generated by two normal operators $Z$ and $W$

with relations (3). Bearing the above ordinary case in mind, we define the
free action $a$ of the unit circle $S^{1}$ on $S_{\theta}^{3}$ by
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$\alpha_{\lambda}(Z)=\lambda Z$ , $a_{\lambda}(W)=\lambda W$ , $\lambda\in C,$ $|\lambda|=1$ .
Since each $\alpha_{\lambda}$ preserves the relation (3), one knows that it defines an automor-
phism on $S_{\Theta}^{s}$ for eacb $\lambda\in C,$ $|\lambda|=1$ , by the universality of the $C^{*}$-algebra.

In this setting, the result is the following:

Theorem 6. For any $\Theta\in \mathcal{F}$ , we have:
(i) The fixed point algebra $(S_{\Theta}^{3})^{a}$ of S\S under the action $a$ is the universal

$C^{*}$-algebra generated by mutually commuting normal operat0r $M$, self-adjoint
operator $H$ and the identzty 1 satzsfying the following relation:

$M^{*}M+H^{2}=H$ , (4)

(ii) The fixed poznt algebra $(S\S)^{a}$ is isomorphic to the commutative $c*$-algebra
of all complex valued continuous functions on a 2-sphere.

Let’s start the proof of Theorem 6.
We define the operators $H,$ $K$ and $M$ in (S\S )\mbox{\boldmath $\alpha$} by

$H=Z^{*}Z$ , $K=W^{*}W(=1-H)$ , $M=ZW^{*}$ .
We notice the fact that the commutation relation $ZW=e^{2\pi\ell\hat{\theta}}WZ$ in (3) auto-
matically implies the relation $ZW^{*}=e^{-2\pi l\hat{\theta}}W^{*}Z$ (cf. [4], [9]). Then the follow-
ing lemma is immediate.

Lemma 7. Both the operators $H$ and $M$ are fixed under the action $a$ and
satisfy relation (4).

Now we prepare some notations and lemmas.
For an integer $n$ and an operator $X$ on a Hilbert space, we introduce the

operator $\tilde{X}^{n}$ defined by

$\tilde{X}^{n}=\left\{\begin{array}{ll}X^{n} & (n\geqq 0)\\x*(-n) & (n\leqq 0).\end{array}\right.$

For two integers $j,$ $k$ , we write by $j\Lambda k$ the minimum of them. Hence for
integers $j,$ $k,$ $l$ and $m$ , the operators $Z^{j}Z^{*k}$ and $W^{\ell}W^{*m}$ are expressed in the
forms $H^{J\wedge}\tilde{Z}^{j-k}$ and $K^{\ell\wedge m}ffl^{\ell-m}$ , respectively. We also use the notation $\grave{\lambda}^{n}$ for
$\lambda\in C,$ $|\lambda|=1$ and $n\in Z$ in the similar way.

It is easy to see the following formula by induction.

Lemma 8. For any integers $k,$ $n$ ,

$\tilde{z}^{k}ffi-k=e^{-k(k-1)\pi\ell\hat{\Theta}}\cdot\tilde{M}^{k}$ , $7_{\tilde{Z}^{-n}=e^{n(n-1)\pi\ell\theta^{\wedge}}\cdot\tilde{M}^{-n}}^{n}$ .
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Let $\mathcal{P}(Z, W)$ be the $*$-subalgebra of $S_{\Theta}^{3}$ algebraically generated by $Z$ and $W$ .
Then it is dense in $S_{\Theta}^{3}$ . We restrict the action $a$ to the subalgebra $\mathcal{P}(Z, W)$

and denote by $\mathcal{P}(Z, W)^{\alpha}$ the fixed point subalgebra of $\mathcal{P}(Z, W)$ under $\alpha$ . In
order to know the structures of the algebras $\mathcal{P}(Z, W)^{\alpha}$ and $(S_{\theta}^{3})^{\alpha}$ , the expecta-
tion $E$ from $S_{\theta}^{3}$ to $(S_{\Theta}^{s})^{\alpha}$ defined in the following plays an important role.

Let $\mu$ be the normalized Haar measure on $S^{1}$ . The expectation $E$ is de-
fined by

$E(A)=\int_{S^{1}}\alpha_{\lambda}(A)d\mu(\lambda)$ , $A\in S_{\theta}^{3}$ .

Lemma 9. Keep the above notatzons. We have:

(i) $E(\mathcal{P}(Z, W))=\mathcal{P}(Z, W)^{\alpha}$ .
(ii) $\mathcal{P}(Z, W)^{\alpha}$ is contained in the $c*$-subalgebra $C^{*}(H, M)$ generated by $H,$ $M$

and the identity 1.

Proof. It is clear that $\mathcal{P}(Z, W)^{a}$ is contained in $E(\mathcal{P}(Z, W))$ . Hence it
suffices to show that, for any element $X$ of $\mathcal{P}(Z, W),$ $E(X)$ is a polynomial of
$Z,$ $W$ and expressed by $H$ and $M$. Let $X$ be an element of $\mathcal{P}(Z, W)$ . By the
commutation relation in (3), $X$ is expressed as in the following way:

$X=\sum_{j.k.\ell m}.c_{j.k.\ell.m}Z^{j}Z^{*k}W^{\ell}W^{*m}$

where each coefficient $c_{j.k.i.m}$ is a polynomial of $e^{2\pi t\hat{\theta}}$ and the indices $\{j, k, l, m\}$

run through non-negative integers finitely. As the operator $ZWZ^{*}W^{*}$ (hence
$e^{2\pi\ell\hat{\Theta}})$ is fixed by the action $\alpha$ , it follows that

$E(X)=\sum_{j.k.lm}.c_{j.k.i.m}E(Z^{j}Z^{*k}W^{\ell}W^{*m})$

$=\sum_{f.k.\ell m}.c_{j.k.\ell.m}\int_{S^{1}}\tilde{\lambda}^{j-k+i-m}d\mu(\lambda)\cdot Z^{f}Z^{*k}W^{\ell}W^{*m}$

$=$
$\sum_{j.k.l.m}$

$c_{j.k.i.m}Z^{j}Z^{*k}W^{\iota}W^{*m}$

$j-k^{\ell}+-m=0$

Hence $E(X)$ is contained in the algebra $\mathcal{P}(Z, W)\cap(S_{\Theta}^{3})^{a}=\mathcal{P}(Z, W)^{\alpha}$ . Further-
more one sees that the above last polynomial is equal to the following:

$\sum$ $c_{j.k.\ell}.{}_{m}H^{j\wedge k}\tilde{Z}^{j-k}K^{\ell\wedge m}\pi l-m$

$fk.t.m$
$j-k+\ell-m=0$

$=$
$\sum_{fk\ell m,j-\dot{k}+i-m=0}.c_{j.k.\ell.m}e^{-(j-k)(j-k-\ell)\pi\ell\hat{\Theta}}H^{J\wedge i}(1-H)^{\ell\wedge m}\tilde{M}^{j-k}$

Since the operator $\hat{\Theta}=\Theta(H)$ is obtained by the functional calculus of $H$ by the
function $\Theta$ , these coefficients $c_{j.k.\ell.m}e^{-(j-k)(j-k-\ell)\pi\ell\hat{\Theta}}$ belong to the $c*$-subalgebra
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generated by $H$ and 1. Hence we conclude that the algecra $\mathcal{P}(Z, W)^{a}$ is con-
tained in the $c*$-algebra $C^{*}(H, M)$ generated by $H,$ $M$ and 1. $\square $

Since the expectation $E$ is continuous, one knows that the algebra $\mathcal{P}(Z, W)^{\alpha}$

is dense in $(S_{\Theta}^{3})^{a}$ by the first part of Lemma 9. Thus the second part of Lemma
9 implies the following corollary.

Corollary 10. The fixed point algebra $(S_{\theta}^{3})^{\alpha}$ coincides with the $c*$-algebra
$C^{*}(H, M)$ generated by the operat0rs $H,$ $M$ and the identity 1 satisfying relation (4).

Finally we shall see the $c*$-algebra $C^{*}(H, M)$ is isomorphic to the commuta-
tive $c*$-algebra $C(S^{2})$ of all complex valued continuous functions on a 2-sphere.

Final proof of Theorem 6.

We represent the $c*$-algebra $S_{\theta}^{3}$ as the $c*$-algebra of continuous cross sec-
tions of fibered space $\{A_{\theta(r)}\}_{r\in[0.1]}$ as in Proposition 2. Then the operators $H$

and $M$ may be expressed as cross sections in the following way:

$H(r)=1-r$ , $M(r)=\sqrt{}\overline{r(1-r)}\cdot V(r)U(r)^{*}$ $r\in[0,1]$ .
Hence their spectra are of the forms:

$Sp(H)=[0,1]$ , $Sp(M)=\{z\in C||z|\leqq 1\}$ ,

because the spectrum $Sp(V(r)\cdot U(r))=\{z\in C||z|=1\}$ . Let us decompose $M$ into
$X+iY,$ $X=X^{*},$ $Y=Y^{*}$ . Then it is easy to see that $Sp(X)=Sp(Y)=[0,1]$ .
Note that the $c*$-algebra $C^{*}(X, Y, H)$ generated by $X,$ $Y,$ $H$ and 1 is isomorphic

to the $C^{*}$-algebra $C^{*}(H, M)$ and hence the fixed point algebra $(S_{\theta}^{3})^{\alpha}$ . Since

relation (4) can be changed by the following relation:

$X^{2}+Y^{2}+(H-1/2)^{2}=1/4$ ,

it is clear that the $C^{*}$-algebra $C^{*}(X, Y, H)$ is isomorphic to the commutative
$C^{*}$-algebra of all complex valued continuous functions on a 2-sphere. Finally,

the universality of the $c*$-algebra $C^{*}(H, M)$ concerning the relation (4) is easily

seen by the universality of the $C^{*}$-algebra $S_{\Theta}^{3}$ or the fact that the spectra of
$H$ and $M$ are full. This completes the proof of Theorem 6.
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