NON-COMMUTATIVE THREE DIMENSIONAL SPHERES II
 -NON-COMMUTATIVE HOPF FIBERING-

By
Kengo Matsumoto
(Received March 1, 1990 ; Revised May 16, 1990)

Abstract

Summary. We deform the 3 -sphere into non-commutative C^{*}-algebras S_{θ}^{b} by continuous functions Θ 's. We then prove that the fixed point C^{*}-subalgebra of the non-commutative 3 -sphere S_{θ}^{3} under the action of the unit circle S^{1} is isomorphic to the C^{*}-algebra of all continuous functions on the 2 -sphere. This means that the non-commutative 3 -spheres have Hopf fibered structures in non-commutative sense.

1. Introduction.

In the last ten years, many operator algebraists have investigated noncommutative geometry and topology on some kind of C^{*}-algebras, which are sometimes called "non-commutative manifolds" cf. [1], [2], [3], [5], [10], [12], [15], \cdots, etc. Although the decisive definition of "non-commutative (topological) manifolds" has not been given yet, it seems to be very natural to think of them as a subcatgory of the category of the C^{*}-algebras as seen in many excelent works as above.

In [6], the author has deformed the ordinary 3 -sphere S^{3} into non-commutative C^{*}-algebras along one parameter. These deformed C^{*}-algebras are thought of non-commutative versions of S^{3} and examples of a family of "non-commutative manifolds". They are realized as a one parameter family of C^{*}-algebras $\left\{S_{\theta}^{8}\right\}_{\theta \in R}$ called non-commutative 3 -spheres. For each parameter $\boldsymbol{\theta} \in \boldsymbol{R}$, the C^{*} algebra S_{θ}^{8} becomes the universal C^{*}-algebra generated by two normal operators S and T satisfying the following three relations:

[^0]\[

\left\{$$
\begin{array}{l}
T S=e^{2 \pi i \theta} S T \tag{1}\\
\left(1-T^{*} T\right)\left(1-S^{*} S\right)=0 \\
\|S\|=\|T\|=1
\end{array}
$$\right.
\]

On the other hand, as in [8, Proposition 8.1], it is also realized to be the universal C^{*}-algebra generated by two normal operators Z and W satisfying the following two relations:

$$
\left\{\begin{array}{l}
Z W=e^{2 \pi i \theta} W Z \tag{2}\\
Z * Z+W^{*} W=1
\end{array}\right.
$$

In deformations of ordinary manifolds into non-commutative C^{*}-algebras, one parameter deformation would not always be suitable especially in deformations of higher dimensional manifolds (cf. [3], [10]). In fact, in the above non-commutative 3 -spheres, one knows that they are deformed along one certain direction in the manifold S^{3} so that they might be regarded as "partially" noncommutative 3 -spheres in a sense. In order to deform the 3 -sphere and construct "totally" non-commutative 3 -spheres, it would be one way to adopt a class \mathscr{F} of continuous functions as deformation parameter including one parameters as constant functions and enlarge the direction of deformations.

In this paper, we shall first generalize the construction of the above noncommutative 3 -spheres $\left\{S_{\theta}^{\circ}\right\}_{\theta \in R}$ to provide "totally" non-commutative 3 -spheres $\left\{S_{\theta}^{3}\right\}_{\theta \in \mathcal{G}}$ as deformation C^{*}-algebras of S^{3} parametrized by continuous functions Θ 's and describe briefly their structures as C^{*}-algebra (Proposition 2, Theorem 3). We shall second study the structure of these (totally) non-commutative 3spheres from the aspect as non-commutative topological manifolds. Namely, in studying the topological structure of the ordinary 3 -sphere, it is remarkable that the 3 -sphere has the structure as principal S^{1}-bundle over S^{2}, so called Hopf fibered structure. We shall show that our non-commutative 3 -spheres are also regarded to be non-commutative S^{1}-bundle over S^{2} Theorem 6). This means that they are realized as the non-commutative Hopf fibered spaces.

The author would like to express his thanks to professor J. Tomiyama and professor Y. Nakagami for their helpful suggestions in the presentation of this paper.

2. Deformations of the $\mathbf{3}$-sphere by continuous functions.

Let \mathscr{F} be the set of all real valued continuous functions on the closed interval $I=[0,1]$. For any but fixed function Θ in \mathscr{F}, we consider the following operator relations for normal operators Z and W on a Hilbert space:

$$
\left\{\begin{array}{l}
Z W=e^{2 \pi i \hat{\theta}} Z W \tag{3}\\
Z * Z+W * W=1 \\
\hat{\Theta}=\Theta(Z * Z)
\end{array}\right.
$$

where $\hat{\boldsymbol{\theta}}=\hat{\theta}\left(Z^{*} Z\right)$ means the self-adjoint operator obtained by the functional calculus of the operator $Z^{*} Z$ by the continuous function Θ.

Note that, when the function Θ is constant number θ, the above relation (3) is nothing but the relation (2). Therefore the relation (3) is a generalized form of (2).

Let's construct concretely the C^{*}-algebra generated by two normal operators Z and W determined by only the relation (3), which will be written as S_{θ}^{3}. This is our "totally" non-commutative 3 -sphere cited in the previous section.

Let S^{1} be the unit circle in the complex plane C. Fix the function Θ and consider the homeomorphism α_{θ} on the annulus $I \times S^{1}$ defined by

$$
\alpha_{\theta}\left(r, e^{2 \pi i \xi}\right)=\left(r, e^{2 \pi i(\theta(r)+\xi)}\right), \quad r, \boldsymbol{\xi} \in I=[0,1]
$$

It induces an automorphism on the C^{*}-algebra $C\left(I \times S^{1}\right)$ of all complex valued continuous functions on $I \times S^{1}$, which is also denoted by α_{θ} or simply Θ. We fix a point r in $[0,1]$. Let $\alpha_{\theta(r)}$ be the automorphism on $C\left(S^{1}\right)$ induced by the rotation around origin with angle $\Theta(r)$. It is also simply written as $\Theta(r)$. The restriction of a function on the annulus $I \times S^{1}$ to the circle $\{r\} \times S^{1}$ at level r induces the surjection from $C\left(I \times S^{1}\right)$ to $C\left(\{r\} \times S^{1}\right)=C\left(S^{1}\right)$. The surjection is compatible with actions α_{θ} and $\alpha_{\theta(r)}$ so that it is extended to a surjection π_{r} on crossed products by the actions :

$$
\pi_{r}: C\left(I \times S^{1}\right) \times_{\theta} Z \longrightarrow C\left(S^{1}\right) \times_{\theta(r)} Z, \quad r \in[0,1]
$$

The C^{*}-algebra $C\left(S^{1}\right) \times{ }_{\theta(r)} \boldsymbol{Z}$ is known as non-commutative 2-torus of angle $\Theta(r)$, which is denoted by $A_{\theta(r)}$. It is also well known that $A_{\theta(r)}$ is generated by two unitaries $V(r)$ and $U(r)$ satisfying the following familiar relation:

$$
V(r) \cdot U(r)=e^{2 \pi i \theta(r)} U(r) \cdot V(r), \quad r \in[0,1]
$$

where $V(r)$ is the unitary coming from the positive generator of the integer group Z and $U(r)$ is the canonical unitary generator of the algebra $C\left(S^{1}\right)$.

Now take the homomorphisms π_{0} and π_{1} at boundaries of the annulus $I \times S^{1}$. We shall define our (totally) non-commutative 3 -sphere as a deformation by the given continuous function Θ in the following way :

Definition (non-commutative 3-sphere).

$$
S_{\theta}^{\mathfrak{s}}=\left\{a \in C\left(I \times S^{1}\right) \times{ }_{\theta} Z \mid \pi_{0}(a) \in C^{*}(V(0)), \pi_{1}(a) \in C^{*}(U(1))\right\}
$$

where $C^{*}(V(0))$ and $C^{*}(U(1))$ mean the C^{*}-subalgebras of $A_{\theta(0)}$ and $A_{\theta(1)}$ generated by $V(0)$ and $U(1)$ respectively.

When the function Θ is constant real number θ, the crossed product $C\left(I \times S^{1}\right) \times{ }_{\theta} Z$ is isomorphic to the tensor product C^{*}-algebra $C(I) \otimes A_{\theta}$. Hence the C^{*}-algebra S_{θ}^{3} is nothing but the original non-commutative 3 -sphere $S_{\theta}^{\theta}\left(=L_{\theta}(1,0)\right)$ deformed by the parameter θ as seen in [8, Theorem B]. And it is the universal C^{*}-algebra generated by two normal operators with relations (2) and hence (1) as we stated in the previous section. Furthermore, when the function Θ is constantly zero, $S_{\Theta}^{\curvearrowright}$ becomes the commutative C^{*}-algebra of all complex valued continuous functions on 3 -sphere. Therefore the C^{*}-algebra $S_{8}^{̊}$ is thought of a deformation of 3 -sphere by the continuous function Θ.

Next, we shall briefly describe the reason why S_{8}^{8} can be regarded to be the universal C^{*}-algebra determined by the relation (3). We shall first investigate the structure of the crossed product C^{*}-algebra $C\left(I \times S^{1}\right) \times{ }_{\theta} Z$.

Recall that there exists a surjective homomorphism π_{r} from $C\left(I \times S^{1}\right) \times{ }_{\theta} Z$ to the C^{*}-algebra $C\left(S^{1}\right) \times_{\theta(r)} \boldsymbol{Z}=A_{\theta(r)}$ for each $r \in[0,1]$. These continuous family of surjections $\left\{\pi_{r}\right\}_{r \in[0,1]}$ onto $\left\{A_{\theta(r)}\right\}_{r \in[0,1]}$ give rise to continuous cross sections from $C\left(I \times S^{1}\right) \times{ }_{\theta} \boldsymbol{Z}$ in fibered space $\left\{A_{\theta(r)}\right\}_{r \in[0,1]}$. By slightly generalizing the proof of Proposition 6.4 in [8] or directly the results of [11] and [14], we have the following :

Lemma 1. The C^{*}-algebra $C\left(I \times S^{1}\right) \times{ }_{\theta} Z$ is realized to be the C^{*}-algebra consisting of continuous cross sections of continuous field $\left\{A_{\theta(r)}\right\}_{r \in[0,1]}$ of C^{*} algebras.

Namely, the crossed product $C\left(I \times S^{1}\right) \times{ }_{\theta} Z$ is regarded as an algebra consisting of continuous cross sections of non-commutative torus bundle over the closed interval.

Since the non-commutative 3 -sphere S_{θ}^{s} is a C^{*}-subalgebra of $C\left(I \times S^{1}\right) \times{ }_{\theta} Z$ with suitable boundary conditions as in Definition, one easily sees the following:

Proposition 2. For each Θ in \mathcal{T}, non-commutative 3 -sphere $S_{\Theta}^{\&}$ is the C^{*} algebra of continuous cross sections of the fibered space $\left\{A_{\theta(r)}\right\}_{r \in[0,1]}$ over the interval $[0,1]$ each of whose fiber is non-commutative 2 -torus $A_{\theta(r)}$ with angle $\Theta(r)$ for r in $(0,1)$ and $C^{*}(V(0)), C^{*}(U(1))$ on the boundary points $\{0,1\}$ respectively, where the C^{*}-algebras $C^{*}(V(0))$ and $C^{*}(U(1))$ are ones seen in the definition of S_{\ominus}^{\ominus}.

By generalizing discussions given in the proof of Theorem C in [8], one sees that the following two cross sections Z and W generate $S_{z}^{\&}$ as C^{*}-algebra:

$$
Z(r)=\sqrt{1-r} \cdot V(r), \quad W(r)=\sqrt{r} \cdot U(r), \quad r \in[0,1]
$$

where $V(r)$ and $U(r)$ are the unitary generators of non-commutative 2-torus $A_{\theta(r)}$ cited before. One then knows that the above two normal operators Z and W satisfy relation (3) and have no more operator relations than (3). Hence we have :

Theorem 3. For each function Θ in $\mathcal{F}, S_{\Theta}^{3}$ is realized to be the universal C^{*}-algebra with relation (3).

The proof of Theorem 3 is completed by modifying the discussions seen in the proof of the special case of Theorem C in [8].

Remark 4. We are also able to extend the almost all discussions in [8] to the deformation C^{*}-algebras obtained by continuous functions. Hence we have non-commutative lens spaces $\left\{L_{\theta}(p, q)\right\}_{\theta \in \mathcal{G}}$ parametrized by continuous functions as a wider class than the class of the original non-commutative lens spaces $\left\{L_{\theta}(p, q)\right\}_{\theta \in R}$ parametrized by one parameter defined in [8]. They are also realized as fixed point subalgebras of S_{θ}^{3} under suitable cyclic group actions.

Remark 5. The author is planning to discuss on the classification of $\left\{S_{\theta}^{\Omega}\right\}_{\theta \in G}$ up to isomorphism or stable isomorphism concerning about Θ 's and non-commutative differential structures on $S_{\theta}^{\curvearrowright}$ in [7].

3. Non-commutative Hopf fibering.

We first recall the ordinary Hopf fibered structure of the 3 -sphere S^{3}. We represent S^{3} as the unit sphere of complex 2-plane \boldsymbol{C}^{2}, namely

$$
S^{3}=\left\{\left.(z, w) \in \boldsymbol{C}^{2}| | z\right|^{2}+|w|^{2}=1\right\} .
$$

Then, the unit circle S^{1} in complex plane C acts on S^{3} as in the following way:

$$
\gamma_{\lambda}:(z, w) \in S^{3} \longrightarrow(\lambda z, \lambda w) \in S^{3}, \quad \lambda \in \boldsymbol{C},|\lambda|=1 .
$$

It is well known that the orbit space of S^{3} under the action γ is homeomorphic to 2 -sphere S^{2}. That is, S^{3} becomes the principal S^{1}-bundle over S^{2}. This fibered space is called Hopf fibered space.

We second consider the non-commutative version of the above discussions. Fix a continuous function Θ in \mathscr{F} and represent our non-commutative 3 -sphere $S_{\Xi}^{\&}$ as the universal C^{*}-algebra generated by two normal operators Z and W with relations (3). Bearing the above ordinary case in mind, we define the free action α of the unit circle S^{1} on $S_{\Theta}^{\curvearrowright}$ by

$$
\boldsymbol{\alpha}_{\lambda}(Z)=\lambda Z, \quad \boldsymbol{\alpha}_{\lambda}(W)=\lambda W, \quad \lambda \in \boldsymbol{C},|\lambda|=1 .
$$

Since each α_{λ} preserves the relation (3), one knows that it defines an automorphism on S_{B}^{8} for each $\lambda \in C,|\lambda|=1$, by the universality of the C^{*}-algebra.

In this setting, the result is the following:
Theorem 6. For any $\Theta \in \mathscr{F}$, we have:
(i) The fixed point algebra $\left(S_{\theta}^{3}\right)^{\alpha}$ of S_{Θ}^{3} under the action α is the universal C^{*}-algebra generated by mutually commuting normal operator M, self-adjoint operator H and the identzty 1 satzsfying the following relation:

$$
\begin{equation*}
M^{*} M+H^{2}=H \tag{4}
\end{equation*}
$$

(ii) The fixed point algebra $\left(S_{马}^{\Omega}\right)^{\alpha}$ is isomorphic to the commutative C^{*}-algebra of all complex valued continuous functions on a 2 -sphere.

Let's start the proof of Theorem 6 .
We define the operators H, K and M in $\left(S_{Q}^{\Omega}\right)^{\alpha}$ by

$$
H=Z^{*} Z, \quad K=W^{*} W(=1-H), \quad M=Z W^{*} .
$$

We notice the fact that the commutation relation $Z W=e^{2 \pi i \hat{\theta}} W Z$ in (3) automatically implies the relation $Z W^{*}=e^{-2 \pi i \hat{\theta}} W^{*} Z$ (cf. [4], [9]). Then the following lemma is immediate.

Lemma 7. Both the operators H and M are fixed under the action α and satisfy relation (4).

Now we prepare some notations and lemmas.
For an integer n and an operator X on a Hilbert space, we introduce the operator \tilde{X}^{n} defined by

$$
\tilde{X}^{n}= \begin{cases}X^{n} & (n \geqq 0) \\ X^{*(-n)} & (n \leqq 0)\end{cases}
$$

For two integers j, k, we write by $j \wedge k$ the minimum of them. Hence for integers j, k, l and m, the operators $Z^{j} Z^{* k}$ and $W^{l} W^{* m}$ are expressed in the forms $H^{j \wedge} \tilde{Z}^{j-k}$ and $K^{l \wedge m} \widetilde{W}^{l-m}$, respectively. We also use the notation $\dot{\lambda}^{n}$ for $\lambda \in \boldsymbol{C},|\lambda|=1$ and $n \in \boldsymbol{Z}$ in the similar way.

It is easy to see the following formula by induction.
Lemma 8. For any integers k, n,

$$
\tilde{Z}^{k} \widetilde{W}^{-k}=e^{-k(k-1) \pi i \hat{\theta}} \cdot \tilde{M}^{k}, \quad \widetilde{W}^{n} \tilde{Z}^{-n}=e^{n(n-1) \pi i \hat{\theta}} \cdot \tilde{M}^{-n} .
$$

Let $\mathscr{P}(Z, W)$ be the ${ }^{*}$-subalgebra of S_{Θ}^{3} algebraically generated by Z and W. Then it is dense in S_{Θ}^{3}. We restrict the action α to the subalgebra $\mathscr{P}(Z, W)$ and denote by $\mathscr{P}(Z, W)^{\alpha}$ the fixed point subalgebra of $\mathscr{P}(Z, W)$ under α. In order to know the structures of the algebras $\mathscr{P}(Z, W)^{\alpha}$ and $\left(S_{\theta}^{\Omega}\right)^{\alpha}$, the expectation E from $S_{\theta}^{\curvearrowright}$ to $\left(S_{\theta}^{\curvearrowright}\right)^{\alpha}$ defined in the following plays an important role.

Let μ be the normalized Haar measure on S^{1}. The expectation E is defined by

$$
E(A)=\int_{S_{1}} \alpha_{\lambda}(A) d \mu(\lambda), \quad A \in S_{\dot{\theta}}^{\Omega} .
$$

Lemma 9. Keep the above notations. We have:
(i) $E(\mathscr{P}(Z, W))=\mathscr{P}(Z, W)^{\alpha}$.
(ii) $\mathscr{P}(Z, W)^{\alpha}$ is contained in the C^{*}-subalgebra $C^{*}(H, M)$ generated by H, M and the identity 1.

Proof. It is clear that $\mathscr{P}(Z, W)^{\alpha}$ is contained in $E(\mathscr{P}(Z, W))$. Hence it suffices to show that, for any element X of $\mathscr{P}(Z, W), E(X)$ is a polynomial of Z, W and expressed by H and M. Let X be an element of $\mathscr{P}(Z, W)$. By the commutation relation in (3), X is expressed as in the following way:

$$
X=\sum_{j, k, l, m} c_{j, k, l, m} Z^{j} Z^{* k} W^{l} W^{* m}
$$

where each coefficient $c_{j, k, l, m}$ is a polynomial of $e^{2 \pi i \hat{\theta}}$ and the indices $\{j, k, l, m\}$ run through non-negative integers finitely. As the operator $Z W Z^{*} W^{*}$ (hence $\left.e^{2 \pi i \hat{\theta}}\right)$ is fixed by the action α, it follows that

$$
\begin{aligned}
E(X) & =\sum_{j, k, l, m} c_{j, k, l, m} E\left(Z^{j} Z^{* k} W^{l} W^{* m}\right) \\
& =\sum_{j, k, l, m} c_{j, k, l, m} \int_{S^{1}} \tilde{\lambda}^{j-k+l-m} d \mu(\lambda) \cdot Z^{j} Z^{* k} W^{l} W^{* m} \\
& =\sum_{\substack{j, k, l, m \\
j-k^{l}+\cdots=0}} c_{j, k, l, m} Z^{j} Z^{* k} W^{l} W^{* m}
\end{aligned}
$$

Hence $E(X)$ is contained in the algebra $\mathscr{P}(Z, W) \cap\left(S_{\mathscr{\Omega}}\right)^{\alpha}=\mathscr{P}(Z, W)^{\alpha}$. Furthermore one sees that the above last polynomial is equal to the following:

$$
\begin{aligned}
& \sum_{\substack{j, l, m \\
j-k+i-m=0}} c_{j, k, l, m} H^{j \wedge k} \widetilde{Z}^{j-k} K^{l \wedge m} \widetilde{W}^{l-m} \\
= & \sum_{\substack{j, k, l, m=0}} c_{j, k, l, m} e^{-(j-k)(j-k-l) \pi i \hat{\theta}} H^{j \wedge k}(1-H)^{\lambda^{\wedge} \wedge m} \tilde{M}^{j-k} .
\end{aligned}
$$

Since the operator $\hat{\boldsymbol{\theta}}=\Theta(H)$ is obtained by the functional calculus of H by the function Θ, these coefficients $c_{j, k, l, m} e^{-(j-k)(j-k-l) \pi i \hat{\theta}}$ belong to the C^{*}-subalgebra
generated by H and 1. Hence we conclude that the algecra $\mathscr{P}(Z, W)^{\alpha}$ is contained in the C^{*}-algebra $C^{*}(H, M)$ generated by H, M and 1.

Since the expectation E is continuous, one knows that the algebra $\mathscr{P}(Z, W)^{\alpha}$ is dense in $\left(S_{\Xi}^{3}\right)^{\alpha}$ by the first part of Lemma 9. Thus the second part of Lemma 9 implies the following corollary.

Corollary 10. The fixed point algebra ($\left.S_{\dot{\theta}}^{\mathbf{\Omega}}\right)^{\alpha}$ coincides with the C^{*}-algebra $C^{*}(H, M)$ generated by the operators H, M and the identity 1 satisfying relation (4).

Finally we shall see the C^{*}-algebra $C^{*}(H, M)$ is isomorphic to the commutative C^{*}-algebra $C\left(S^{2}\right)$ of all complex valued continuous functions on a 2 -sphere.

Final proof of Theorem 6.

We represent the C^{*}-algebra $S_{\Theta}^{\curvearrowright}$ as the C^{*}-algebra of continuous cross sections of fibered space $\left\{A_{\theta(r)}\right\}_{r \in[0,1]}$ as in Proposition 2. Then the operators H and M may be expressed as cross sections in the following way:

$$
H(r)=1-r, \quad M(r)=\sqrt{r(1-r)} \cdot V(r) U(r)^{*} \quad r \in[0,1] .
$$

Hence their spectra are of the forms:

$$
S p(H)=[0,1], \quad S p(M)=\{z \in \boldsymbol{C}| | z \mid \leqq 1\}
$$

because the spectrum $S p(V(r) \cdot U(r))=\{z \in C| | z \mid=1\}$. Let us decompose M into $X+i Y, X=X^{*}, Y=Y^{*}$. Then it is easy to see that $S p(X)=S p(Y)=[0,1]$. Note that the C^{*}-algebra $C^{*}(X, Y, H)$ generated by X, Y, H and 1 is isomorphic to the C^{*}-algebra $C^{*}(H, M)$ and hence the fixed point algebra $\left(S_{\theta}^{3}\right)^{\alpha}$. Since relation (4) can be changed by the following relation:

$$
X^{2}+Y^{2}+(H-1 / 2)^{2}=1 / 4
$$

it is clear that the C^{*}-algebra $C^{*}(X, Y, H)$ is isomorphic to the commutative C^{*}-algebra of all complex valued continuous functions on a 2 -sphere. Finally, the universality of the C^{*}-algebra $C^{*}(H, M)$ concerning the relation (4) is easily seen by the universality of the C^{*}-algebra S_{θ}^{3} or the fact that the spectra of H and M are full. This completes the proof of Theorem 6.

References

[1] Connes, A.: Non-commutative differential geometry, Chapter I: The Chern character in K-homology, Chapter II: De Rham homology and non commutative algebra. Pub. Math. I. H. E. S. 62 (1986), 257-360.
[2] Connes, A. and Rieffel, M. A.: Yang-Mills for non-commutative two-tori, Contem-
porary Mathematics, 62, Amer. Math. Soc. 1987.
[3] Elliott, G.: On the K-theory of the C^{*}-algebra generated by a projective representation of a torsion free discrete abelian group, Operator algebras and Group representations, I, Pitman, 1983, 157-184.
[4] Fuglede, B.: A commutative theory for normal operators, Proc. Nato. Acad. Sci. 36 (1950), 35-40.
[5] Kasparov, C.: The operator K-functor and extensions of C*-algebras, Akad. Nauk SSSR, Ser. Math. 44 (1980), 471-636; Math. USSR Izvestijia 16 (1981), 513-572.
[6] Matsumoto, K.: Non-commutative three dimensional spheres, preprint.
[7] Matsumoto, K.: Non-commutative three dimensional spheres III, in preparation.
[8] Matsumoto, K. and Tomiyama, J.: Non-commutative lens spaces, preprint.
[9] Putnam, C. R.: On normal operators in Hilbert space, Amer. J. Math., 73 (1951), 357-362.
[10] Rieffel, M.A.: Deformation quantization and operator algebras, preprint.
[11] Rieffel, M. A.: Continuous fields of C^{*}-algebras coming from group cocycles and actions, Math. Ann., 283 (1989), 631-643.
[12] Rosenberg, J. and Schochet, C.: The Künneth theorem and the universal coefficient theorem for equivariant K-theory and KK-theory, Mem. Amer. Math., 62, No. 348, 1986.
[13] Tomiyama, J.: Invitation to C*-algebras and topological dynamics, World Scientific Advanced Series in Dynamical Systems, 3, World Scientific, 1987.
[14] Tomiyama, J.: Decompositions of topological dynamical systems and their trans. formation C^{*}-algebras, preprint.
[15] Woronowicz, S.L.: Twisted $S U(2)$ group. An example of a non-commutative differential calculus, Pub. R.I. M. S. Kyoto University 23 (1987), 117-181.

Kengo Matsumoto
Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Minami-Ohsawa 1-1
Hachioji-shi
Tokyo, 192-03 Japan

[^0]: American Mathematical Society 1980 subject classification. Primary 46L55; Secondary 46L99.

 Key words and phrases, C^{*}-algebras, non-commutative 3 -spheres, Hopf fibering, fixed point algebras.

