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Summary. Let Z¢, where d=1 is an integer, denote the positive integer d-

dimensional lattice points. Let {Y,, n&Z¢} be a set of random variables.
Let {Nn, n=Z2} be a set of Z2-valued random variables. In this paper we
study almost sure convergence of the random field {Y»,, n=Z4} as n—oo,
We introduce an almost sure version of Anscombe condition and study its
consequences in strong limit theorem.

1. Introduction

Let Z4¢, where d=1 is an integer, denote the positive integer d-dimensional
lattice points. The points in Z¢ will be denoted by m, n, etc., or sometimes,
when necessary, more explicity, by (m,, ms, -+, ma), (01, ns, -+, na), €tc. The
set Z¢ is partially ordered by stipulating m<n iff m;<n; for each 7, 1<:<d.

d
Further, |n| is used for il'[ni and n—co means that min 7,—>co. We write 1
=1 1sts

for the point (1, 1, ---, 1).

Let {Y,., n=Z4%} be a random field, i.e., a set of random variables defined
on a probability space (2, A, P). Let {N,, nZ%} and {M,, n=Z%} be sets of
Z¢-valued random variables defined on the same probability space (2, A, P),
i.e., for every ne€Z¢, N,=(N, ---, N®) and M,=(M, ---, M¥®) where N
and M, 1</<d, are positive integer-valued variables.

In the present paper we study almost sure convergence of the random field
{Yn., n=Z2} as n—o. We introduce some “generalized almost sure Anscombe
conditions”. The introduced versions of Anscombe condition play simlar roles
in the study of almost sure (a.s.) convergence of the random field {Y y,, nEZ%},
as the generalized Anscombe conditions (introduced in [1], and [6]) in the
study of weak convergence of {Y y,, n=Z%}. Recently many authors have been
looking for sufficient conditions, concerning {N,, nZ¢%} and {Y ,, n=Z4%}, under
which Y y,—0 a.s. as n—o. Mainly the case d=1 have been considered, (cf.
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[2, p. 10], [3] and the references given there). The obtained results have the
following form. Assume Y ,—0 a.s. as n—o. Then under “some additional
assumptions” Y y,—0 a.s. as n—oo. Thus the assumption ¥V ,—0 a.s. as n—oo
plays a fundamental role. We do not, in general, assume that ¥ ,—0 a.s. as
n—oco. Qur results can also be applied in the case when the random field
{Y ., neZ$} does not converge almost surely. The main results, presented in
this paper, are new even in the case d=1. We extend the main ideas presented
in [1], and [6].

In Section 2 “a generalized almost sure Anscombe condition” is introduced
and its consequences in almost sure limit theorems with random indices are
studied. In Section 3 we present short proofs of the theorems, while in Section
4 an example of application of is given.

2. Almost sure versions of Anscombe condition and their applications

Let {N,, n=Z%} and {M,, n=Z%} be sets of Z%-valued random variables.
Let {Y,, n=Z%} be a set of random variables.

Let {D(n), n=Z%} and {d(n), n=Z%} be sets of positive numbers such that
n, msZ% and n<m imply D\n)< D(m).

Definition 1. A random field {Y,, n=Z¢%} is said to satisfy an almost sure
Anscombe condition

A{D(m)}, {M(n)}, {d(n)})
with norming sets {D(n), neZ%} and {d(n), ncZ%} iff

2.1 max Yi—=Yuem!-— 0 a.s. as n—oo
EGn

where, here and in the sequel,
Gn=G.({D(n)}, {M(n)}, {d(n)})
={k€Z$: |D(k)—D(M(n)| <d(M,)}.

In what follows we consider the following condition concerning families
{Np, ncZ%} and {M,, ncZ4}

(2.2) Plim sup [| DINx)—=D(M)| > d(M)])=0.
The set of all families {N,, n€Z%} of Z}-valued random variables satisfying

the condition [2.2) we denote by T({D(n)}, {M,}, {d(n)}).
Let C({X,}) denote the set of limit points of the family {X,, n=Z%}.

Theorem 1. Let {Y,, n=Z%} be a family of random wvariables and let
{M,, n=Z%} and {N,, n<Z%} be sets of Z%-valued random variables. Assume
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(i) C{Y y,, n=Z4})=E a.s., where EC(—, o),
(ii) {Yn, nEZ4} satisfies the condition A({D(n)}, {M(n)}, {d(n)}).
Then for every family {N,, neZ$eT({D(n)}, {M(n)}, {d(n)})
2.3) C{Y yp, neZe})=E a.s.
Definition 2. A random field {Y,, n=Z%} is said to satisfy a generalized

almost sure Anscombe condition (GA({D(n)}, {M(n)}, {d(n)})) with norming sets
{D(n), n=Z$} and {d(n), neZ%} iff for every >0 there exists 6>0 such that

n—co

2.4) P(lim sup max Y=Yy, 1 >e)=0,
1EG (0

where
Ga(0)=G.(0, {D(n)}, {M(n)}, {d(n)})

={ksZ$: | D(k)—D(M,)| <dd(M,)}.

Let us observe that G,(1)=G,, so that the condition A({D(n)}, {M(n)},{d(n)})
implies the condition GA({D(n)}, {M(n)}, {d(n)}).

Theorem 2. Let {Y,, nsZ%} be a family of random variables and let
{M,, n€Z¢} and {N,, n€Z%} be sets of Z%-valued random variables. Assume
@) CUY yn, n=Z¢})=E a.s., where EC(—oo, ),
and
(ii) {Ya, n€Z4} satisfies the condition GA({D(n)}, {M(n)}, {d(n)}).

Then (2.3) holds for every set {N,, ncZ%} of Z%-valued random variables such
that

(2.5) (D(Np)—D(M,))/d(M,) —>0  a.s. as n—oo .

Let us observe that the condition (2.5) is stronger than the condition (2.2)
in Theorem 1, but on the other hand the condition (ii) of Theorem 2 is weaker
than (ii) in Theorem 1. We also note that if for every ¢>0 there exists 0=
0(e)>0 such that

(2.6) 2 P(max |Y;—Y | >e)<oco

nez_‘,i_ i€Gp®

then (2.4) holds too. The condition (2.6) is a weaker version of the so-called
GALIL conditions introduced by A. Gut [3, p.5]. Moreover, if

2.7 INL /I My —> 1 a.s. as n—o,
then holds with D(n)=d(n)=|n|, neZ:4.
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Let us now observe that the sufficient conditions presented in or
are very close to the necessary ones (may be they even are neces-
sary, but we were not able to prove it), since we have the following,

Theorem 3. Let (2, A, P) be a probability space such that & is the union of
at most countable many atoms. Let {Y,, n=1} be a sequence of random variables
and let {N,, n=1} be a sequence of positive integer-valued random variables. If
for every sequence {Nyp, n=1}T({D(n)}, {Ma}, {d.})

(2.8) Yw,— 0 a.s as n—co,
then

(2.9) Yu,—>0 a.s. as n—oo,

and

(2.10) 1{1;2}( Y=Y u,| —0 a.s. as n—oo

We remark that the results presented in Theorems 1 and 2 can also be
applied to families {Y,, nZ%} of random elements with values in separable

Banach spaces. In such a case the symbol |-| denotes simply a norm of the
space.
3. Proofs

Proof of Theorem 1. We have
3.1) YanYMn—i—(YN"’——YMn), neZ4¢.
Thus it is enough to prove that

(3.2) Yy,—Yu,—>0 a.s. as n—oo.
For every ¢>0 we obtain

(33) P( N, ULV we—Y i, | >e)

d
nEZY

<P( N, YLV x, =Y, >IN DN~ DM < d(M)])

REZY

+P(N U LIDWN)—D(M)|>d(M)])

neZy

<P( N, U [max|Vi—Y | >e])

"Ezi kzn icG,

+P( N, \J[IDW) —D(M)| >d(My)]).

nEZY
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Hence, by 2.2), and [3.3), we get (3.2). But (3.2), and (i) give [2.3).
Proof of Theorem 2. For every ¢>0 and >0 we have
(3.4) P(N, UL w=Y ] >e])

d
nEZY

<P( N, U LY w0, =Y i, | >IN0 DN~ D(Ma)| <6d(M)])

d
nezZy

+P( N, U [IDWN)—D(M,)| >3d(M)])

nEZy

<P(N, UL max |Vi—Yu,|>e])

nezi kzn i€G,(d

+P( N, \JLIDND—D(My)| >3d(M)]).

d
neEZ

Hence, (ii), and yield

Yv,—Yu,—>0 as. as k—oo,
so that (i) and the equality

Ymi=Yu,+Vn,—~Yu,), keZt
end the proof of [Theorem 2.

Proof of Theorem 3. It is obvious that holds since {M,, n=l}e
T({D(n)}, {M,}, {d(n)}). Thus it is enough to prove But 2 is a sum
of atoms so that

ggglei—Yunl —>0 a.s. as n—o

if and only if
?elgflyi—y”nl — 0 as n—oo

(cf. [Thomasian 7]). On the other hand, if the sequence {gglei—YMnl, n=1}

does not converge in probability, then similarly as in the proof of Theorem 2.2
[6] we can prove that one can define a sequence {z% n=1} such that

P(lim sup [| D(et)— D(My)| > d(M)]) =0

and the sequence {Y x, n=1} does not converge almost surely and this con-
tradicts Thus the proof of is completed.
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4. Example

Let {X,., n=1} be a sequence of independent and identically distributed
random variables such that EX,=0 and 0<E X, =¢*<o. Let S,=X,+ -
+X,, n=1. Then the set of cluster points of the sequence {S./(n loglog n)'?,
n=3} coincides almost surely with [—o+'2, 642], so that the sequence
{Y ,=S./(n loglog n)*?), n=3} does not converge almost surely to zero. But if,

for example, M,,=222k, k=1, then by Chebyshev’s inequality and Borel-Cantelli
lemma

Yy,— 0 a.s. as n—oo.

Furthermore, using Kolmogorov’s inequality and Borel-Cantelli lemma, one can
easily prove that the sequence {Y,,, k=1} satisfies the condition GA({n}, {M,},
{n}), so that by

Yy,— 0 a.s. as n—oo

for every sequence {N,, n=1} of positive integer-valued random variables such
that

N,/ M, —1 a.s. as n—oo ,

Assume now that the distribution of the random variable X, is continuous.

Let {L(n), n=1} be the sequence of record times, i.e., L(1)=1 and inductively
for n=1

L(n+1)=inf{j> L(n): X;>Xzcoo},

and let p(n)=p([1, n]) be the number of records in the first n observations.
Then (cf. [4, Chapter 4])

(Log L(n))/n —> 1 a.s. as n—oo
and

p./Logn —>1  a.s. as n—oo,

so that putting N{P=[Log L(n,)] or N{»=u([exp (n,:)]), where n.=M,, k=1,
we get )
N®O/M, —>1 _ a.s. as n—o

for ;=1, 2. Thus, for /=1, 2, we get

YN;‘n —>0 a.s. as n—oo,
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