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Introduction

The notion of finite representability in Banach spaces was introduced by
R. C. James [9] in connection with the study of superreflexivity. The con-
nection between finite representability and ultrapowers was independently ob-
served by C. W. Henson, L. C. Moore [8] and J. Stern [15]. The explicit
definition of ultraproducts of Banach spaces was introduced by D. Dacunha-
Castelle and J. L. Krivine [5] and detailed study of ultraproducts led to various
applications in the local theory of Banach spaces. A comprehensive account of
all this is the survey Paper of S. Heinrich [7] and it is convenient to take this
as our reference rather than the original sources. Ultraproducts of $c*$-algebras
were defined in [5] but the theory of finite representations has been confined
to the setting of Banach spaces and $(1+\epsilon)$-isomorphisms, $i.e$ . bounded linear
maps $T$ with 1 $ T\Vert\leqq 1+\epsilon$ and $\Vert T^{-1}\Vert\leqq 1+\epsilon$ on finite dimensional subspaces. The
Purpose of this paper is to study this notion in the setting of $c*$-algebras and
$(1+\epsilon)$-isomorphisms $T$ on finite dimensional subalgebras or subspaces, that are
$*$-homomorphisms, completely positive maps or completely bounded maps with
$\Vert T\Vert_{cb}\leqq 1+\epsilon$ and $\Vert T^{-1}\Vert_{cb}\leqq 1+\epsilon$ . Completely positive maps were introduced by
W. F. Stinespring [16] as an algebraic setting for studying the existence of
dilations. Every $*$-homomorphism is completely positive. On the other hand it
has been shown by M. D. Choi and E. Christensen [4] that for any $\epsilon>0$, there
exists a pair of $c*$-algebras $d_{\epsilon}$ and $B_{\epsilon}$ possessing a completely positive $(1+\epsilon)-$

isomorphism $T$ on $d_{*}$ onto $B_{*}$ with a completely positive inverse but there is
no one-one $*$-homomorphism on $d_{*}$ onto $B_{\epsilon}$ .

Completely bounded maps were introduced by Arveson [2], V. I. Paulsen’s
monograph [14] gives a good account of such maps. In fact the theory of
completely positive maps has been developed more by Quantum mechanicists
because of its use in the Quantum theory of open systems $i.e$ . irreversible
processes, (see [6, 13, 1]).
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Let $L(E)$ be the $c*$-algebra of bounded operators on a Hilbert space $E$ to
itself. For any subspace (respectively $*$-subspace, $*$-subalgebra) $X$ of $L(E)$ ,
$M_{n}(X)$ will denote the corresponding subspace (respectively $- subspace,$ $*$-subal-
gebra) of the matrix algebra $M_{n}(L(E))$ . Then $X$ is closed in $L(E)$ if and only
if $M_{n}(X)$ is closed in $Af_{n}(L(E))$ .

Let $F$ be a Hilbert space. Let $Y$ be a subspace of $L(F)$ . For a linear map
$\phi$ on $X$ to $Y$ let $\phi_{n}$ denote the map on $M_{n}(X)$ to $M_{n}(Y)$ , defined by applying
$\phi$ element by element to each matrix over $X$ . If $X$ and $Y$ are $*$-subspaces
\langle respectively $*$-subalgebras) and $\phi$ is a $*$-map (respectively $*$-homomorphism)
then so is $\phi_{n}$ . In case $X$ and $Y$ are $*$-subspaces and $\phi_{n}$ is positive we say that
$\phi$ is $n$ -positive and if $\phi_{7n}$ is $m$-positive for each $m\in N$ then $\phi$ is called completely
positive[16]. $\phi$ is called completely contractive if each $\phi_{n}$ is a contraction [2].
A scalar multiple $\phi$ of such a $\phi$ satisfies $\Vert\psi\Vert_{cb}=\sup_{n}\Vert\phi_{n}\Vert<\infty$ and such maps $\psi$

are called completely bounded. $\phi$ is called a complete isometry if each $\phi_{n}$ is
an isometry. If $\phi$ is a $*$-homomorphism on a $c*$-algebra $X$ to a $c*$-algebra $Y$

then $\phi$ is completely positive and completely contractive. On the other hand
if $\phi$ is a completely positive map on an operator system $X(i.e$ . a $*$-subspace
$X$ of $L(E)$ containing the identity $l_{E}$ of $L(E))$ to $L(F)$ then $\phi$ is completely
bounded and $\Vert\phi(l_{E})\Vert=\Vert\phi\Vert=\Vert\phi\Vert_{cb}$ and $\phi$ has an extension to a completely positive
map $\psi$ on $L(E)$ to $L(F)$ ([2]). The latter result is known as Arveson’s ex-
tension theorem, and it motivated E. G. Effros, C. E. Lance, A. Connes and
others to consider the injective operator systems I. $e$ . the class of operator
systems with this extension property. M. D. Choi and E. G. Effros [3] have
called an operator system $d\subset L(F)$ injective if for any operator systems $ B\subset$

$C\subset L(E)$ any completely positive map $\phi$ of $B$ to $d$ , there is a completely posi-
tive extension $\phi_{1}$ of $\phi$ to $C$ such that $\phi_{1}$ : $C\rightarrow d$ and have proved that if $ d\subset$

$L(F)$ is an injective operator system then there is an identity preserving com-
pletely positive1-1 map $\phi$ of a onto an essentially unique unital $c*$-algebra
such that its inverse is also completely positive and thus $\Vert\phi\Vert_{cb}=\Vert\phi^{-1}\Vert_{cb}=1$ so
that $\phi$ is a complete isometry. As noted in the proof of the uniqueness part
of this result $([3], p165-166)$ any identity preserving order isomorphism of
unital $c*$-algebras that is 2-positive also, is a 1-1 $*$-homomorphism and there-
fore, an identity preserving complete isometry between unital $c*$-algebras is a
1-1 $*$-homomorphism.

In Section 2, we develop the necessary theory of ultraproducts of $c*$-algebras
and in Section 3, we give our main results on finite representations.

2. Ultraproducts in $C*$-algebras

Let $(E_{i})_{\ell\in I}$ be a family of Banach spaces and $qJ$, a non trivial ultrafilter
on $I$. Let $1_{\infty}(I, E_{i})$ denote the Banach space of bounded functions $x=(x_{i})$ in



COMPLETE FINITE REPRESENTABILITY 85

$\prod_{i\in I}E_{i}$ with the norm $\Vert(x_{\ell})\Vert=\sup_{i}\Vert x_{i}\Vert$ and let $N_{U}C$ be the subspace of those $(x_{i})$

for which $\lim_{qf}\Vert x_{i}\Vert=0$ . The ultraproduct $(E_{i})_{c_{U}}$ is the quotient space $1_{\infty}(I, E_{i})/N_{c_{U}}$ .
Its elements are the equivalence classes $(x_{i})_{qJ}$ of elements $(x_{i})\in l_{\infty}(I, E_{i})$ and
$\Vert(x_{i})_{qJ}\Vert=\lim_{qf}\Vert x_{i}\Vert$ . If $E_{i}’ s$ are Banach algebras (respectively $c*$-algebras) then

so is $(E_{i})_{v}$ under the operations induced by pointwise operations (cf. [5], [7]
Proposition 3.1).

For $B\dot{a}nach$ spaces $E$ and $F$ let $E^{\prime}$ denote the dual of $E$ and $L(E, F)$ denote
the Banach space of bounded linear operators on $E$ to $F$ with the operator
norm. $L(E, E)$ will be denoted by $L(E)$ . Then as in \S 2 [7], for another
family $(F_{i})_{i\in I}$ of Banach spaces, $(L(E_{\ell}, F_{\ell}))_{qf}$ can be identified with a closed
subspace of $L((E_{i})_{U}c(F_{i})_{U}c)$ via

$(T_{i})_{qJ}(x_{i})_{qJ}=(T_{i}x_{i})_{qf}$ .
Further it follows by Lemma 7.4 [7] that for a finite dimensional space $M$,

$(L(M, F_{i}))_{U}c=L(M, (F_{\ell})_{q\prime})$ .
In fact, this follows from the observation that for a finite dimensional space $M$

and $M_{i}=M$ for each $i$, we have that $x_{0}=\lim_{qJ}x_{\ell}$ exists for each $(x_{\ell})\in l_{\infty}(I, M)$

and thus $(M_{i})_{qf}$ can be identified with $M$ via $(x_{i})_{qJ}\rightarrow\lim_{v}x_{i}$ . This also gives

$(L(E_{i}, M))_{v}\subset L((E_{\ell})_{U}cM)$ .
In particular, $(E_{i}^{\prime})_{qJ}\subset(E_{i})_{U}^{\prime}c$ via

$(f_{\ell})_{U}c(x_{i})_{qJ}=\lim_{v}f_{i}(x_{i})$ .
If $(E_{\ell})_{qf}$ is reflexive, then $(E_{i}^{\prime})_{qf}=(E_{i})_{qf}^{\prime}$ . ( $[8]$ , cf. [7], Proposition 7.1).

For $T\in L(X, Y)$ , let $T^{\prime}$ denote the adjoint operator on $Y^{\prime}$ to $X^{\prime}$ . In case
$X$ and $Y$ are Hilbert spaces, let $\tau*$ be the adjoint operator induced on $Y$ to $X$

by $T^{\prime}$ , when $X$ is identified with $X^{\prime}$ and $Y$ with $Y^{\prime}$ via Riesz representation
theorem $i$ . $e$ . $\langle Tx, y\rangle=\langle x, T^{*}y\rangle$ for $x\in X$ and $y\in Y$ . Our next result may be
compared with Theorem 1.2 and other results in [12].

$Prop_{08}ition2.1$ . (i) For $(T_{i})_{qf}\in(L(E_{i}, F_{\ell}))_{U}c$ and $(f_{\ell})_{v}\in(F_{\ell}^{\prime})_{U}c$ we have
\langle $T_{i})_{qf}^{\prime}(f_{\ell})_{qf}=(T_{i}^{\prime}f_{\ell})_{qf}$ . If $(F_{\ell})_{\eta}$ is reflexive then $(T_{i})_{U}^{\prime}c=(T_{i}^{\prime})_{qf}$ .

(ii) SuPpose that for each $i,$ $E_{i}$ is a Hilbert sPace. Then
(a) $(E_{i})_{v}$ is a Hilbert space and for $(x_{\ell})_{qJ},$ $(y_{i})_{qJ}\in(E_{i})_{qf},$ $\langle(x_{\ell})_{qf}, (y_{\ell})_{qJ}\rangle=$

$\lim_{Uc}\langle x_{i}, y_{i}\rangle$ .
(b) $(L(E_{\ell}))_{\mathfrak{U}}$ is a $c*$-subalgebra of $L((E_{i})_{qJ})$ and for $(T_{i})_{qf}\in(L(E_{\ell}))_{qf}$ ,

$C((T_{i})_{qf})\subset(C(T_{i}))_{qf}$ , where for an operatOr $T$ on a Hilbert space $H,$ $C(T)$ denotes
the $c*$-algebra generated by T. In particular, for $(T_{i})_{qf},$ $(S_{i})_{qf}\in(L(E_{i}))_{qJ}$ , we
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have $(T_{\ell})_{v}(S_{\ell})_{v}=(T_{i}S_{i})_{v},$ $(T_{i})_{v}^{*}=(T_{i}^{*})_{v}$ and $(T_{i})_{v}$ is Positive if and only if
$(T_{\ell})_{v}=(V_{i}^{*}V_{i})_{v}=(W_{i}^{2})_{v}=(W_{i})_{v}^{2}$

for some $(V_{i})_{v}\in C((T_{i})_{v})$ and $(W_{i})_{v}\in(C(T_{\ell}))_{v}$ with $W_{i}$ positive for each $i$ .

Proof. (i) The first part follows from the observation that for $(x_{\ell})_{v}\in$

$(E_{i})_{v}$ , we have

$[(T_{i})_{v}^{\prime}(f_{i})_{v}](x_{i})_{v}=(f_{\ell})_{v}[(T_{i})_{v}(x_{i})_{v}]=(f_{\ell})_{v}(T_{\ell}x_{\ell})_{v}$

$=\lim_{v}f_{i}(T_{i}x_{i})=\lim_{v}(T_{i}^{\prime}f_{i})(x_{\ell})$

$=(T_{i}^{\prime}f_{\ell})_{v}(x_{i})_{v}$ .
The second part is now immediate from the first part since $(F_{\ell}^{\prime})_{v}=(F_{\ell})_{v}^{\prime}$ in

case $(F_{\ell})_{v}$ is reflexive.
(ii) The first part of (a) follows from the fact that a Banach space is a

Hilbert space if and only if its norm satisfies the parallelogram law. Indeed,

for $(x_{i})_{v},$ $(y_{i})_{v}\in(E_{i})_{v}$ , we have

$\Vert(x_{i})_{v}+(y_{\ell})_{v}\Vert^{2}+\Vert(x_{\ell})_{v}-(y_{\ell})_{v}\Vert^{2}$

$=\lim_{v}\Vert x_{i}+y_{i}\Vert^{2}+\lim_{v}\Vert x_{i}-y_{\ell}\Vert^{2}$

$=\lim_{v}[\Vert x_{\ell}+y_{\ell}\Vert^{2}+\Vert x_{\ell}-y_{\ell}\Vert^{2}]$

$=\lim_{v}2[\Vert x_{i}\Vert^{2}+\Vert y_{\ell}\Vert^{2}]$

$=2[\lim_{v}\Vert x_{\ell}\Vert^{2}+\lim_{v}\Vert y_{\ell}\Vert^{2}]$

$=2\Vert(x_{i})_{v}\Vert^{2}+2\Vert(y_{i})_{v}\Vert^{2}$ .

The second part is now an immediate consequence of the polarization
identity.

The first part of (b) is immediate from (i) and the fact that $(C(T_{i}))_{v}$ is a
$c*$-algebra containing $(T_{i})_{v}$ . Further since $C((T_{i})_{v})$ is also a $c*$-algebra con-
taining $(T_{\ell})_{v}$ , the latter is positive if and only if $(T_{i})_{v}=(V_{i})_{v}^{*}(V_{i})_{v}$ for some
$(V_{i})_{v}\in C((T_{\ell})_{v})$ . The proof can be completed by putting $W_{i}=(V_{i}^{*}V_{\ell})^{1/2}$ .

Let $n\in N$ For a Hilbert space $E$ , let $E^{n}$ denote the Hilbert space of n-
tuples $x=(\xi_{j})_{1sJsn}$ from $E$ with the inner product

$\langle x, y\rangle=\langle(\xi_{j})_{1\leq j\leq n}, (\eta_{j})_{1\leq j\leq n}\rangle=\sum_{f=1}^{n}\langle\xi_{f}, \eta_{j}\rangle$ .

Then the matrix algebra $M_{n}(L(E))$ of $n\times n$ matrices with elements in $L(E)$ can
be made into a $c*$-algebra if we identify it with $L(E^{n})$ via $(a_{jk})_{1\leq f.k\leq n^{\rightarrow}}$ the
operator $A$ given by
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$(A_{X})=(\sum_{k\Rightarrow 1}^{n}a_{fk}\xi_{k})_{1\leqq j\leqq n}$

We have the following results:

for $x=(\xi_{j})_{1\leq j\leqq n}\in E^{n}$ .

Proposition 2.2. Let $n\in N$ Let for each $i,$ $E_{\ell}$ be a Hilbert space. Then
(i) the Hilbert space $(E_{i}^{n})_{v}$ can be identified with the Hilbert space $(E_{\ell})_{v}^{n}$ via

$(x_{\ell})_{v}=((\xi_{ij})_{1j\leq n})_{v}\rightarrow((\xi_{\ell j})_{v})_{1\leqq j\leqq n}$ .
(ii) the $C^{*}$-algebra $M_{n}((L(E_{i}))_{v})$ can be identified with $(M_{n}(L(E_{\ell})))_{v}$ via

$((T_{j.k.i})_{v})_{1\leq j.k\leq n}\rightarrow((T_{j.k.i})_{1\leqq j.k\leq n})_{v}$ .

Proof. (i) We first note that for $(x_{i})\in l_{\infty}(I, E_{i}^{n})$ with $x_{\ell}=(\xi_{\ell j})_{1\leq j\leqq n}$ for
$i\in I$, we have

$\lim_{v}||x_{i}\Vert^{2}=\lim_{vj}\sum_{=1}^{n}\Vert\xi_{\ell.j}\Vert^{2}=\sum_{j=1}^{n}\lim_{v}\Vert\xi_{\ell.j}\Vert^{2}$ .

So the map $(x_{\ell})_{v}\rightarrow((\xi_{ij})_{v})_{1\leqq j\leqq n}$ is well defined on $(E_{i}^{n})_{v}$ and it satisfies

$\Vert(x_{\ell})_{V}\Vert=\Vert((\xi_{i.j})_{v})_{1\leqq j\leq n}\Vert$ .
This map is now easily seen to be linear and onto $(E_{i})_{v}^{n}$ .

$(ii_{i}^{\rceil})$ We first note that because of (i), the $c*$-algebra $L((E_{i}^{n})_{v})$ can be

identified with the $c*$-algebra $L((E_{i})_{v}^{n})=M_{n}(L((E_{i})_{v}))$ .
Since $(L(E_{i}))_{v}$ is a $c*$-subalgebra of $L((E_{i})_{v})$ , we have that the $c*$-algebra

$M_{n}((L(E_{i}))_{v})$ can be identified with a $c*$-subalgebra of $M_{n}(L((E_{i})_{v}))$ and con-
sequently with a $c*$-subalgebra of $L((E_{i}^{n})_{v})$ . For $(T_{jk})_{1\leq j.k\leq n}=((T_{j.k.i})_{v})_{1\leq j.k\leq n}$

$\in M_{n}((L(E_{\ell}))_{v})$, the corresponding element of $L((E_{i}^{n})_{v})$ is given by

$((T_{j.k.i})_{1\leqq j.k\leq n})_{v}$ .

Corollary 2.3. $(T_{jk})_{1\leqq j.k\leqq n}=((T_{j.k.i})_{v})_{1\leqq j.k\leqq n}\in M_{n}((L(E_{i}))_{v})$ is Positive if and
only if for each $i$ there is $(S_{j.k.i})_{1\leqq j.k\leqq n}\in M_{n}(L(E_{i}))$ such that

$(T_{jk})_{1\leqq j.k\leqq n}=((\sum_{l=1}^{n}S_{l.j.i}^{*}S_{l.k.\ell})_{v})_{1\leq j.k\leq n}$ .

Proof. We have only to apply Proposition 2.1(ii) (b) with $E_{\ell}$ replaced by $E_{i}^{n}$

A for each $i$ .

Proposition 2.4. Let for each $i,$ $E_{\ell}$ and $F_{\ell}$ be Hilbert spaces, $X_{\ell}$ and $Y_{\ell}$ be
closed subspaces of $L(E_{i})$ and $L(F_{\ell})$ respectively and $\phi_{\ell}$ : $X_{\ell}\rightarrow Y_{i}$ be a linear map.
Supp0se that $\sup_{\ell}\Vert\phi_{i}\Vert<\infty$ . Let $\phi$ denote $(\phi_{i})_{v}$ ; $(X_{i})_{v}-\rangle$ $(Y_{\ell})_{v}$ .

(i) If each of the $X_{\ell}$ and $Y_{\ell}$ are $*$-subalgebras and each $\phi_{\ell}$ is a $*_{-homo-}$

morphism then $\phi$ is a $*$-homomorphism.
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(ii) If each $\phi_{i}$ is completely bounded with $\sup_{\ell}\Vert\phi_{i}\Vert_{cb}<\infty$ then $\phi$ is completely

bounded and $\Vert\phi\Vert_{cb}\leqq\lim_{v}\Vert\phi_{i}\Vert_{cb}$ , equality occurs if $V$ is countably complete.

In particular, if each $\phi_{\ell}$ is a complete contraction then so is $\phi$ .
(iii) If there is an $I_{0}\in v$ such that for each $i$ in $I_{0},$ $\phi_{\ell}$ is a complete isometry

then so is $\phi$ .
(iv) If each of the $X_{\ell}$ is a $C^{*}$-subalgebra of $L(E_{i})$ or an operator system

and each $\phi_{i}$ is completely posjtive then $\phi$ is completely positive.

Proof. (i) is immediate from the definition of $(\phi_{\ell})_{v}$ .
(ii) $Letn\in N$ Let T$=(T_{jk})_{1\leq j.k\leqq n}\in M_{n}((X_{i})_{v})$ . $ByProposition2.2(ii)$ above

we have that
$\Vert\phi_{n}(T)\Vert=\lim_{v}\Vert(\phi_{n}(T))_{i}\Vert$

$=\lim_{v}\Vert\phi_{in}((T_{j.k.\ell})_{1\leqq j.k\leq n})\Vert$

$\leqq\lim_{v}(\Vert\phi_{in}\Vert\cdot\Vert(T_{j.k.\ell})_{1\leqq f.k\leqq n}\Vert)$

$\leqq\lim_{v}\Vert\phi_{\ell}\Vert_{cb}\lim_{v}\Vert(T_{j.k.i})_{1\leqq j.k\leqq n}\Vert$

$=(\lim_{v}\Vert\phi_{i}\Vert_{cb})\Vert T\Vert$ .

Therefore, $\phi$ is completely bounded and $\Vert\phi\Vert_{cb}\leqq\lim_{v}\Vert\phi_{i}\Vert_{cb}$ .

Now suppose that $V$ is countably complete and $\Vert\phi\Vert_{cb}<\lim_{v}\Vert\phi_{i}\Vert_{cb}$ . Choose
any $r$ such that $\Vert\phi\Vert_{cb}<r<\lim_{v}\Vert\phi_{i}\Vert_{cb}$ . Then there is an $I_{0}\in q$] such that $\Vert\phi_{i}\Vert_{cb}$

$>r$ for each $i$ in $I_{0}$ . Now for each $i$ in $I_{0}$ there is a least $n_{i}\in N$ such that
$\Vert\phi_{in_{i}}\Vert>r$ . So there exists an $A_{i}\in M_{n_{i}}(X_{i})$ such that $||A_{i}\Vert=1$ but $\Vert\phi_{in_{i}}(A_{i})\Vert>r$ .
For $k\in N$, let $I_{k}=\{i\in I_{0} : n_{i}>k\}$ . Then $\{I_{k}\}$ is a decreasing sequence of sets
in $I$ with $\cap I_{k}=\phi$ . Since $v$ is countably complete there is a $k_{0}$ such that
$ I_{k_{0}}\not\in\eta$ . Since $qJ$ is an ultrafilter, $J=\{i\in I_{0} : n_{i}\leqq k_{0}\}=I_{0}\backslash I_{k_{0}}$ is in $qJ$ . For
$i\in J$ , let $B_{\ell}=(B_{i.j.k})_{1\leqq j.k\leqq k_{0}}$ be the member of $M_{k_{0}}(X_{\ell})$ obtained from $A_{i}$ by
putting in zeros at the vacant places $i.e$ . $B_{\ell.j.k}=0$ for $j>n_{i}$ or $k>n_{i}$ and
$B_{\ell.j.k}=A_{\ell.f.k}$ for $1\leqq j,$ $k\leqq n_{i}$ , where $A_{\ell}=(A_{i.j.k})_{1\leqq j.k\leq n_{i}}$ . For $i\in 1\backslash J$ , let $B_{i}$ be
the zero $k_{0}\times k_{0}$ matrix in $M_{k_{0}}(X_{i})$ . Then $(B_{\ell})_{v}\in(\Lambda f_{k_{0}}(X_{i}))_{v}$ and

1 $(B_{i})_{v}\Vert=\lim_{v}\Vert B_{i}\Vert=\lim_{v}\Vert A_{i}\Vert=1$ .

By Proposition 2.2(ii) again

$B=((B_{i.j.k})_{1\leqq j.k\leq n})_{v}\in M_{k_{0}}((X_{i})_{v})$ and $\Vert B\Vert=1$ .
Also

$\Vert\phi_{k_{0}}(B)\Vert=\lim_{v}\Vert\phi_{ik_{0}}(B_{i.j.k})_{1\leq j.k\leq k_{0}}\Vert$
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$=\lim_{v}\Vert\phi_{\ell n_{i}}(A_{i.j.k})_{1\leqq j.k\leq n_{i}}\Vert$

$\geqq r$ ,

so that $\Vert\phi_{k_{0}}\Vert\geqq r$ , which, in turn, gives that I $\phi\Vert_{cb}\geqq r>\Vert\phi\Vert_{cb}$ . This contradiction
establishes the required equality.

(iii) Suppose that $I_{0}\in ql$ is such that for each $i\in I_{0},$ $\phi_{i}$ is a complete
isometry. Then for $n\in N$,

$A=(A_{jk})_{1\leq j.k\leqq n}=((A_{f.k,i})_{v})_{1\leqq j.k\leq n}\in M_{n}((X_{i})_{v})$

we have that

$\Vert\phi_{n}(A)\Vert=\lim_{v}\Vert\phi_{in}(A_{j.k.i})_{1\leqq j.k\leq n}\Vert$

$=\lim_{v}\Vert(A_{j.k.i})_{1\leq j.k\leq n}\Vert$

$=\Vert A\Vert$ , by Proposition 2.2(ii), again.
So, $\phi$ is a complete isometry.

(iv) We have to prove that for $n\in NT=(T_{j.k})_{1\leq j.k\leq n}\in M_{n}((X_{i})_{v})$ positive,
$\phi_{n}(T)=(\phi(T_{j.k}))_{1\leq j.k\leqq n}\in M_{n}((Y_{\ell})_{v})$ is positive. By Proposition 2.2, $T$ can be
identified with

$((T_{j.k.i})_{1\leqq j,k\leqq n})_{v}\in(M_{n}(X_{\ell}))_{v}\subset(L(E_{i}^{n}))_{v}$ ,

where $(T_{j.k})_{1\leq j.k\leqq n}=((T_{j.k.i})_{v})_{1\leqq j.k\leq n}$ . By Proposition 2.1, $T=(V_{i}^{*}V_{i})_{v}$ , where for
each $i,$ $V_{\ell}\in C((T_{j.k.i})_{1\leqq f.k\leqq n})$ . Let $i\in I$. If $X_{\ell}$ is a $c*$-subalgebra of $L(E_{i})$ , then
$V_{i}\in M_{n}(X_{i})$ and thus $V_{i}^{*}V_{\ell}\in M_{n}(X_{i})$ is positive. Since $\phi_{i}$ is completely positive
we have that $\phi_{in}$ is positive and, therefore, $S_{i}=\phi_{in}(V_{i}^{*}V_{i})$ is positive. For
notational convenience we write $Z_{i}=X_{\ell}$ and $\psi_{i}=\phi_{\ell}$ in this case. On the other
hand if $X_{i}$ is not a $C*$-algebra but an operator system then by Arveson’s Ex-
tension Theorem, $\phi_{i}$ has an extension to a completely positive map $\psi_{i}$ on $Z_{\ell}=$

$L(E_{\ell})$ to $L(F_{\ell})$ with $\Vert\psi_{i}\Vert_{cb}=\Vert\phi_{i}\Vert_{cb}=\Vert\phi_{i}(1_{E_{i}})\Vert$ and therefore, $S_{\ell}=\phi_{\ell n}(V_{i}^{*}V_{i})$ is
positive. Now in all cases

$\phi_{n}(T)=(\phi_{in}(T_{j.k.i})_{1\leqq j.k\leq n})_{v}=(\phi_{\ell n}(T_{j.k.i})_{1\leqq f.k\leq n})_{v}$

$=(\psi_{\ell n}(V_{i}^{*}V_{i}))_{v}=(S_{i})_{v}\in(L(F_{i}^{n}))_{v}$ .
So by Proposition 2.1, $\phi_{n}(T)$ is positive.

Remark 2.5. (a) Even though we assume axiom of choice throughout to
avoid entering into the discussion of various axioms in set theory like Axiom
of choice, Ultrafilter Principle and Axiom of constructibility, it may be pointed
out that every ultrafilter on the set of natural numbers is countably incomplete
and the least cardinal carrying a countably complete ultrafilter is inaccessible
(see for instance [15]).
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(b) If in (iv) above, each $X_{i}$ is an operator system, then

$\Vert\phi\Vert_{cb}=\Vert\phi(1_{(E)}iv)\Vert=\Vert(\phi_{\ell}(1_{E\ell}))_{v}\Vert$

$=\lim_{v}\Vert\phi_{\ell}(1_{E_{i}})\Vert=\lim_{v}\Vert\phi_{\ell}\Vert_{cb}$ .

Thus equality in (i) above can occur without the stringent condition of
countable completeness of cV.

3. The Local Structure of Ultraproducts of $C^{*}- algebra$

In this section we shall study the local structure of ultraproducts of $C^{*}-$

algebras. We shall find certain conditions under which a closed subspace
( $*$-subspace or $*$-subalgebra) of $L(F),$ $F$ being a Hilbert space, is completely
isometric to a subspace (respectively $*$-subspace, $*$-subalgebra) of an ultraproduct
of $c*$-algebras. Throughout the section unless otherwise stated, for Hilbert
spaces $E$ and $F,$ $X$ and $Y$ are closed subspaces of $L(F)$ and $L(E)$ respectively.
For a 1-1 linear map $\phi:X\rightarrow Y,$ $X$ will be taken as an operator system or a
$c*$-subalgebra of $L(F)$ whenever $\phi$ is taken to be completely positive. Accord-
ingly, $X$ is taken as a $c*$-subalgebra of $L(F)$ whenever $\phi$ is taken to be a
$*$-homomorphism. With this understanding we define the following notions:

Deflnition 3.1. Let $\epsilon>0$ and $\phi$ be a $(1+\epsilon)$-isomorphism on $X$ onto $Yi.e$ .
$\phi$ is a 1-1 linear map on $X$ onto $Y$ with $\Vert\phi\Vert\leqq 1+\epsilon,$ $\Vert\phi^{-1}\Vert\leqq 1+\epsilon$ .

(i) $\phi$ will be called a complete $(1+\epsilon)$-isomorphism if $\Vert\phi\Vert_{cb}\leqq 1+\epsilon$ and
$\rfloor|\phi^{-1}\Vert_{cb}\leqq 1+\epsilon$ . In this case, the spaces $X$ and $Y$ are said to be completely
(l+\’e)-isomorphic.

(ii) $\phi$ will be called a completely Positive $(1+\epsilon)$-isomorphism if $\phi$ and $\phi^{-1}$

are completely positive. In this case $X$ and $Y$ are said to be completely order
$(1+\epsilon)$-isomorphic.

Remark 3.2. (a) Each 1-1 $*$-homomorphism on $X$ onto $Y$ is clearly a
completely positive $(1+\epsilon)$-isomorphism [16], but the converse is not true. In
fact Choi and Christensen [4] have shown that for each $\epsilon>0$, there exist $C^{*}-$

algebras $\cup l_{\epsilon}$ and $B_{\epsilon}$ and completely positive, 1-1, onto maps $\phi_{\epsilon}$ : $A.\rightarrow B_{e}$ and
$\phi_{*}^{-1}$ : $B_{\text{\’{e}}}\rightarrow d_{\epsilon}$ such that $\Vert\phi_{\epsilon}\Vert\leqq 1+\epsilon$ and $\Vert\phi_{\epsilon}^{-1}\Vert\leqq 1+\epsilon$ ([4], Theorem 3.5), but there
exists no $*$-homomorphism on $d_{e}$ onto $S_{\epsilon}$ ([4], Theorem 3.3).

(b) A completely positive $(1+\epsilon)$-isomorphism on $X$ onto $Y$ is a complete
$(1+\epsilon)$-isomorphism if both $X$ and $Y$ are operator systems.

We begin with a variant of Proposition 6.2 [7], the formulation and the
basic part of the proof being similar.

Theorem 3.3. For a Hilbert space $F$, let $X$ be a closed subspace of $L(F)$
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and let $B$ be a family of $C^{*}$-algebras. Let $\ovalbox{\tt\small REJECT}_{X}$ be a family of closed subspaces
of $X$ ordered by set-inclusion such that for any finite subset (equivalently finite
dimensional subspace) $S$ of $X$, there exis $fsM\in\ovalbox{\tt\small REJECT}_{X}$ with $S\subseteq M$. Suppose that for
each $\epsilon>0$ and each $M\in\ovalbox{\tt\small REJECT}_{X}$ , there is $B\in\ovalbox{\tt\small REJECT}$ such that $M$ is completely $(1+\epsilon)-$

isomorphic (respectively completely order $(1+\epsilon)$-isomorphic) to a subspace of $B$ .
Then there is an ultrafilter $v$ on an index set I and a map from I into $\ovalbox{\tt\small REJECT}$ (as-

signing to each $i$, a $C^{*}$-algebra $E_{\ell}\in\ovalbox{\tt\small REJECT}$ ) so that $X$ is completely isometric (respectively
completely order isometrically isomorphic) to a subspace of $(E_{i})_{v}$ .

Proof. Let $I$ be the collection of all pairs $(M, \epsilon)$ where $M\in\ovalbox{\tt\small REJECT}_{X}$ and $\epsilon>0$ .
The set $I$ can be partially ordered by the relation

$(M_{1}, \epsilon_{1})\prec(M_{2}, \epsilon_{2})$ if $M_{1}\subset M_{2}$ and $\epsilon_{1}\geqq\epsilon_{2}$ .
Then the filter $\mathcal{F}$ associated with this order consists of all sets $I_{0}\subset I$ for which
there is an element $(M_{0}, \epsilon_{0})$ of $I$ with

$I_{0}=\{(M, \epsilon):(M_{0}, \epsilon_{0})\prec(M, \epsilon)\}$ .
Let now $qJ$ be an ultrafilter containing this order filter $\mathcal{F}$ . Now $\ovalbox{\tt\small REJECT}$ is a family
of $c*$-algebras such that for each $i=(M_{i}, \epsilon_{i})\in I$ , there exists an $E_{i}\in\ovalbox{\tt\small REJECT}$ such
that $M_{i}$ is completely $(1+\epsilon_{i})$-isomorphic (respectively completely order $(1+\epsilon_{i})-$

isomorphic) to a subspace $N_{i}$ of $E_{i}$ . Define $\ell;X\rightarrow(E_{\ell})_{v}$ as follows:

For $x\in X$, we put $\ell x=(y_{i})_{v}$ , $y_{\ell}=\left\{\begin{array}{ll}\phi_{i}(x) & if x\in M_{\ell}\\0 & if x\not\in M_{\ell}.\end{array}\right.$

Then $\ell$ is a linear isometry. Let $n\in N$ and $\epsilon_{0}>0$ . Consider an element $A=$

$(a_{pq})_{1\leqq p.q\leqq n}\in M_{n}(X)$ . Consider any subspace $M_{0}\in\ovalbox{\tt\small REJECT}_{X}$ containing $a_{pq},$ $1\leqq p,$ $ q\leqq$

$n$ . Then
$ I_{0}=\{(\Lambda f, \epsilon):(M_{0}, \epsilon_{0})\prec(M, \epsilon)\}\in q\int$ ,

$q]_{0}=\{J\cap I_{0} : J\in v\}$ is an ultrafilter on $I_{0}$ and $(E_{i})_{v_{0}}$ can be identified with
$(E_{i})_{v}$ by identifying $(x_{i})_{\ell\in I_{0}}$ with $(z_{i})_{i\in I}$ , where $z_{\ell}=x_{\ell}$ for $i$ in $I_{0}$ and zero
otherwise. For $i\in I_{0},$ $\phi_{i}$ and $\phi_{i}^{-1}$ are completely bounded with $\Vert\phi_{\ell}\Vert_{cb}\leqq 1+\epsilon_{\ell}\leqq$

$1+\epsilon_{0}$ and $\Vert\phi_{i}^{-1}\Vert_{cb}\leqq 1+\epsilon_{i}\leqq 1+\epsilon_{0}$ , (respectively completely positive with $\Vert\phi_{\ell}\Vert\leqq 1+$

$\epsilon_{0}$ and $\Vert\phi_{i}^{-1}\Vert\leqq 1+\epsilon_{0}$). So by Proposition 2.4,

$\phi=(\phi_{i})_{v_{0}}$ : $(M_{i})_{v_{0}}\rightarrow(N_{\ell})_{v_{0}}$

and
$\phi^{-1}=(\phi_{i}^{-1})_{v_{0}\ddagger}(N_{i})_{v_{0}}\rightarrow(M_{i})_{v_{0}}$

are completely bounded with $\Vert\phi\Vert_{cb}$ and $\Vert\phi^{-1}\Vert_{cb}\leqq 1+\epsilon_{0}$ (respectively completely
positive).

Now $M_{0}$ can be considered as a subspace of $(M_{l})_{v_{0}}$ and $\ell=\phi|_{H_{0}}$ and $\ell^{-1}=$

$\phi^{-1}|_{\ell(H_{0})}$ satisfy
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$\Vert_{C_{n}}(A)\Vert=\Vert\phi_{n}(A)\Vert\leqq\Vert\phi_{n}\Vert\Vert A\Vert\leqq(1+\epsilon_{0})\Vert A\Vert$

$\leqq(1+\epsilon_{0})\Vert\phi_{n}^{-1}\phi_{n}(A)\Vert$

$\leqq(1+\epsilon_{0})\Vert\phi_{n}^{-1}\Vert\Vert\ell_{n}(A)\Vert$

$\leqq(1+\epsilon_{0})^{2}\Vert\ell_{n}(A)\Vert$

(respectively, $\ell_{n}(A)$ is positive if and only if $A$ is positive). Since $\epsilon_{0}>0$ is
arbitrary, we have that $\Vert\ell_{n}(A)\Vert=\Vert A\Vert$ , further since $A$ is arbitrary we have
that $c_{n}$ is an isometry and since $n$ is arbitrary it follows that $t$ is a complete
isometry (respectively, $\ell_{n}$ and $\ell_{n}^{-1}$ are both positive and since $n$ is arbitrary it
follows that both $\ell$ and $f$

1 are completely positive).

Remark 3.4. In the second part of the above theorem in case $X$ is an
operator system, we may replace $I$ and $qJ$ by $I_{1}=\{(M, \epsilon):1_{F}\in M\}$ and $v_{1}=$

$\{J\cap I_{1} : J\in qJ\}$ respectively and as explained in Remark 2.5(b), $\ell$ becomes a
complete contraction.

Remark 3.5. If $\ovalbox{\tt\small REJECT}$ in the above theorem is taken to be a collection of $C^{*}-$

subalgebras of a $c*$-algebra $Y\subset L(E)$ then we may term conditions in the
theorems as $X$ is completely finitely (respectively completely order finitely)
representable in Y. Then Theorem 3.3 gives us that if $X$ is completely (res-
pectively completely order) finitely reprsentable in $Y$ then there is an ultrafilter
$qf$ such that $X$ is completely isometrically (respectively completely order isome-
trically) isomorphic to a subspace of $(Y)_{v}$ .

Unlike in Banach spaces only partial converses of these results are true
which we now discuss. We have the following partial converse to Theorem 3.3
under the inaccessible condition of countable completeness of $V$ .

Theorem 3.6. Let $(E_{i})_{\ell\in I}$ be a family of $c*$-algebras and let $M$ be a finite
dimensional $*$-subsPace of $(E_{\ell})_{v}$ . Let $\epsilon>0$ . If $qJ$ is countably comPlete then there
exists an $i\in I,$ $a$

$*$-subsPace $M_{\ell}\subset E_{\ell}$ such that $M$ is completely $(1+\epsilon)$-isomorPhic
to $M_{\ell}$ .

Proof. Step $I$ : We first proceed as in the proof of the corresponding
result in Banach spaces (cf. [15], [11]). Let $\{x_{1}, x_{2}, \cdots , x_{n}\}$ be a basis of $M$

with $x_{j}$ represented by $(x_{j\ell})_{i}$ . Since all norms on $C^{n}$ are equivalent, there
exists $K_{n}>0$ such that for each $(\lambda_{j})_{1\leq j\leqq n}\in C^{n}$ ,

$K_{n}\Vert\sum_{j=1}^{n}\lambda_{j}x_{j}\Vert\geqq\sup_{J=\iota}^{n}|\lambda_{j}|$ .

Put $\epsilon_{n}=\frac{\epsilon}{(1+\epsilon)K_{n}}$ . So there exists a member $I_{0}$ of $V$ such that for each $i$
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in $I_{0}$ ,

$|(\Vert\sum_{j=1}^{n}\lambda_{j}x_{j}\Vert-\Vert\sum_{j=1}^{n}\lambda_{j}x_{ji}\Vert)|<\epsilon_{n}K_{n}\Vert\sum_{j=1}^{n}\lambda_{j}x_{j}\Vert$ .

So for each $i\in I_{0},$ $\phi_{i}$ defined on $M$ onto $M_{i}$ , the space spanned by $\{x_{j\ell}, 1\leqq j\leqq n\}$

in $E_{i}$ as $\phi_{i}(\sum_{j=1}^{n}\lambda_{J^{X}J})=\sum_{j=1}^{n}\lambda_{j}x_{ji}$ satisfies

$\Vert\phi_{\ell}\Vert\leqq 1+\epsilon$ and $\Vert\phi_{i}^{-1}\Vert\leqq 1+\epsilon$ .
$ SteP\Pi$ ; Let us assume that $V$ is countably complete and $\Lambda\parallel\subset(E_{\ell})_{v}$ be a

finite dimensional subspace of dimension $n$ as above. Let $\{x_{1}, x_{2}, \cdots , x_{n}\}$ be a
basis of $M$ and $x_{j}$ be represented by $(x_{ji})_{i}$ . As proved in Step I, there exists
$J_{1}\in v$ such that for each $i$ in $J_{1},$ $\Vert\phi_{i}\Vert\leqq 1+\epsilon$ and $\Vert\phi_{i}^{-1}$ \Vert \leqq l+\’e.

Consider $M_{2}(M)$ . $(x_{j}E_{pq})_{1\leqq p.q\leqq 2}$ is a basis of $M_{2}(M)$ and dimension of $M_{2}(M)$
$1\leqq j\leqq n$

$=2^{z}n$ . There exists a set $J_{2}^{\prime}\in V$ such that for each $i$ in $J_{2}^{\prime},$ $\Vert\phi_{i.2}\Vert\leqq 1+\epsilon$ and
$\Vert\phi_{i.2}^{-1}\Vert\leqq 1+\epsilon$ . Put $J_{2}=J_{1}\cap J_{2}^{\prime}$ . Then for each $i$ in $J_{2}$ ,

$\Vert\phi_{\ell}\Vert\leqq 1+\epsilon,$ $\Vert\phi_{i}^{-1}\Vert\leqq 1+\epsilon,$ $\Vert\phi_{\ell.2}\Vert\leqq 1+\epsilon,$ $\Vert\phi_{i.2}^{-1}\Vert\leqq 1+\epsilon$ .
Proceeding like this, we get a countable family $ J_{1}\supset J_{2}\supset\cdots\supset J_{n}\cdots$ in $V$ , such that
for each $i$ in $J_{n},$ $\Vert\phi_{\ell.n}\Vert\leqq 1+\epsilon$ and $\Vert\phi_{i,n}^{-1}\Vert\leqq 1+\epsilon$ . Since $qJ$ is countably complete,

$\bigcap_{i=1}^{\infty}J_{i}$ is nonempty. Let $J=\bigcap_{i=1}^{\infty}J_{i}$ . Then for each $i$ in $J,$ $\phi_{\ell}$ is a complete
$(1+\epsilon)$-isomorphism.

Remark 3.7. Taking each $E_{\ell}$ to be a fixed $c*$-subalgebra $Y$ of $L(E)$, we
may say that if $V$ is countably complete, then $(Y)_{v}$ is completely finitely re-
presentable in Y.
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