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Summary. We show that the random process X,={Xn(t):0=t=1} defined
by Xa(t)=ZQ@\/N, - ,im/N)én iy €n i,, CODVErges weakly in D[0,1] to
some process defined by multiple Wiener integrals when {£» ¢} is a martingale
difference array or a strictly stationary sequence of random variables satisfy-
ing some mixing condition.

1. Introduction. Very recently, Teicher (1988) showed that the limit dis-
tribution of sums of product of martingale difference {&..;; /=Na., n2l}, i.e,

1.1) 2 §niy o bniiy (M22)

154,< " <ipsNp

coincides with the distribution of

1.2 —Hu2)

where H,, is the Hermite polynomial of degree m and Z is a standard normal
random variables. The problem concerning asymptotic distributions of the type
(1.1) is closely related to the problem on asymptotic distributions of some sym-
metric statistics. (See, for example, Mandelbaum and Taqq (1984).) In this
paper, we shall mainly consider the problem concerning weak convergence of
random processes X,={X,(t): 0=<t<1} (n=1) defined by

3 XK=_ B Qg e b OSISD)

where the function Q: [0, 1]J™—R is continuous and has continuous first deriv-
atives and [s] denotes the largest integer m such that s=m.
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2. Main results. (I) The triangular array case. Let N=N(n) be a
nondegreasing integer-valued function such that N(n)—o and n—oco. Let
{§2.551=<7=<N, n=1} be a triangular array of real-valued independent random
variables defined on a probability space (22, ¢, P). Let D[0, L] be the space
of functions x on [0, L] that are right-continuous and have left-hand limits.
We endow D[O, 1] the J,-topology. Let Q be a real-valued continuous function,
defined on [0, 1]™, which has continuous first partial derivatives.

Theorem 1. Let {§,,.: 1<i<N, n=1} be a triangular array of independent
zero-mean random variables which satisfy the following conditions :
(i) For arbitrary numbers t, and t, (0<t,<t,<1)

[Ntgl
(2.1) > E&,—>t,—t, as n—oo.
1=[Nt;]+1

(ii) For all ¢>0

@.2) ;ﬁ E{& J(|&n;>€)} —> 0 as n—co.

Then the stochastic process X,, defined by (1.3) converges weakly in D[0, 1]
to the process X={X(t): 0<t<1} defined by

@3) XO={ (7 § Qo s -+, un T Wien)

0

where the right hand side of (1.4) is the m-ple Wiener integral with respect to
the standard Wiener process W={W(t): 0<t<1).

Remark. It is known that as n—
[ntl D
2.4) {Ee"-f‘ o_s_tg1} 2w

if conditions of are satisfied. _
(II) The mixing case. Let {§;} be a strictly stationary sequence of zero-
mean random variables. We say that {§,} satisfies the ¢-mixing condition if

—P
(2.5) ()= sup P(AB)—P(A)P(B)

0 as n—oo
AcH  Be g P(A)

and that {§;} satisfies the strongly mixing condition if

(2.6) a(n)= sup |P(AB)—P(A)P(B)] —> 0 as n—oo,

AeHL , BEMT

where M} denotes the o-algebra generated by &g, ---, &.
We put
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2.7 ol=FE&2.
We define formally ¢? by

(2.8) o*=E§+2 5] Eéud;

and assume ¢°>0. It is known that if the conditions in [Theorem 2 or 3 (below)
are satisfied, then the series in converges absolutely.

Theorem 2. Let {&;} be a strictly stationary sequence of zero-mean random
variables. Suppose one of the following two groups of conditions holds :
(1) {&:} is g-mixing,

(2.9) El&|?<
and
(2.10) 2n{g(n)}i<oo;
(i) {&:} is strongly mixing and there exists a 6 (0<8<1) such that
(2.11) E|&|**¥<
and
(2.12) - Zn{an)}iertd Lo,

Let Q and o* be as before. Then, the process Y ,={Y ,(t): 0=t<1}, defined by
2.13) Va=n-ot 3 QL L)eg, (stsy)

" 15i<jarnt] n’ n/>*? ==
converges weakly in D[0, 1] to the process Y={Y(t): 0<t<1} defined by

@19 ¥Yo= | | o, wawepawe+- 22 o, s1ds st

05t )<tast
Next, we consider the process Z{™={Z{m(t): 0<=t<1} defined by
(2.15) ZimM(t)y=(n o)~ ™* > §i,0 &, (021D,
1511<~<ipms[nt]

Let

ZD(=w()

@16 zon=[weawe+- L2

2__ o2
z<k>(t)=S:z<h-n(s)dW(s)+—"§;{ﬂ’—S:Z"-2>(s)ds (h=3)

(011,
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Then
Z‘Z’(t)——l—Hz(W(t))+—it

2.17) Z<3><t)——1—Hs<W(t>>+ ekl IO
Zeoty= BV OIS Z ot B+ (25 .

Let Z®W={Z™®(¢): 0=t<1}.

Theorem 3. Let {&,} be a strictly stationary sequence of zero-mean random
variables. Suppose one of the following two groups of conditions hold :
(i) {&,} is ¢-mixing and there exists ap (p>0) such that

(2.18) CE|& 2™ < oo
and
(2.19) Sipmr-H{P(n)} VAP L oo

(i) {&n} is strongly mixing and there exist two positive numbers p and o
(0<0<1) such that

(2.20) E|&|X™ P+ < oo
and
(2.21) SR ()M L o

Let a® and o be the ones defined above. Then

(2.22) zZwm 25 7w i DIO, 1]

as n—roo,

3. Proof of Theorem 1. To prove we need a theorem which
is applicable to many cases.

Let Fy be the space of functions defined on [0, 1]X(—oo, ) satlsfymg the
following condition: there exists an absolute constant M such that if f € Fy,
then f and its derivatives satisfy inequalities of the form

@.1) |D f(s, ©)|SMQ1+|x]%),

where D denotes either the identity operator or a first derivatives and a is some
positive constant. Let {(§a.s, Fn.5); 1S7<N, n=1} be a martingale difference
array, i.e., an array satisfying the following conditions:

(i) Eléa, sl <co.
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(ii) &, ; is measurable with respect to the ¢-algebra & ; where g, C -
C - C%y¥CF (n2l).

(iii) E(§n.;1Fn,5-1)=0 a.s.

Let {T, ;;1<j<N, n=1} be an array of random variables defined by

(3.2) Tr.i=8n.{&n.1s >+ s &n5) (ISJEN, n2zl)
where g, ;: R’—R is Borel measurable for each n and j and
3.3) E|Tp;—Tu i 1*)ScNj—k| (1=j, k<N)

for each n. Define a sequence {T,}={T,():0<t<1} of random elements in
D[0, 1] by

To@)=Tnxea (0=t=1).
Theorem 4. Let {(&4.5, Fu.;): 1S5S N, n21} be a square-integrable martin-
gale difference array. Suppose that f,=Fy (n=1), f €Fy and for every s€[0, 1]
(3.4) D fu(s, x) —> D f(s, x)

uniformly in x on every finite interval. Suppose there exists a double array
{Cr.;s 175N, n=1} of negative numbers such that

E{8 ;01| Fa s} =Ca; (I=/=N)
and for arbitrary numbers t, and t, (0<t,<t,<1)

[Nty]
2 Ca i =C(ta—ty)

J=[Ni11+1

where C, is some positive numbers. Suppose further that as n—oo

[Nt] D
(3.5) { 2, &nst ogtg} s Z2={Z®): 0<t<1} in D[O, 1]
and
(3.6) (T.@): 0<t<1} —> T={T(t): 0=t<1} in D[O,1].
Then
3.7) {[gjf (i T )n.s -0<t<1}
o = n n; n,jJoen,j+1 .« V=t =

2 {S: f(s, T(s)dZ(s): 0t<1} in DLO, 1]

where the stochastic integral in is taken in the sense of convergence in prob-
ability.
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Proof. The proof is carried out by the essentially same method as that of
in Szyszkowski (1988) and so is omitted. (cf. Yoshihara (1982) and
Strasser (1986).)

From we easily obtain the following corollary.

Corollay 1. Let {(§n,5, Fn,;): 1S7<N, n=1} be a square-integrable martin-
gale difference array such that

3.8) E&§¥=FEmax|&,, ;] — 0 as n—oo
1sjsN
and
N P
3.9 jge%,,—>l as n—oo.

Let {f.} and f be the ones in Theorem 4. Suppose (3.4) and (3.6) hold. Then

(3.10) (P87 7L, Tu Jenser: 0251}

j=0
D t
—{[.¢s, T(spaw(s): 0se=1} i DIO, 11,
where the stochastic integral in (3.9) is taken in the L*-sense.

Using the above corollary repeatedly, we have the following corollary which
was obtained by Teicher (1988) when t=1.

Corollary 2. Suppose conditions of Corollary 1 to Theorem 2 are satisfied.

Then
GAD {15i1<iz<'2<imstNt]en'ilen'12 5""1:1. 10=<1y
o {7 28 w051} i D0, 1.

Proof of Theorem 1. Firstly, we consider the case m=2. We note that
by virtue of for any ¢, (0<#,£1)

[N ¢3-1 i )
(3.12) {72 (5 n)ens: 05t
= {['ats, toaw(s): 0=t} in DLO, 1,3
as n—oo,

Next, for any ¢t (0<t<1) let
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A 0=ue<u; < - <up=t
be an arbitrary partition of the interval [0, ] and put
r=ra=max(u;—u;_,).
1sis)

Further, let

(3.13) tesn@=Q(5, 1)~ Q(4r w),
and
(3.14) £,(A)== max max max les, 1,0.2(Q)] .

1SiSN 1sIsb[Nuj_j]+1sfs[Nuj]

Since by assumption @ has continuous partial derivatives on [o, 172

(3.15) lim ¢,(4)=0.
Now, put
b INwl-1 ((Nud , f
(3.16) Vat: =21 5 {3 Q55 ) in.s

b-1 ENu/,‘.H]

+ EL j=[N%kJ+1Q(L]\‘/’ uk)en'ien"’}'

Then
3.17) Xa()—Y,(t: Q)
- [Nugl-1 [Nujl
= b5) ) l { ! Sz.j,z,n(A)fn.tfn.j
l=1 i=[Nuj. ]\ j=i+1
b [Nu
+ El ) 1 }et.j.k,n(A)Sn.ien.l'
k=l j=[Nupl+l
and
' [N¢d 2
(3.18) E| Xa(t)— Yalt: A)*=ed@) 2 B84} Sces@r
which implies that for any 7z (>0)
3.19) lrirrol lim P(| X,(t)—Y.(t: A)| >7)=0.

On the other hand, by virtue of we have that for each ¢
(0<t<1)
-1

(3.20)  Ya(t:A)—> Y(¢:A)= 3 S:kQ(s, uR)AW(SHW (up41)—W ()}

b
k=0

as n—oo,
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Since it is easily shown that

(3.21) lrirglEI Y(t: A)—X()|*=0,

so we have that for each ¢ (0<t<1)

(3.22) X, (1) —> X(t) as n—oo.

Clearly, using the Szyszkowski method (1988) and we can prove that
the finite dimensional distributions of {X,, n=1} converge weakly to those of
X and that {X,, n=1} is tight. Hence, we obtain the desired conclusion when
m=2. .
Now, using this method repeatedly, we have the conclusion in the general
case m (=3). O

4, Proof of Theorem 2.

We only consider the strongly mixing case since the proof in the ¢-mixing
case is carried out analogously.

We often use the following inequalities:

(A) Let {, be an Mt .measurable random variable with E|{;|**7<co and
let , be an K>, ,-measurable random variable with E|{,|**7<co where 7 is a
positive number., Then

4.1) | EL8e— ECEG: | <10 81llo4r | Cellz4p {a(n)}r/ 240
where ||{||,={E|{|?}*? (p=1) (cf. Ibragimov and Linnik (1971)).
(B) Suppose condition (ii) in is satisfied. Then

4.2) E| B es| sem(Fat)” asr=s+o)

where _
M;= max ||Ci||¥+5 .
1sisn

Remark. If condition (i) in is satisfied, then

@43 E|Bas|scm(Fet)” asrsy)

where
My= max |&]].
1sisn

(cf. Utev (1985)).
(C) Suppose conditions in are satisfied. Then
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(4.4)

b

<c(b—a)'?
s

for 2<y<2(m+p). (cf. Yokoyama (1980))

In what follows, we denote by ¢, with or without subscript, an absolute
constant which does not depend on 7, s and ¢.

(I) Weak convergence of the finite-dimensional distributions. For brevity,
let

‘ n;=6n.;=(n'?a)'6; (1£j=n)
and

Further, let g=[n%/*]. Then, we have

i J o
(4.5) lsi<§[nt]Q< n’n )sn’ien"
=lsi<§;[nszn' t,jniﬂj+lsi<§[nt]Qn.i,j(77i77]—E Ni17)
J=i>q J=isq
i

=UPO+UP®O+UR(E), (say).

By the method used in the proof of Theorem in Yoshihara (1980), analogously
to [(3.22) we can prove

(4.6) vpe)— | | o, tyawawe

0st,<tpst

(cf. Takahata (1987)).
Next, we note that by the continuity of Q

4.7 Ko= sup |Q(s, t)| <oo
0ss8,ts1

and by the Schwarz inequality
(4.8) Epini=mlli=I(n'?e) 6 i< c n™2.
Therefore, by and

+

[ntl-q i+q 2
ia Qn. 1. AN:n;—E n.m;) .

J=1+1

Il
L

1U>@®li=

i+

> Qn.i, Nin;—E ’7"7”)”:

J=i+1

Q

[ntl-q
= 2]
i=1
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+2{

1S1<t SNt~ 151<t’Snt~
P pusint-e

lE{qu Q. i, {00 5— Emy),) Qn .7y —Enuny )}l

=1+1

<cng®n-?t

+c

<[, 3

+cngin?
=o(1)

Qn 1, j(ﬂtﬂj

1st§i' tsggt]-—q' +6

Qn i, ], (771'77;' E’?t"']j')“ {a(q)}"/(“ﬂ)

J'=1"+1

as n—oo, | Hence, we have that for every & (>0)
(4.9) P(IUP(@)| >e)—> 0 as n—oo,
Finally, let
0=s5,<5:< -+ <sp=t
be arbitrarily and put a,=[ns,] (k=1, :--, b). Then, we have
Gp+

@10 vpw=35 5 5 Q0w sVE 0+ Qns—Qsh SE 707,)

E=0 {=ap+1j=

=UP()+U(@), (say).
Since

Enipy=n'0E§&,
and as n—coo

i+q q 1
2 E§b =2 E&s;—> 5’(02—03),
j=t+1 =1
)

lim U20=-"—2 5 QGsa, suXsnen—s).

n-s00

Therefore, by the arbitrariness of {s,} we have

g t
@iy limU"”(t)——"—S Q(s, s)ds.

N =00

On the other hand, by [(4.1), and we have

a

-1 +1
UM sc 3 2 max |Qn,,;—Q(sk, 52)l

k=0 i=ap+liljsi+q
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% S [polEas{ati—i) s
o Nollz+s1a() —1

b-1 %p41

éc n-?! > 2 max lQn,i,j'_Q(sk: sk)]
k=0 i=ap+1i<jsSi+q

Scmax sup max |Qn . ;—Q(sk, si)l
0Sk<d @ p<isapyy i<jSi+q
and so
Im|UPt)|<cmax sup |Q(s, )—Q(ss, s»)].
n-sco 0Sk<h 8pss, tsspy,

Therefore, by the continuity of Q and the arbitrariness of {s:} we have

(4.12) ~ lm U ()| =0.

Combining (4.10)-(4.12) we have
. oi—a? (¢
(4.13) limU»0=-"—22"qs, )ds.

Now, from [4.5), (4.6, (4.9) and we have

(4.14) Yalt) —> Y(2)

for each t (0<t<1).

It remains to prove that for each finite set {t:; t:<[0, 1], 7=1, ---, k} the
joint distribution of (Y,(t,), -+, Ya(ts)) converges weakly to the corresponding
one of (Y(¢), ---, Y(¢;)). But, this is easily shown by the functional central
limit theorem for {3%.,Q(i/n, -)&,,:} (cf. Takahata (1987)). The proof is omitted.

(I) The tightness of {Y,}. Since {Y,(0)} is tight, so by Theorem 8.3 in
Billingsley (1968) it suffices to show that for each positive ¢, and ¢, there exist
a p (0<p<1) and an integer 7, such that

(4.15) %P( sup | Ya(t)— Ya(s)| = en)<es

sstsd+p

for n=n, and 0<s=<1 (with s in the supremum restricted to s<t<1 in case
l1—p<s<l).

Let s (0=s<1) be fixed arbitrarily. Put a=[ns]. Let ¢g=[n'*]. Then,
we have

(4.16) sup | Ya(t)—Ya(s)]
sstss+p

= sup | X Qn.i.jﬂtﬂj—lszsaQn.i.ﬂ?inj’

8stss+p 1si<js[nt] i<j

= su .
_Sstsgp | 1si2<a asj%%ntJQn't'mmjl
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+ sup | X Qn.usmisl

gstst+p astiLjs(nt]

< max | 2 (23 Qn.iidnsl

T asisgn(e+e)] a+gsisl 1sia

4+ max | > > Qn.1.5Mim;l

aglsa+q 1gi<a-¢ asjsl

S B [ WIEAREY

a-gsica asjsa

max | X @Qa.i MMl

asls[n(s+p)] asiljsl
=Un.1'}'Un.2+Un.a+Un.4; (SaY)-

Firstly, we prove that for all n sufficiently large

(4.17) | P(U,.,&%)_i:c 0.

Put
V= siz<aQn.i.j7)i .

1

Then, we have

(4.18) E|l ¥ (2 Quuimonslt

a+gsjsl 1si<a

SSE|Vapilt+ 2 ENV5,05,1°1Vinsl®
j J1¥J2
+ = |E(V1177!1)3(V127712){
- J1#de

+ 3 NEV 5,05V 31,050V 5403

J1#je#Js

+ 2 lE(Vh’?.fl)(vjzvjz)(vjsnjBXVjAnﬂ)|

J1#je#j3#i4
=L+ L+ 1+ 1+, (say).
We note that by [(4.1), [4.2) and [(4.7)

[ns]?

(419) K,=sup max E|V,|*ScK$sup———=c,,
<1 1sjsn 0s<l N
(4.20) K,= sup max E|V;|*°<c Ki*su Mgc
) 2—0<sgllsjsn J = ¢ °<,£1 patdiz =02

and
(4.21) E|n|"Scn ™E|&|TScn™? (1<7=8+20) (=1, -

and that, by the definition of ¢
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(4.22) B=1{a(@)}? @ =0(g~)=0(n"").

Further, we note that for each j(a+g¢<;<l) V; is M2;'-measurable and 7; is

M5 +-measurable.
From [4.1) and (4.19)-(4.22) we obtain the following inequalities :

Ilé‘aj-a‘{E VAE ni+cllVillzsarel 982428}
_S_§{C n24cn2-o(n ¥} =o0(n"");

L< 3 {EVE VY -Eninl,+clVEVilanlnind,lev0nB}

J1#7je

gfIZ#ZEK‘{E 13,E 03+ c 103, lesarsl pfylavar(al| ja—n 44}

+c K;’“*")n'zﬂj
<c(l—a)(1+o(l))-n"%;
Isgjlgjz{ |EV,V 5| - |E 93,0l +cllVEV sll2400 93,7 s,ll2+8r28}

§j§jz{Kl %3, s+ /sl 7}12||8+6(a( | 7e—71l )“+5)/(8+5)+C n'zﬁ}

=o(n"");

14.5: 2 X {IE V§1V12V.fs‘ : lE 77?1712’]13'

J1#j2*J3
+C”V§1V12V.13”2+6/4 I 7]?17]!27713”“5/413}
<K 3 1E 930505 +c KH#Pn g

T 51#i2*ds
Zc(l—a)(1+o(l))-n"%;
I, > ’ { IE VhVJngthI * IE 1]1177127773774|

J1#je*js#ie
+cllV 1,V 1,V 5V i ll2varll 7}1;77;2771377;4||z+6/4,3}
SKi 3 |Engymsmsnl e K On’s

11‘1*12*13*14
<c(l—a)(1+0(1))-n"2.

(The last two inequalities are proved by the same method in Yoshihara (1978)

or Yokoyama (1980).)
Therefore, we have that for n sufficiently large

El 2 (3 Quumdpsl*<cl—ayl+ol)n?,

asjsl 1si<a
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which implies that for all n sufficiently large

( ‘ & 2
(4.23) P(U,..> H)sco

(cf. Theorem 12.2 in Billingsley (1968)).
By the same method, we can prove that as n—oo

(4.24) P(U,,,,,>—Z—‘ — >0

and that for all n snfficiently large

(4.25) P(U,,,,>%)§c o*.

Finally, we note that by [(4.6) and (4.21)
. EU.,<K, X S ElpllnScg*n™E|&| =0(n""9).

a-gsia asjs[ntl+q

Therefore, we have that as n—o

(4.26)  P(Uny>21)—>0.
4
Now, (4.15) follows from [4.16) and [(4.23}{4.26). Thus, the proof of The-
orem 2 is completed. O

5. Proof of Theorem 3.

Firstly, we show a lemma.

Lemma. Let {§;} be a strictly stationary sequence of zero-mean random
variables. Suppose conditions in Theorem 3 are satisfied. Then, for any 7
(1=r=2(m+p)/m)

e r —g ™12
6.1) El,_ 2. _fufabpl’Scb—amr,

Proof. Let J be the collection of all set (»)=(r,, ---, 7;,) of integers such
that for some k2 (=1), r;=7r,= - =27, =1 and r,+7,+ - +7,=m.

We note that
(5.2) | > 51‘15:‘2 &ml <] §7$¢|”‘+c 2

as1;1< T <imsb

2 (%)

where X, denotes the summation over all (r)=J.
Let (r)eJ be fixed arbitrarily and let d be the largest integer such that
r¢=2. Put .



WEAK CONVERGENCE TO SOME PROCESSES 71
T/ =3¢ (=1, -, k).
ij

Using the Minkowski inequality first and then the Hélder inequality we get

I(r)=

k R
firdslrsrofir +

ZEé&n
1

k
1ar],

= ”Tl—ETIHmT“’l
Therefore, by

Iry=c(b—a)*

gc(b—a){l

k
7

k
1 T,”r.

my/(m-r1y)

+(¢21E 1§¢,170)

B
IIT,

Jj=2 ”mT/(m""l)

—{-c(b—_a)l

k
|,

7, + 1121 T,Hr}.

LY I
Repeating this procedure d times, we obtain the inequality

Ienysc(b—a)* {vi+ve+ -+ Fvoa}
where for each j (1<7<2¢%) v, is of the form

k

1L (26, w>.

J=d+1

i) -

j=d+1

By the Holder inequality and [(4.4)

A k
H 7-“1”14g H ”Tj”,(k—d)péC(b——a)(k—d)/z

j=d+1 j=d+1
for any v (>1).
Hence, noting that 2d+(k—d)<m we have

(5.3) Iensclb—a)?-(b—a)* D12 c(b—a)™?2,
On the other hand, by
(5.4) 11330 ™S eb—ayme.
Now, follows from the Minkowski inequality and (5.2)-(5.4). ]

(I) The case m=2. We consider the case m=2. By the proof of Theo-
rem 2 or Theorem 2.1 in Takahata (1987) it is obvious that each finite-dimen-
sional distribution of Z{ converges weakly to the corresponding finite-distri-
bution of Z®, Hence, it is enough to show that {Z®} is tight.

Let ¢g=[n"*]. Put a=[ns] and b=[n(s+p)]. Then, corresponding to [(4.16)
we have
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(5.5) sup | ZP@#)—Z3(s)]

8stss+p

= sup | 23 mumy— 2 70l

sstss+p 1si<jsd 1gi<jsa

Smax| 2 pd-l X 94l

aglsd 1si<a a+gsjsl

+max | 3 9] X qml+a_§isalml-a'SEWIvJI

aglsd 1st<a~¢q asjsa+ jsa
+ (5

max ) ’

aslzd | j=2 t=2a. ﬂt ﬂ]

=Up1+Unr :+Up s+Us,., (say).
Put S.,;=3}-un; Firstly, by [(4.1), (4.2) and [(4.20) we have
E|S1,al®*?|Sa+q11™?
SE|S1al**?-E|Sqtq1|**?
+cll1Sn ol P lcseprtricee s | Sara. t] 2 lwuseprarscas oy {@(g)} ¥ 442240

So(l—a) P ArIn(14o(1)

for all n sufficiently large. Therefore, we have
(5.6) | P(U;.,,>%)gc pHer

(cf. Theorem 12.2 in Billingsley (1968).)
Next, we note that by [(4.1), [(4.2), [(4.4) and (4.21)
Elsl.a-ql2+plsa.a.+qlz+p

<E|[S1a-¢|**PE|Sa.a+ql®*?

+cll1S1 | ** Pl caszp+dricz+pll | Sa, aql g (4+2p+8)/(2+ ) {a(Q)}a/““P“’)
ScgttPiinmHPIn(1+0(1))

as n—oo, Therefore, we can conclude that as n—

(5.7) \ P(U;,,,>f4‘— —>0.

Further,. by the inequality |
‘ ~ N p =12 () =18
E{, 2. 1ml, =2 Imtsen™g*=0(n""") |

a-gsisa

we have that as n—
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! &1
(5.8) P(U,,_3>T) — 0.
Finally, by

2+
E‘ 2 77,)77,\ péc{(l——a‘)n“}“".
Therefore, we have that for all n sufficiently large
(5.9) P(U;L > )gc P

Now, since it is obvious that {Z,(0)} is tight, so it follows from (5.5)-(5.9)
that {Z,} is tight. Hence, we obtain the desired conclusion when m=2.
(I The case m==3. We note that

(5.10) ZPW=_ 3 e

1si ksnt
g

1st<J<ks[nt]{(E 7M)N+0dM—E 7717712)}
k—jsq,j—1i>q

15i<j§as[n t]v 1]j1) k
k—jagq,j-isq

=Van®)+Va, o)+ Va,6)+Va (t), (say).

Firstly, by the proof in (I) and Theorem in Yoshihara (1980) we can
conclude that for each ¢t (0<t<1)

5.11) Vo) —> S:{%Hz(wu»—r—i’-‘zﬁs}dW(s)
= B WO+ 2 (s dw(s)

=1 Hs(W(t))+————ﬂ~{t W(t)—S:W(s)ds}.

Next, we note that

Ent]-l( Jj+q

Valt)= 2 ( 2 Eﬂjﬂk)(gﬂi)y

Jj=g+1 \2=j+1

2 2
j+e —o?

n 2 E’?J")h:o' 22E$o$z—->—a—2# as n—oo,

"a

and for each ¢t (0<t<1)

{30 0555t} > W(s): 05t} in DLO, £].
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Hence, using the method in (II) we have that as n—

o’—o?t

D
(5.12) Va.o(t) —> gt

S:W(s)ds .

Thirdly, to evaluate E |V, ;|% we note that

Vast)= 5 (Z1){ 3 ame—Enma}.

j=q+1 \ {=1 =j+1

For brevity, let b=[nt], {;=>4={7. and

J+q
0f=,§+l(mm—E NmaXg+1<7<b—1).
Then, by
EG=E0,=0, |§lly=cn™?"® and [|0],<cn”q

(1=r<6+2p). Further, §{, is S’ ¢-measurable and 8, is Hy-measurable. Hence,
by the Holder inequality we have

b-1 2
EIV,i01*=E| 3 06|

b-
= 21 EQi05+2 >  EL04;0;
J=q+1

e+184<j sb-1
b-1
éjEHEE CgE 0§+C”c§”2+5” 0§||2+5{a(q)}5/(2+6)]

. , . T 1)} 8/ (440
+cq+xsj<2j'sb—1“Cj0jcj | cera>7sll 0.1 less{a(s N}

Scbn?*gi(1+o0(1))

+e 2 n7 g8l axall O sllaxall G5 laxaf@(s" — )} o1 44D

¢+12j<j' sb-1
=o(1).

Therefore, we have
(5.13) Vas—>0 as n—oo.
Finally, by the Hoélder inequality we have
EWVaidlS 3 |EqamlSnglmlise ng'n=o).
Thus, we have | |

(5.14) | Vii—>0 as n—rco.
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Now, it follows from (5.11)-(5.14) that
1 o%—g? (¢ o*—a? (¢
) - 0 s
Z0) —> 5 HWO+-T 7 s dWis)i+ | W(s)ds

_1
BED

It is not hard that each finite-dimensional distribution of Z 2 converges
weakly to the corresponding finite-dimensional distribution of Z®.

Further, by the analogous method to the case m=2 and [emma we can
easily prove that {Z®} is tight. Hence, the proof in the case m=3 is completed.

(II) The general case. By induction we can prove the general case (m>3)
using the method in (I) and (II) and [Cemmal a

Hs(W(t))-l-—o%t w).
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