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Abstract. By the averaging method the weak convergence of a parameterized
sequence of processes to a limit process is considered for a multi-dimensional
SDE of the McKean type having the drift and diffusion coefficients with a
polynomial growth condition in the phase variable. A two-dimensional SDE
with mean-field containing a small parameter $\epsilon>0$ is taken as an application,
which is a random perturbation of a dynamical system having an equilibrium
point $(0,0)$ of the plane as a center. A limit process on time scales of order
$ 1/\epsilon$ is derived and identified for such an equation under the assumption on
the existence of a suitable Lyapunov function.

0. Introduction. Hasminskii [2] shows the averaging principle for sto-
chastic differential equations corresponding to a class of linear parabolic equations.
Papanicolaou, Stroock and Varadhan [6] treat the same limit problem in a
general situation to obtain results on convergence of a sequence of diffusions by
martingale and perturbed test function methods. Presenting some powerful new
results Kushner [3] develops known techniques so that they are of greater
direct applicability in the fields of control and communication. But their results
do not cover our examples in oscillations with mean-field. So we consider the
averaging method for stochastic differential equation corresponding to a class
of nonlinear parabolic equations. For this purpose we adopt a Lyapunov function
method.

In \S 1 we give a theorem on the existence and uniqueness of the solution
of the stochastic differential equation of the McKean type with unbounded
coefficients. Being inspired by the weak convergence method in Kushner [3,
pp. 34-55], in \S \S 2 and 3 we give some convergence theorems on identification
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of a limit process for a parameterized sequence of processes so that they are
applicable for random oscillations with mean-field. In \S 4 we obtain a limit
process on the time scale $ 1/\epsilon$ for a solution of a two-dimensional stochastic
differential equation with mean-field containing a small parameter $\epsilon>0$ . In \S 5
we give the examples of the Li\’enard oscillator and the quasiharmonic oscillator
with fluctuations strengthened by a random noise depending on the phase
variable.

We shall use the following notation:
$R^{d}$ is the Euclidean d-space.
$\langle x, y\rangle$ is the inner product of $x\in R^{a}$ and $y\in R^{d}$ .
$|x|$ is the Euclidean norm of $x\in R^{a}$ .

$\sigma^{*}$ means the transposed matrix of $\sigma$ .
tr $\sigma$ is the trace of the $d\times d$-matrix $\sigma$ .
$|\sigma|$ is the norm of the $ d\times$ d-matrix $\sigma=(\sigma_{ij})$ ;

$|\sigma|^{2}=\sum_{i.j=1}^{a}\sigma_{ij}^{2}=tr(\sigma\sigma^{*})$ .

$C^{1.2}([0, \infty)\times R^{d})$ is the space of functions $ f:[0, \infty$ ) $\times R^{d}\rightarrow R^{1}$ that are once
continuously differentiable with respect to the time variable and twice with
respect to the space variable. $C^{2}(R^{a})$ is the space of functions $f:R^{a}\rightarrow R^{1}$ that
are twice continuously differentiable.

$C_{0}^{\infty}(R^{a})$ is the space of functions $f:R^{a}\rightarrow R^{1}$ that are infinitely differentiable
and have compact support in $R^{a}$ . $C(I;R^{a})$ for $ I\subseteqq[0, \infty$ ) is the space of $R^{a_{-}}$

valued functions on $I$ into $R^{d}$ .
$\mathcal{P}(R^{a})$ is the space of probability measures on $R^{d}$ .
$\langle\Psi, \mu\rangle$ is the integral $\int_{R^{d}}\Psi(x)\mu(dx)$ for a scalar function $\Psi$ on $R^{a}$ and

$\mu\in \mathcal{P}(R^{a})$ .
$m(\Psi)=\{\mu\in \mathcal{P}(R^{a});\langle\Psi, \mu\rangle<\infty\}$ for a scalar function $\Psi\geqq 0$ on $R^{a}$ .
$\mathcal{L}(Z;P)$ is the probability distribution of the random variable $Z$ under the

probability measure $P$ in the underlying probability space.
For $\mu\in \mathcal{P}(R^{a})$ and $\nu\in \mathcal{P}(R^{a}),$ $\Vert\mu-\nu\Vert$ is defined by

$\Vert\mu-\nu\Vert=(\inf_{Q\in \mathcal{P}_{\mu\nu}}\int_{R^{d}\times R^{d}}|x-y|^{2}Q(dx, dy))^{1\prime 2}$ ,

where $\mathcal{P}_{\mu\nu}$ is the space of probability measures on $R^{a}\times R^{a}$ such that for any
Borel set $A$ in $R^{a},$ $Q(A\times R^{a})=\mu(A)$ and $Q(R^{d}\times A)=\nu(A)$ . Namely, $\Vert\mu-\nu\Vert=^{-}$

$(\inf E[|X-Y|^{2}])^{1/2}$ , where the infimum is taken over the set of random variables
$X$ and $Y$ having the probability distributions $\mu$ and $\nu$ , respectively, and $E[$ $]$

denotes the mathematical expectation.
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1. SDE of the McKean type. Let $(\Omega, F, P)$ be a probability space with
an increasing family $\{F_{t} ; t\geqq 0\}$ of sub-a-algebras of $F$ and let $W(t)=(W_{i}(t))_{i=1\ldots..O}$

be a d-dimensional Brownian motion process adapted to $F_{t}$ . Let $\phi$ be a d-
dimensional random vector independent of $W(t)$ . Then we consider the following
d-dimensional stochastic differential equation of the McKean type;

(1.1) $d_{X}(t)=b[t, X(t), u(t)]dt+\sigma[t, X((t), u(t)]dW(t)$ ,

$ X(0)=\phi$ ,

satisfying $u(t)=X(X(t);P)$ with $u(O)=X(\phi;P)$ . Here $b[t, x, \mu]=(b_{\ell}[t, x, \mu])_{i=1\ldots..a}$

is a d-vector function and $\sigma[t, x, \mu]=(\sigma_{tj}[t, x, \mu])_{i.j=1\ldots..d}$ is a $d\times d$-matrix
function, that are defined on $[0, \infty$ ) $\times R^{a}\times \mathcal{P}(R^{d})$ .

We shall need the following definition and assumptions.
For $\mu\in \mathcal{P}(R^{a}),$ $t\geqq 0,$ $x=(x_{1}, \cdots , x_{d})\in R^{a}$ and a scalar function $\Psi\in$

$C^{1.2}([0, \infty)\times R^{a})$, define the differential generator $L_{t}(\mu)$ by

$L_{t}(\mu)\Psi(t, x)=[\frac{\partial\Psi}{\partial t}+\langle b, grad_{x}\Psi\rangle+\frac{1}{2}tr(a\Psi_{xx})](t, x, \mu)$ ,

where $a[t, x, \mu]=a[t, x, \mu]a^{*}[t, x, \mu]$ , and

$grad_{x}\Psi=(\frac{\partial\Psi}{\partial_{X_{\ell}}})_{\ell=1.\cdots.d},$ $\Psi_{xx}=(\frac{\partial^{2}\Psi}{\partial_{X_{i}}\partial_{X_{j}}})_{i.j=1.\cdots.a}$ .

Assumption 1.0. The d-vector $b[t, x, \mu]$ and the $d\times d$-matrix $\sigma[t, x, \mu]$

satisfy the following conditions:
(i) There exist a constant $K>0$ and a constant $K_{H}>0$ depending on $M$

such that

$|b[t, x, \mu]-b[t, y, \nu]|+|\sigma[t, x, \mu]-\sigma[t, y, \nu]|\leqq K_{H}|x-y|+K\Vert\mu-\nu\Vert$

for all $t\geqq 0,$ $|x|\leqq M,$ $|y|\leqq M,$ $\mu\in \mathcal{P}(R^{a})$ and $\nu\in \mathcal{P}(R^{a})$ .
(ii) There exist a constant $c>0$ and an integer $p\geqq 0$ such that

$|b[t, x, \mu]|+|\sigma[t, x, \mu]|\leqq c(1+|x|^{p}+\langle\kappa, \mu\rangle)$

for all $t\geqq 0,$ $x\in R^{d}$ and $\mu\in m(\kappa)$, where $\kappa(x)=|x|^{p}$ .
Assumption 1.1. There exists a nonnegative function $\Psi$ in $ C^{1.2}([0, \infty)\times R^{d}\rangle$

satisfying the following conditions:

(i) $L_{t}(\mu)\Psi(t, x)+\frac{1}{2}|\sigma^{*}[t, x, \mu]grad_{x}\Psi(t, x)|^{2}$

$\leqq c_{1}+c_{t}\Psi(t, x)+c_{s}\beta(\langle\Psi(t, ), \mu\rangle)$
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for all $t\geqq 0,$ $x\in R^{a}$ and $\mu\in Bt(\Psi(t, ))$ with constants $c_{1}\geqq 0,$ $c_{2}\geqq 0$ and $c_{3}>0$,

where $\ovalbox{\tt\small REJECT}(\Psi(t, ))=\{\mu\in \mathcal{P}(R^{d});\langle\Psi(t, ), \mu\rangle<\infty\}$ and $\beta:[0, \infty$ ) $\rightarrow[0, \infty$ ) is non-

decreasing and continuous function such that $\int_{0}^{\infty}\frac{dr}{1+r+\beta(r)}=\infty$ .
(ii) $|x|^{2}\leqq l\Psi(t, x)$ for all $t\geqq 0,$ $x\in R^{d}$ with a constant $l>0$ .

Theorem 1.1. $SuPPose$ that Assumpijm1.0 and Assumptjm1.1 hold. Let $\phi$

be any d-dimensional random vector indpendmt of $W(t)$ , such that $ E[\Psi(0, \phi)^{2q}]<\infty$

with $q=\max\{2P2\}$ , where $p$ is as in Assumptjm1.0 and $\Psi$ is as in Assumptjm

1.1. Then there exists a Pathwise unique solution $X(t)$ of (1.1) with the initial
state $ X(O)=\phi$ . Define $U(t)=E[\Psi(t, X(t))]$ . Then

\langle 1.2) $E[U(t)]\leqq J(t)$ ,

where $J(t)=f^{-1}(f(r_{0})+\delta t),$ $r_{0}=E[\Psi(0, \phi)]+\Psi(0,0),$ $\delta=\max$ { $c_{1}$ , Ce, $c_{8}$ } and $f^{-1}$ is

the inverse function of $f(s)=\int_{0}^{\iota}\frac{dr}{1+r+\beta(r)}$ .
Moreover, suppOse that $ E[\Psi(0, \phi)^{m}]<\infty$ for an integer $m\geqq 2$ . Then

\langle 1.3) $E[(1+U(t))^{m}]\leqq E[(1+\Psi(0, \phi)+\Psi(0,0))^{m}]\exp\{\int_{0}^{t}I_{m}(s)d_{S}\}$ ,

where $I_{m}(t)=m(m-1)\{c_{1}+c_{2}+c_{3}\beta(J(t))\}$ .

Proof. We construct M-sequence of truncated processes. Define $\alpha_{M}(x)=1$

if $0\leqq|x|\leqq M;\alpha_{H}(x)=2-|x|/M$ if $M<|x|\leqq 2M;\alpha_{M}(x)=0$ if $|x|>2M$. Put

$b_{H}[t, x, \mu]=\alpha_{H}(x)b[t, x, \mu]$ , $\sigma_{M}[t, x, \mu]=\alpha_{H}(x)\sigma[t, x, \mu]$ .
Further define

$\phi_{H}=\phi$ if $|\phi|\leqq M$ ; $\phi_{H}=0$ if $|\phi|>M$ .
Then there exists a pathwise unique solution $X_{M}(t)$ of (1.1) with $b[t, x, \mu]$ and
$a[t, x, \mu]$ replaced by $b_{H}[t, x, \mu]$ and $a_{H}[t, x, \mu]$ , respectively, having the
initial state $X_{H}(0)=\phi_{H}$ such that

$u_{H}(t)=X(X_{H}(t);P)$ with $u_{K}(0)=\mathcal{L}(\phi_{K} ; P)$ .
Set $e_{H}=\inf\{t;|X_{H}(t)|\geqq M\}$ . For each $t\geqq 0$ , set $t_{H}=t\wedge e_{H}$ , where $a\wedge b$ is the
smaller of the numbers $a,$ $b\in R^{1}$ . For the function $\Psi$ given by Assumption 1.1,

define $U_{H}(t)=\Psi(t_{H}, X_{H}(t_{H}))$ . Then Ito’s formula concerning stochastic differentials
yields

\langle 1.4) $U_{H}(t)=\Psi(0, \phi_{H})+\int_{0}^{t_{H}}A_{H}(s)ds+W_{H}(t_{H})$ ,

where $A_{H}(t)$ is a random function satisfying
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$A_{M}(s)=L_{s}(u_{M}(s))\Psi(s, X_{M}(s))$ for $0\leqq s\leqq t_{M}$

and $W_{M}(t)$ is a local martingale.
It follows from (i) of Assumption 1.1 that

(1.5) $A_{M}(s)=A_{H}(s_{H})\leqq c_{1}+c_{2}U_{H}(s)+c_{3}\beta(E[U_{H}(s)])$

for $0\leqq s\leqq t_{M}$ , where $s_{H}=s\wedge e_{H}$ .
Take the expectations on (1.4) and set $m(t)=E[U_{M}(t)]$ . Then by (1.5) we get

(1.6) $m(t)\leqq r_{0}+\hat{c}\int_{0}^{t}g(m(s))ds$ ,

where $r_{0}=E[\Psi(0, \phi)]+\Psi(0,0),\hat{c}=\max\{c_{1}, c_{2}, c_{3}\}$ and $g(r)=1+r+\beta(r)$ .
By $r(t)$ denote the right-hand side of (1.6), so that

$m(t)\leqq r(t)$ and hence $r^{\prime}(t)\leqq\hat{c}g(r(t))$ .
This inequality implies that (1.2) holds for $U(t)$ replaced by $U_{H}(t)$ . Ito’s formula
applying to $(1+\Psi(t, x))^{m}$ and the condition (i) of Assumption 1.1 yield that
(1.3) holds for $U(t)$ replaced by $U_{M}(t)$ . So, by the same argument as in the
proof of Theorem 2.1 of Narita [5] we find a solution $X(t)$ of (1.1) with the
initial state $ X(O)=\phi$ satisfying (1.2) and (1.3), for which $X_{H_{j}}(t\wedge e_{H_{j}})\rightarrow X(t)$ with
probability 1 uniformly for each finite time interval as $ j\rightarrow\infty$ for a certain sub-
sequence $\{M_{j}\}_{J=1.2}\ldots$ . of $\{M\}$ . Let $Y(t)$ be another solution of (1.1) with the
initial state $Y(O)=\phi$ , having the probability distribution $v(t)=X(Y(t);P)$ with
$v(O)=\mathcal{L}(\phi;P)=u(O)$ . Set $\Delta(t)=X(t)-Y(t)$ , and also put

$\tau_{H}^{X}=\inf\{t;|X(t)|\geqq M\}$ and $\tau_{M}^{Y}=\inf\{t;|Y(t)|\geqq M\}$ .
Then, since $X(t)$ and $Y(t)$ are the global solutions of (1.1), $\tau_{H}^{X}\rightarrow\infty$ and $\tau_{H}^{Y}\rightarrow\infty$

with probability 1 as $ M\rightarrow\infty$ . Moreover, by the same argument as in Narita
[4, pp. 69-71] we find a constant $c_{M}>0$ depending on $M$ such that

$E[|\Delta(t_{H})|^{2}]\leqq(c_{M}+1)\int_{0}^{t}E[|\Delta(s_{H})|^{2}]ds$ ,

where $t_{M}=t\wedge\tau_{H}^{X}$ A $\tau_{H}^{Y}$ and $s_{M}=s\wedge\tau_{M}^{X}\wedge\tau_{M}^{Y}$ .
From this we get the pathwise uniqueness of the solution. Hence the proof

is complete.

2. Weak convergence method. Let $\Lambda$ denote a numerical set and $\lambda_{0}\in\Lambda$

be a limit point of $\Lambda$ . Let $\{b^{\lambda}[t, x, \mu]\}_{\lambda\in\Lambda}$ be a family of d-vector functions
and $\{\sigma^{\lambda}[t, x, \mu]\}_{\lambda\in\Lambda}$ be a family of $d\times d$-matrix functions, that are defined for
$t\geqq 0,$ $x\in R^{a}$ and $\mu\in \mathcal{P}(R^{d})$ . Introduce a family $\{\phi^{\lambda}\}_{\lambda\in A}$ of d-dimensional random
vectors such that each $\phi^{\lambda}$ is independent of the d-dimensional Brownian motion
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process. Then we consider the following system of stochastic differential
equations;

(2.1) $dX^{\lambda}(t)=b^{\lambda}[t, X^{\lambda}(t), u^{\lambda}(t)]dt+a^{\lambda}[t, X^{\lambda}(t), u^{\lambda}(t)]dW(t)$ ,

$X^{\lambda}(0)=\phi^{\lambda}$ , where $\lambda\in\Lambda\backslash \{\lambda_{0}\}$ ,

satisfying $u^{\lambda}(t)=X(X^{\lambda}(t);P)$ with $u^{\lambda}(O)=X(\phi^{\lambda} ; P)$ . Introducing some d-
dimensional Brownian motion process $B(t)$ we consider the following stochastic
differential equation;

(2.1) $dX^{\lambda_{0}}(t)=b^{\lambda_{0}}[t, X^{\lambda_{0}}(t), u^{\lambda_{0}}(t)]dt+\sigma^{\lambda_{0}}[t, X^{\lambda_{0}}(t), u^{\lambda_{0}}(t)]dB(t)$ ,

$X^{\lambda_{0}}(0)=\phi^{\lambda_{0}}$ ,

satisfying $u^{\lambda_{0}}(t)=X(X^{\lambda_{0}}(t);P)$ with $u^{\lambda_{0}}(0)=I(\phi^{\lambda_{0}} ; P)$ . Here we find under
what conditions the processes $X^{\lambda}(t)$ converge weakly for $\lambda\rightarrow\lambda_{0}$ to $X^{\lambda_{0}}(t)$ .

We begin with the martingale problem aPproach. Given $\mu\in \mathcal{P}(R^{a})$ , let
$L_{t}^{\lambda}(\mu)$ be the differential generator associated with $(2.1)^{\lambda}$ . Namely, for $t\geqq 0$,
$x\in R^{a},$ $\mu\in \mathcal{P}(R_{p})$ and $f\in C^{2}(R^{a}),$ $L_{t}^{\lambda}(\mu)$ has the form

$L_{t}^{\lambda}(\mu)f(x)=[\langle b^{\lambda}, grad_{x}f\rangle+\frac{1}{2}tr(a^{\lambda}f_{xx})](t, x, \mu)$ ,

where a $[t, x, \mu]=a^{\lambda}[t, x, \mu](a^{\lambda}[t, x, \mu])^{*}$ .
By $Lt^{0}(\mu)$ denote the differential generator associated with $(2.1)^{\lambda_{0}}$ , that is

defined by $L_{t}^{\lambda}(\mu)$ with $\lambda$ replaced by $\lambda_{0}$ .
Let $\Omega=C([0, \infty);R^{a})$ . For each $\omega\in\Omega$ and $t\geqq 0$ we denote $X(t, \omega)=\omega(t)$ .

Let $F_{t}$ and $F$ be the $\sigma$-algebras generated by $\{X(s);0\leqq s\leqq t\}$ and $\{X(s);0\leqq s<\infty\}$ ,
respectively. For $f\in C_{0}^{\infty}(R^{a})$ , put

$M_{f^{0}}^{\lambda}(t)=f(X(t))-\int_{0}^{t}L_{*}^{\lambda_{0}}(u^{\lambda_{0}}(s))f(X(s))ds$ ,

where $u^{\lambda_{0}}(s)=u^{\lambda_{0}}(s, dx)\in \mathcal{P}(R^{a})$ .
When an initial distribution $\nu^{\lambda_{0}}\in \mathcal{P}(R^{a})$ is specified, we say that a probability

measure $P^{\lambda_{0}}$ on $\Omega$ is a solution of the martingale problem for $(L_{t}^{\lambda_{0}}(u^{\lambda_{0}}), \nu^{\lambda_{0}})$ if
$\{M_{f^{0}}^{\lambda}(t), F_{t}, P^{\lambda_{0}} ; 0\leqq t<\infty\}$ is a martingale for $f\in C_{0}^{\infty}(R^{a})$ , satisfying

$X(X(t);P^{\lambda_{0}})=u^{\lambda_{0}}(t)$ with $u^{\lambda_{0}}(0)=\nu^{\lambda_{0}}$ .

Remark 2.1. Let $\{P^{\lambda}\}_{\lambda\in\Lambda\backslash t\lambda_{0}\}}$ of probability measures in $C([0, \infty);R^{a})$

induced by $X^{\lambda}(t)$ be relatively weakly compact. Then, by the representing
theorem of Skorokhod [8], without loss of generality, we can assume that
there exist a subsequnce $\{\lambda_{f}\}_{J=1.2}\ldots$ . of $\{\lambda\}_{\lambda\in A\backslash \mathfrak{l}\lambda_{0}\}}$ and a random process $\tilde{X}^{\lambda_{0}}(t)$ ,

such that $X^{\lambda_{f}}(t)\rightarrow\tilde{X}^{\lambda_{0}}(t)$ with probability 1 uniformly for each finite time interval
as $ j\rightarrow\infty$ .
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Theorem 2.1. Supp0se that the following conditions hold: (0) $Eq(2.1)^{\lambda}$ has a
pathwise unique solution $X^{\lambda}(t)$ with the initial state $X^{\lambda}(0)=\phi^{\lambda}$ , such that $u^{\lambda}(t)$

denotes the pr0bability distribution of $X^{\lambda}(t)$ with the initial distributim $u^{\lambda}(O)=$

$X(\phi^{\lambda} ; P)$ . The family $\{P^{\lambda}\}_{\lambda\in A\backslash t\lambda_{0}\}}$ of pr0bability measures in $C([0, \infty);R^{a})$

induced by $X^{\lambda}(\cdot)$ is relatively weakly compact, and $u^{\lambda}(O)$ converges weakly to
$u^{\lambda_{0}}(0)=X(\phi^{\lambda_{0}} ; P)$ as $\lambda\rightarrow\lambda_{0}$ .

(I) The martingale pr0blem for $(L_{t}^{\lambda_{0}}(u^{\lambda_{0}}), \nu^{\lambda_{0}})$ has a unique solution in
$C([0, \infty);R^{a})$ for the initial distribution $\nu^{\lambda_{0}}$ , where $\nu^{\lambda_{0}}=X(\phi^{\lambda_{0}} ; P)$ .

(II) There exist a subsequence $\{\lambda_{j}\}_{j=1.2}\ldots$ . of $\{\lambda\}_{\lambda\in\Lambda\backslash f\lambda_{0}\}}$ and a random pr0cess
$\tilde{X}^{\lambda_{0}}(t)$ for which Remark 2.1 holds, satisfying for each $ T<\infty$ and $f\in C^{2}(R^{a})$ with
compact support in $R^{a}$

$E[|\int_{t}^{T}L_{\iota^{f}}^{\lambda}(u^{\lambda_{j}}(s))f(X^{\lambda_{j}}(s))-L_{\epsilon}^{\lambda_{0}}(\tilde{u}^{\lambda_{0}}(s))f(X^{\lambda_{j}}(s))\}ds|]\rightarrow 0$

for each $t\leqq T$ as $ j\rightarrow\infty$ , where $\tilde{u}^{\lambda_{0}}(s)=X(\tilde{X}^{\lambda_{0}}(s);P)$ . Then, $X^{\lambda}(t),$ $t\geqq 0$, with the
initial state $X^{\lambda}(O)=\phi^{\lambda}$ , converges weakly in $C([0, T];R^{a}),$ $ T<\infty$ , but arbitrary,
as $\lambda\rightarrow\lambda_{0}$ to the solution $X^{\lambda_{0}}(t)$ of $(2.1)^{\lambda_{0}},$ $t\geqq 0$, with the initial state $X^{\lambda_{0}}(0)=\phi^{\lambda_{0}}$ .

Proof. By the condition (0) there are a subsequence $\{\lambda_{j}\}_{j1.2}=\ldots$ . of $\Lambda\backslash \{\lambda_{0}\}$

and a probability measure $P^{\lambda_{0}}$ on $C([0, \infty);R^{a})$ for which $P^{\lambda_{f}}$ converges weakly
as $ j\rightarrow\infty$ to $P^{\lambda_{0}}$ . Since the condition (I) holds, we have only to identify the
limit measure by showing that it solves the martingale problem for
$(Li^{0}(u^{\lambda_{0}}), \nu^{\lambda_{0}})$, satisfying $u^{\lambda_{0}}(t)=\mathcal{L}(X(t);P^{\lambda_{0}})$ with $u^{\lambda_{0}}(0)=\nu^{\lambda_{0}}$ . For the sake
of convenience, we will use $\{\lambda\}$ to denote the subsequence $\{\lambda_{j}\}$ . From the
martingale characterization for the solution $X^{\lambda}(t)$ of $(2.1)^{\lambda}$ it follows that for
$f\in C_{0}^{\infty}(R^{a})$

(2.2) $f(X^{\lambda}(t))-f(X^{\lambda}(s))-\int_{l}^{t}L_{r^{0}}^{\lambda}(\tilde{u}^{\lambda_{0}}(r))f(X^{\lambda}(r))dr$

$=\int^{t}\{L_{r}^{\lambda}(u^{\lambda}(r))f(X^{\lambda}(r))-L_{r^{0}}^{\lambda}(\tilde{u}^{\lambda_{0}}(r))f(X^{\lambda}(r))\}dr$

$+M_{f}^{\lambda}(t)-M_{f}^{\lambda}(s)$

for $0\leqq s\leqq t\leqq T$ , where $M_{f}^{\lambda}(t)$ is a bounded martingale. When superscript $\lambda$

appears on the paths, we do not refer explicity to the measure $P^{\lambda}$ . Multiply
(2.2) by any continuous functional $H(s)$ which is $F_{s}$-measurable, and then take
the expectation. Then, by the condition (II) we get

$E[H(s)\{f(X^{\lambda}(t))-f(X^{\lambda}(s))-\int_{l}^{t}L_{r^{0}}^{\lambda}(\tilde{u}^{\lambda_{0}}(r))f(X^{\lambda}(r))dr\}]\rightarrow 0$

for $0\leqq s\leqq t\leqq T$ .
Hence the proof is complete.
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3. Averaging method. Here we give some useful criteria for satisfaction
of the conditions (0), (I) and (II) of Theorem 2.1. For simplicity we consider
(2.1) with the initial state that does not depend on $\lambda$ . In the following let $\phi$

be a d-dimensional random vector independent of the d-dimensional Brownian
motion process.

Theorem 3.1. Supp0se that the following conditions hold:
(0) For all $\lambda\in\Lambda,$ $b^{\lambda}[t, x, \mu]$ and $a^{\lambda}[t, x, \mu]$ satisfy Assumpti0n 1.0 with the

family $\{K_{H}, K, c, p\}$ of constants independent of $\lambda$ . For $\lambda\neq\lambda_{0},$ $(2.1)^{\lambda}$ has a
pathwise unique solution $X^{\lambda}(t)$ with the initial state $ X^{\lambda}(0)=\phi$ , such that for any
$ T<\infty$

$\sup_{0\leq t\leq T}E[|X^{\lambda}(t)|^{4q}]<\infty$ uniformly for $\lambda\in\Lambda\backslash \{\lambda_{0}\}$ ,

where $q=\max\{2p, 2\}$ and $p$ is the integer given in Assumpti0n 1.0.
(I) $Eq(2.1)^{\lambda_{0}}$ has a pathwise unique solution $X^{\lambda_{0}}(t)$ with the initial state

$ X^{\lambda_{0}}(0)=\phi$ .

(II) $\lim_{\lambda\rightarrow\lambda_{0}}\int_{t_{1}}^{\iota_{2}}c^{\lambda}[t, x, \mu]dt=\int_{t_{1}}^{t_{2}}c^{\lambda_{0}}[t, x, \mu]dt$

for $0\leqq t_{1}\leqq t_{2}\leqq T$ , where $c^{\lambda}[t, x, \mu]$ denotes the vector function $b^{\lambda}[t, x, \mu]$ and
the matrix function a $[t, x, \mu]=\sigma^{\lambda}[t, x, \mu](a_{\lambda}[t, x, \mu])^{*}$ . Then, $X^{\lambda}(t),$ $t\geqq 0$,

with the initial state $ X^{\lambda}(O)=\phi$ , converges weakly in $C([0, T];R^{d}),$ $ T<\infty$ , but
arbitrary, as $\lambda\rightarrow\lambda_{0}$ to the solution $X^{\lambda_{0}}(t)$ of $(2.1)^{\lambda_{0}},$ $t\geqq 0$, with the initial state
$X^{\lambda_{0}}(0)=\phi^{\lambda_{0}}$ .

For the proof of the theorem we prepare the following lemmas.

Lemma 3.1. Under the same assumpti0ns as in Theorem 3.1, let $\{k^{\lambda}[t, x, \mu]\}_{\lambda\in A}$

be a family of scalar functions satisfying the following conditions:

(i) $\sup_{\lambda\in\Lambda}|k^{\lambda}[t, x, \mu]-k^{\lambda}[t, y, \nu]|\leqq K_{H}|x-y|+K\Vert\mu-\nu\Vert$

for all $t\geqq 0,$ $|x|\leqq M,$ $|y|\leqq M,$ $\mu\in \mathcal{P}(R^{a})$ and $\nu\in \mathcal{P}(R^{a})$ with some constants $K_{H}>0$

depending on $M$ and $K>0$ .
(ii) $\sup_{\lambda\in A}|k^{\lambda}[t, x, \mu]|\leqq\tilde{c}(1+\tilde{\kappa}+\langle\tilde{\kappa}, \mu\rangle)$

for all $t\geqq 0,$ $x\in R^{a}$ and $\mu\in\ovalbox{\tt\small REJECT}(k)=\{\mu\in \mathcal{P}(R^{a});\langle k, \mu\rangle<\infty\}$ , where $k(x)=|x|^{2q}$,
$q=\max\{2p, 2\}$ and $p$ is as in Assumpti0n 1.0.

$\lim_{\lambda\rightarrow\lambda_{0}}\int_{t_{1}}^{t_{2}}k^{\lambda}[t, x, \mu]dt=\int_{t_{1}}^{t_{2}}k^{\lambda_{0}}[t, x, \mu]dt$

uniformly with respect to $0<t_{2}-t_{1}<T$ for each $x$ and $\mu$ . Let $\{\lambda_{j}\}$ and $\tilde{X}^{\lambda_{0}}(t)$
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be a subsequence and a random process, respectively, for which Remark 2.1 holds.
For the sake of simplicity, let us consider that $\{\lambda_{j}\}=\{\lambda\}$ . Then

$\lim_{\lambda\rightarrow\lambda_{0}}E[|\int_{0}^{T}\{k^{\lambda}[s, X^{\lambda}(s), u^{\lambda}(s)]-k^{\lambda_{0}}[s, X^{\lambda}(s),\tilde{u}^{\lambda_{0}}(s)]\}ds|]=0$ ,

where $u^{\lambda}(s)$ and $\theta^{\lambda_{0}}(s)$ denote the pr0bability distributions of $X^{\lambda}(s)$ and $\tilde{X}^{\lambda_{0}}(s)$

with the same imtial states $ X^{\lambda}(0)=\tilde{X}^{\lambda_{0}}(0)=\phi$ , respectively.

Proof. First note the following inequality:

$|\int_{0}^{T}\{k^{\lambda}[s, X^{\lambda}(s), u^{\lambda}(s)]-k^{\lambda_{0}}[s, X^{\lambda}(s),\tilde{u}^{\lambda_{0}}(s)]\}ds|$

$\leqq\int_{0}^{T}|I_{1}|ds+|\int_{0}^{T}I_{2}ds|+\int_{0}^{T}|I_{3}|ds$ ,

where
$I_{1}=k^{\lambda}[s, X^{\lambda}(s), u^{\lambda}(s)]-k^{\lambda}[s,\tilde{X}^{\lambda_{0}}(s),\tilde{u}^{\lambda_{0}}(s)]$ ,

$I_{2}=k^{\lambda}[s,\tilde{X}^{\lambda_{0}}(s),\tilde{u}^{\lambda_{0}}(s)]-k^{\lambda_{0}}[s,\tilde{X}^{\lambda_{0}}(s),\tilde{u}^{\lambda_{0}}(s)]$ ,

$I_{3}=k^{\lambda_{0}}[s,\tilde{X}^{\lambda_{0}}(s),\tilde{u}^{\lambda_{0}}(s)]-k^{\lambda_{0}}[s, X^{\lambda}(s),\tilde{u}^{\lambda_{0}}(s)]$ .
Secondly note that there is a constant $c^{\prime}>0$ satisfying

$\sup_{\lambda\in\Lambda}|k^{\lambda}[t, x, \mu]|^{2}\leqq c^{\prime}(1+\psi+\langle\phi, \mu\rangle)$

for all $t\geqq 0,$ $x\in R^{d}$ and $\mu\in\ovalbox{\tt\small REJECT}(\psi)=\{\mu\in \mathcal{P}(R^{a});\langle\phi, \mu\rangle<\infty\}$ , where $\psi(x)=|x|$ ”,
$q=\max\{2p, 2\}$ and $p$ is as in Assumption 1.0. Then, since $\sup_{0\leq t\leqq T}E[|X^{\lambda}(t)|^{4q}]<\infty$

uniformly for $\lambda\in\Lambda\backslash \{\lambda_{0}\}$ and since $X^{\lambda}(t)\rightarrow\tilde{X}^{\lambda_{0}}(i)$ with probability 1 as $\lambda\rightarrow\lambda_{0}$ by
Remark 2.1, we obtain

(3.1) $ E[|I_{i}|^{2}]<\infty$ uniformly for $\lambda\in\Lambda$ , where $i=1,2$ and 3.

Introduce the indicator function

$\chi_{r}(x)=\left\{\begin{array}{ll}1 & if |x|\leqq r,\\0 & otherwise.\end{array}\right.$

Then by the condition (i) and (3.1) we get the following estimates;

$E[\chi_{r}(X^{\lambda}(s))\chi_{r}(\tilde{X}^{\lambda_{0}}(s))I_{1}]\rightarrow 0$ as $\lambda\rightarrow\lambda_{0}$ ,

$E[\{1-\chi_{r}(X^{\lambda}(s))\chi_{r}(\tilde{X}^{\lambda_{0}}(s))\}I_{1}]\rightarrow 0$ as $\gamma\rightarrow\infty$

$E[\chi_{r}(\tilde{X}^{\lambda_{0}}(s))\chi_{r}(X^{\lambda}(s))I_{3}]\rightarrow 0$ as $\lambda\rightarrow\lambda_{0}$ ,

$E[\{1-\chi_{r}(\tilde{X}^{\lambda_{0}}(s))\chi_{r}(X^{\lambda}(s))\}I_{3}]-0$ as $\gamma\rightarrow\infty$ .
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On the other hand, since $\tilde{X}^{\lambda_{0}}(s)$ is continuous in $s$ with probability 1 and since
the family $\{|\tilde{X}^{\lambda_{0}}(s)|^{2} ; 0\leqq s\leqq T\}$ is uniformly integrable, the probability distri-
bution $\tilde{u}^{\lambda_{0}}(s)$ of the process $\tilde{X}^{\lambda_{0}}(s)$ is continuous in $s$ with respect to the norm

$\Vert$ $\Vert$ . For a moment assume that the following Lemma 3.2 holds. Then
Lemma 3.2 applies with $\tilde{X}(s)=\tilde{X}^{\lambda_{0}}(s)$ and $\tilde{u}(s)=\tilde{u}^{\lambda_{0}}(s)$ . So, by the dominated
convergence theorem we get

$E[|\int_{0}^{T}I_{2}ds|]\rightarrow 0$ as $\lambda\rightarrow\lambda_{0}$ .

Hence the proof is complete.

Lemma 3.2. Let $\{k^{\lambda}[t, x, \mu]\}_{\lambda\in\Lambda}$ be a family of scalar functions satisfying
the cmditions (i) and (iii) of Lemma 3.1. Let $\tilde{X}(s)$ be a random pr0cess such
that $\tilde{X}(t)$ is cmtinuous with pr0bability 1 and supp0se that the probability distri-
butim $a(t)$ of $\tilde{X}(t)$ is continuous with respect to the norm $\Vert$ $\Vert$ . Then

$\lim_{\lambda\rightarrow\lambda_{0}}\int_{0}^{t}k^{\lambda}[s,\tilde{X}(s),\tilde{u}(s)]ds=\int_{0}^{t}k^{\lambda_{0}}[s,\tilde{X}(s),\tilde{u}(s)]ds$

with probability 1 for each $t\geqq 0$ .

Proof. By the same argument as in the proof of Gikhman and Skorokhod’s
[1, p. 344] lemma we can get the conclusion, and so we omit the details.

Proof of Theorem 3.1. Step $0$ (Relative compactness). Since $b^{\lambda}[t, x, \mu]$

and $\sigma^{\lambda}[t, x, \mu]$ satisfy Assumption 1.0 with the family { $K_{H},$ $K,$ $c,$ $p$] of con-
stants independent of $\lambda$ , there is a constant $c\sim>0$ being independent of $\lambda\in\Lambda$

such that

(3.2) $|b^{\lambda}[t, x, \mu]|^{4}+|$ a $\lambda[t, x, \mu]|^{4}\leqq\delta(1+\tilde{\kappa}+\langle\tilde{\kappa}, \mu\rangle)$

for all $t\geqq 0,$ $x\in R^{a}$ and $\mu\in\ovalbox{\tt\small REJECT}(\tilde{\kappa})$, where $\tilde{\kappa}(x)=|x|^{2q},$ $q=\max\{2p, 2\}$ and $p$ is as
in Assumption 1.0. Let $ T<\infty$ be arbitrary and fixed. Observe $(2.1)^{\lambda}$ and use
the Schwarz inequality, so that

$|X^{\lambda}(t)-X^{\lambda}(s)|^{4}\leqq 8[(t-s)^{3}\int_{\epsilon}^{t}|b^{\lambda}[r, X^{\lambda}(r), u^{\lambda}(r)]|^{4}dr$

$+|\int_{s}^{t}a^{\lambda}[r, X^{\lambda}(r), u^{\lambda}(r)]dW(r)|]$ .

The assumption that $\sup_{0sr\lessgtr T}E[|X^{\lambda}(r)|^{4q}]<\infty$ uniformly for $\lambda\in\Lambda\backslash \{\lambda_{0}\}$ and the

estimate (3.2) imply

$E[|X^{\lambda}(t)-X^{\lambda}(s)|^{4}]\leqq D(t-s)^{2}$ for all $0\leqq s\leqq t\leqq T$
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with a constant $D>0$ being independent of $\lambda\in\Lambda\backslash \{\lambda_{0}\}$ . So, by Prokhorov [7]
the family $\{P^{\lambda}\}_{\lambda\in\Lambda\backslash (\lambda_{0}\}}$ of probability measures in $C([0, \infty);R^{d})$ induced by
$X^{\lambda}(t)$ is relatively weakly compact. Namely the condition (0) of Theorem 2.1
is satisfied.

Step 1 (Limit measure). The pathwise uniqueness for solutions of $(2.1)^{\lambda_{0}}$

implies the uniqueness in the sense of distributions which is equivalent to the
uniqueness for solutions of the martingale problem, and so the condition (I) of
Theorem 2.1 is satisfied.

Step 2 (Perturbed test). Let $\{\lambda_{j}\}_{j=1.2}\ldots$ . and $\tilde{X}^{\lambda_{0}}(t)$ be a sequence and a
random process, respectively, for which Remark 2.1 hold. Let $f$ be in $C^{2}(R^{d})$,
having compact support in $R^{a}$ . Further observe the components of the form

$L_{s}^{\lambda}(u^{\lambda}(s))f(X^{\lambda}(s))-L_{l}^{\lambda_{0}}(\tilde{u}^{\lambda_{0}}(s))f(X^{\lambda}(s))$ , where $\tilde{u}^{\lambda_{0}}(s)=X(\tilde{X}^{\lambda_{0}}(t);P)$ .
Then, by the assumption, since all coefficients $b^{\lambda}$ and $\sigma^{\lambda}$ , where $\lambda\in\Lambda$ , satisfy
Assumption 1.0 with the constants independent of $\lambda$ , Lemma 3.1 implies that
the condition (II) of Theorem 2.1 is satisfied. Hence the proof is complete.

The following convergence theorem for SDE of the McKean type is an
analogue of that for SDE of the Ito type given in Gikhman and Skorokhod [1,
p. 338].

Theorem 3.2. Supp0se that $(2.1)^{\lambda}$ satisfies Assumptim 1.0 with the family
$\{K_{M}, K, c, p\}$ of cmstants independent of $\lambda\in\Lambda\backslash \{\lambda_{0}\}$ , and Assumptim 1.1 with the
family $\{c_{1}, c_{2}, c_{3}\}$ of constants replaced by $\{c_{1}(\lambda), c_{2}(\lambda), c_{3}(\lambda)\}$ depending $ m\lambda\in$

$\Lambda\backslash \{\lambda_{0}\}$ , and the function $\beta(\cdot)$ and the cmstant $l$ independent of $\lambda\in\Lambda\backslash \{\lambda_{0}\}$ . By
$\Psi_{\lambda}(t, x)$ denote the functim $\Psi(t, x)$ given in Assumptim 1.1 for $(2.1)^{\lambda}$ , considering
the dependence $m\lambda\in\Lambda\backslash \{\lambda_{0}\}$ . Supp0se that there exist a family $\{\partial_{1}, \delta_{2}, \delta_{3}\}$ of
constants and a scalar function $\hat{\Psi}(t, x)$ such that

$\sup_{\lambda\in\Lambda\backslash \{\lambda_{0}}c_{\ell}(\lambda)\leqq\hat{c}_{i}$
, where $i=1,2$ and 3,

and $\sup_{\lambda\in\Lambda\backslash I\lambda_{0})}\Psi_{\lambda}(t, x)\leqq\Phi(t, x)$ .
Further supp0se that $(2.1)^{\lambda_{0}}$ satisfies Assumpti0n 1.0 and Assumpti0n 1.1. $By$

$\Psi(t, x)$ denote the function $\Psi(t, x)$ given in Assumptim 1.1 for $(2.1)^{\lambda_{0}}$ .
Let $\phi$ be any d-dimensional random vector independent of the d-dimensional

Brownian motion process, satisfying

$ E[\hat{\Psi}(0, \phi)^{2q_{1}}]<\infty$ , $ E[\overline{\Psi}(0, \phi)^{2q_{2}}]<\infty$ , $q_{i}=\max\{2p_{\ell}, 2\}$ ,

where $i=1,2$ , and $p_{1}$ and $p_{2}$ are the integers given in Assumpti0n 1.0 for $(2.1)^{\lambda}$

and $(2.1)^{\lambda_{0}}$ , respectively.
Let the condition (II) of Theorem 3.1 hold.
Then, $X^{\lambda}(t),$ $t\geqq 0$, with the initial state $ X^{\lambda}(O)=\phi$ , converges weakly in



48 K. NARITA

$C([0, T];R^{d})$ , $ T<\infty$ , but arbitrary, as $\lambda\rightarrow\lambda_{0}$ to the solution $X^{\lambda_{0}}(t)$ of $(2.1)^{\lambda_{0}}$ ,
$t\geqq 0$, with the initial state $ X^{\lambda_{0}}(0)=\phi$ .

Proof. Since $(2.1)^{\lambda}$ and $(2.1)^{\lambda_{0}}$ satisfy Assumption 1.0 and Assumption 1.1,
by Theorem 1.1 the existence and uniqueness of the solution holds for $(2.1)^{\lambda}$

and $(2.1)^{\lambda_{0}}$ . Note that
$|x|^{4q_{1}}\leqq const(1+\Psi_{\lambda}(t, x))^{2q_{1}}\leqq const(1+\hat{\Psi}(t, x))^{2q_{1}}$

for all $t\geqq 0$ and $x\in R^{a}$ .
Then, by the assumption, since $ E[\hat{\Psi}(0, \phi)^{2q_{1}}]<\infty$ , the estimate (1.3) of

Theorem 1.1 applies to the solution $X^{\lambda}(t)$ , which yields

$\sup_{0\leq t\leq T}E[|X^{\lambda}(t)|^{4q_{1}}]<\infty$ uniformly for $\lambda\in\Lambda\backslash \{\lambda_{0}\}$ .

Consider that the condition (II) of Theorem 3.1 is assumed. Then by Theorem
3.1 we get the conclusion. Hence the proof is complete.

4. Mean-field with a small parameter. Here we give an application of
Theorem 3.1. For a small parameter $\epsilon$ such that $0<\epsilon\leqq 1$ , we consider the
following two-dimensional stochastic differential equation;

(4.1) $dz(t)=[Az(t)+\epsilon v(z(t))-\epsilon\Gamma\{z(t)-E(z(t))\}]dt+\sqrt{\epsilon}D(z(t))dW(t)$ ,

where $W(t)$ is a two-dimensional Brownian motion process, $E($ $)$ denotes the
mathematical expectation, $A$ and $\Gamma$ are $2\times 2$-matrices, $v$ is a vector function
and $D$ is a matrix function. Hereafter we assume the following conditions:

$A=\left(\begin{array}{ll}0 & 1\\-\omega^{2} & 0\end{array}\right)$ with a constant $\omega>0$ .

$v(z)=\left(\begin{array}{l}v_{1}(z)\\v_{2}(z)\end{array}\right)$ satisfies the local Lipschitz condition in $z\in R^{2}$ .

$\Gamma=1_{21}^{\gamma_{11}}$ $\gamma_{22}\gamma_{12})$ with constant components $\gamma_{ij}$ satisfying either $\gamma_{11}+\gamma_{22}>0$ or

$\omega\gamma_{12}-\frac{\gamma_{21}}{\omega}>0$ .

$D(z)=\left(\begin{array}{ll}\delta_{11}(z) & \delta_{12}(z)\\\delta_{21}(z) & \delta_{22}(z)\end{array}\right)$ satisfies the local Lipschitz condition in $z\in R^{2}$ .

Our purpose is to obtain a limit diffusion for (4.1) on the time scale $ 1/\epsilon$ .
First we observe that the deterministic equation (4.1) with $\epsilon=0$ has the equili-
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brium point $(0,0)$ in the plane as the center, and hence we introduce the
following matrix and process:

For $\omega>0$ and $t\geqq 0$, define the matrix $\Theta^{\omega}(t)$ by

$\Theta^{\omega}(t)=\left(\begin{array}{ll}cos\omega t & -\frac{1}{\omega}sin\omega t\\sin\omega t & \frac{1}{\omega}cos\omega t\end{array}\right)$ .

Let $z(t)=(x(t), y(t))$ be a solution of (4.1), and define the process $\zeta^{\epsilon}(t)=$

$(\xi^{\epsilon}(t), \eta^{\epsilon}(t))$ by

$\left(\begin{array}{l}\xi^{\epsilon}(t)\\\eta(t)\end{array}\right)=\Theta^{\omega}(t/\epsilon)\left(\begin{array}{l}x(t/\epsilon)\\y(t/\epsilon)\end{array}\right)$ .
We note that

if $\left(\begin{array}{l}\xi\\\eta\end{array}\right)=\Theta^{\omega}(t)\left(\begin{array}{l}x\\y\end{array}\right)$ , then $\omega^{2}x^{2}+y^{2}=\omega^{2}(\xi^{2}+\eta^{2})$ .

Then $\zeta^{\text{\’{e}}}(t)$ satisfies the following stochastic differential equations;

(4.1) $d\zeta^{\epsilon}(t)=[b_{0}(\frac{t}{\epsilon},$ $\zeta^{\epsilon}(t))-\Gamma_{0}(\frac{t}{\epsilon})\{\zeta^{\text{\’{e}}}(t)-E(\zeta^{\epsilon}(t))\}]dt$

$+a_{0}(\frac{t}{\epsilon},$ $\zeta^{\epsilon}(t))dW_{0}(t)$ ,

where $W_{0}(t)$ is a new Brownian motion process defined by $W_{0}(t)=\sqrt{\epsilon}W(t/\epsilon)$ .
Here and below $b_{0}$ is the vector function, $\Gamma_{0}$ and $\sigma_{0}$ are the matrix functions;
these are given by the following definitions:

For $t\geqq 0$ and $\zeta\in R^{d}$ , define the vector function $b_{0}(t, \zeta)$ by

$b_{0}(t, \zeta)=\Theta^{\omega}(t)v(\Theta^{\omega}(t)^{-1}\zeta)$ ,

and define the matrix functions $\Gamma_{0}(t)$ and $a_{0}(i, \zeta)$ by

$\Gamma_{0}(t)=\Theta^{\omega}(t)\Gamma\Theta^{\omega}(t)^{-1}$ , $\sigma_{0}(i, \zeta)=\Theta^{\omega}(t)D(\Theta^{\omega}(t)^{-1}\zeta)$ .
In order to get an approximation for the solution $z(t)$ of (4.1) we adopt the
averaging method over the time interval $[0,2\pi/\omega]$ .

Definition 4.1. For $\zeta\in R^{2}$ , define the vector function $\overline{b}(\zeta)$ and the matrix
function $\overline{a}(\zeta)$ by

$\overline{b}(\zeta)=\frac{\omega}{2\pi}\int_{0}^{2\pi/\omega}b_{0}(t, \zeta)dt$ , $\overline{a}(\zeta)=\frac{\omega}{2\pi}\int_{0}^{2\pi/\omega}a_{0}(t, \zeta)dt$ ,

where $a_{0}(t, \zeta)=a_{0}(t, \zeta)(\sigma_{0}(t, \zeta))^{*}$ . Let $\overline{\sigma}(\zeta)$ be the symmetric square root of
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$\overline{a}(\zeta);i.e.,\overline{\sigma}(\zeta)\overline{a}^{*}(\zeta)=\overline{a}(\zeta)$ . Further define the matrix $\overline{\Gamma}$ by

$\frac{1}{2}F=\frac{\omega}{2\pi}\int_{0}^{2\pi\prime\omega}\Gamma_{0}(t)dt$ .

Accordingly we have derived the following equation;

\langle 4.2) $d\overline{\zeta}(t)=[\overline{b}(\overline{\zeta}(t))-\frac{1}{2}\overline{\Gamma}\{\overline{\zeta}(t)-E(\overline{\zeta}(t))\}]dt+\overline{\sigma}(\overline{\zeta}(t))dB(t)$ ,

where $B(t)$ is a two-dimensional Brownian motion process.

Remark 4.1. By an elemetary calculation we get

$\overline{\Gamma}=\left(\begin{array}{ll}\gamma_{11}+\gamma_{22} & \omega\gamma_{12^{\frac{\gamma_{21}}{\omega}}}\\-(\omega\gamma_{12}-\frac{\gamma_{21}}{\omega}) & \gamma_{11}+\gamma_{22}\end{array}\right)$ .

The assumption on the components $\gamma_{if}$ of the matrix $\Gamma$ implies that $\overline{\Gamma}$ is a
nonzero matrix. When $D(z)$ has the form

$D(z)=\left(\begin{array}{ll}\delta_{11} & \delta_{12}\\\delta_{21} & \delta_{22}\end{array}\right)$ with constants components $\delta_{if}$ , we get

$\overline{\sigma}(\zeta)\equiv\overline{\sigma}=\frac{1}{\sqrt{2}\omega}(\omega^{2}\delta_{1}^{2}+\delta_{2}^{2})^{1/2}\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ ,

where $\delta_{1}^{2}=\delta_{11}^{2}+\delta_{12}^{2}$ and $\delta_{2}^{2}=\delta_{21}^{2}+\delta_{22}^{2}$ .
Remark 4.2. Eq (4.1) is a special case of (1.1) where

$b[t, z, \mu]=Az+\epsilon v(z)-\epsilon\Gamma\int_{R^{2}}(z-\tilde{z})\mu(d\tilde{z})$ ,

$a[t, z, \mu]=D(z)$ for $t\geqq 0,$ $z\in R^{a}$ and $\mu\in \mathcal{P}(R^{2})$ .
Eq (4.2) is a special case of (1.1) where

$b[t, \zeta, \mu]=\overline{b}(\zeta)-\frac{1}{2}\overline{\Gamma}\int_{R^{2}}(\zeta-\zeta)\mu(d\zeta)$ ,

$\sigma[t, \zeta, \mu]=\overline{\sigma}(\zeta)$ for $t\geqq 0,$ $\zeta\in R^{2}$ and $\mu\in \mathcal{P}(R^{2})$ .
Hereafter, for a two-dimensional random vector $\phi=(\phi^{1}, \phi^{2})$ , define $\phi^{\omega}$ by

$\psi^{\omega}=\Theta^{\omega}(0)\left(\begin{array}{l}\phi^{1}\\\phi^{2}\end{array}\right);i.e$ . $\phi^{\omega}=\left(\begin{array}{l}\phi^{1}\\\phi^{2}/\omega\end{array}\right)$ .
Then as an application of Theorem 3.1 we get the following theorem.
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Theorem 4.1. Supp0se that (4.1) satisfies Assumptjon 1.0 with the family
$\{K_{M}, K, c, p\}$ of constants independent of $\epsilon$ and Assumptim 1.1 with the family
$\{c_{1}, c_{2}, c_{8}\}$ of cmstants replaced by $\{\epsilon c_{1}, \epsilon c_{2}, \epsilon c_{3}\},and$ the function $\beta(\cdot)$ and the
constant $l$ independent of $\epsilon$ . By $\Psi_{\epsilon}(z)$ denote the fmctim $\Psi$ given in Assumpti0n
1.1 for (4.1), considering the dependence on $\epsilon$ , and supp0se that there exists a
scalar function $\hat{\Psi}$ on $R^{2}$ such that

$\sup_{0<\epsilon\leq 1}\Psi_{\epsilon}(z)\leqq\hat{\Psi}(z)$ for all $z\in R^{2}$ .

Further supp0se that (4.2) satisfies Assumpti0n 1.0 and Assumpti0n 1.1. By $\Psi(\zeta)$

denote the function $\Psi$ given in Assumpti0n 1.1 for (4.2).
Let $\phi$ be any two-dimensional random vector independent of the two-dimensional

Brownian motion process, satisfying
$ E[\hat{\Psi}(\phi)^{2q}]<\infty$ , $ E[\varpi(\phi^{\omega})^{2q}]<\infty$ , $q=\max\{2p, 2\}$ ,

where $p$ is the integer given in Assumpti0n 1.0 for (4.1). Let $\zeta^{*}(t)$ be the solution
of $(4, 1)^{e}$ with the initial state $\zeta^{\epsilon}(0)=\phi^{\omega}$ .

Then $\zeta^{\epsilon}(t)$ converges weakly in $C([0, T];R^{2}),$ $ T<\infty$ , but arbitrary, as $\epsilon\rightarrow 0$

to the solution $\overline{\zeta}(t)$ of (4.2), $t\geqq 0$, with the initial state $\overline{\zeta}(0)=\phi^{\omega}$ .
Proof. Since (4.1) satisfies Assumption 1.0 and Assumption 1.1, $Th\ovalbox{\tt\small REJECT} rem$

1.1 implies that (4.1) has the pathwise unique solution $z(t)$ with the initial state
$ z(O)=\phi$ and that the estimates (1.2) and (1.3) hold for $z(t)$ . Put $U.(t)=\Psi_{\epsilon}(z(t))$ .
Then, since $\Psi_{\epsilon}(z)\leqq\hat{\Psi}(z)$ and since $ E[\hat{\Psi}(\phi)^{2q}]<\infty$ , by (1.3) we get the following
estimate: For $2\leqq m\leqq 2q$ ,

(4.3) $E[(1+U_{\epsilon}(t))^{m}]\leqq E[(1+\hat{\Psi}(\phi)+\hat{\Psi}(0))^{m}]\exp\{\int_{0}^{t}I_{m}^{e}(s)d_{S}\}$ ,

where $I_{m}^{\epsilon}(t)=\epsilon m(m-1)\{c_{1}+c_{2}+c_{3}\beta(J^{\epsilon}(t))\}$ ,

$J^{\epsilon}(t)=f^{-1}(\beta(\ell_{0})+\epsilon\hat{c}t)$ , $f_{0}=E[\hat{\Psi}(\phi)]+\hat{\Psi}(0)$ , $\hat{c}=\max\{c_{1}, c_{2}, c_{3}\}$

and $f^{-1}(\cdot)$ is the inverse function of $f(s)=\int_{0}^{s}\frac{dr}{1+r+\beta(r)}$ . Let $z(t)=(x(t), y(t))$

be the solution of (4.1) with the initial state $ z(O)=\phi$ . Then, since $\Theta^{\omega}(t)$ is a
nonsingular matrix and since $\zeta^{\epsilon}(t)=\Theta^{\omega}(t/\epsilon)z(t/\epsilon),$ $\zeta^{\epsilon}(t)$ is the pathwise unique
solution of $(4.1)^{\epsilon}$ with the initial state $\zeta^{\epsilon}(0)=\phi^{\omega}$ . The definition of $\zeta^{e}(t)$ implies
that

$\omega^{2}|\zeta^{\epsilon}(t)|^{2}=\omega^{2}x(t/\epsilon)^{2}+y(t/\epsilon)^{2}$

and hence $|\zeta^{\epsilon}(t)|^{2}\leqq\hat{c}_{\omega}|z(t/\epsilon)|^{2}$ , where $\hat{c}_{\omega}=\max\{1,1/\omega^{2}\}$ . By the condition (ii)
of Assumption 1.1, since $|z|^{2}\leqq l\Psi_{\epsilon}(z)$ for all $z\in R^{2}$ , we have

$d|\zeta^{\epsilon}(t)|^{2}\leqq U_{\epsilon}(t/\epsilon)$ , where $d=(\hat{c}_{\omega}l)^{-1}$ .
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So, by substituting $ t/\epsilon$ into $t$ of (4.3) we obtain that for $2\leqq m\leqq 2q$ ,

(4.4) $E[(1+d|\zeta^{\epsilon}(t)|^{2})^{m}]\leqq E[(1+\hat{\Psi}(\phi)+\hat{\Psi}(0))^{m}]\exp\{\int_{0}^{t}I_{m}(s)d_{S}\}$ ,

where $I_{m}(s)=I_{m}^{\epsilon}(s)|_{\epsilon=1}$ .
Let $ T<\infty$ be arbitrary and fixed. Then (4.4) yields

$\sup_{0\leqq t\leq T}E[|\zeta^{\epsilon}(t)|^{4q}]<\infty$ uniformly for $0<\epsilon\leqq 1$ .

Namely the condition (0) of Theorem 3.1 is satisfied for $(4.1)^{\ovalbox{\tt\small REJECT}}$ . Since (4.2)

satisfies Assumption 1.0 and Assumption 1.1 and since $E[\overline{\Psi}(\phi^{\omega})^{2q}]<\infty,$ $(4.2)$ has

the pathwise unique solution $\overline{\zeta}(t)$ with the initial state $\overline{\zeta}(0)=\phi^{\omega}$ . Thus the

condition (I) of Theorem 3.1 is satisfied for (4.2). Here, by Definition 4.1 we
note that the integer $p$ given in Assumption 1.0 for (4.2) can be taken as the

same integer with $p$ given in Assumption 1.0 for (4.1). Eq $(4.1)^{\text{\’{e}}}$ is a special

case of $(2.1)^{\lambda}$ with $\lambda=\epsilon$ where

$b^{\epsilon}[t, \zeta, \mu]=b_{0}(\frac{i}{\epsilon},$ $\zeta)-\Gamma_{0}(\frac{t}{\epsilon})\int_{R^{2}}(\zeta-\zeta)\mu(d\zeta)$ ,

$\sigma^{\epsilon}[t, \zeta, \mu]=\sigma_{0}(\frac{t}{\epsilon},$ $\zeta),$ $t\geqq 0,$ $\zeta\in R^{2}$ and $\mu\in \mathcal{P}(R^{2})$ .

Eq (4.2) is a special case of $(2.1)^{\lambda_{0}}$ with $\lambda_{0}=0$ where

$b^{0}[t, \zeta, \mu]=\overline{b}(\zeta)-\frac{1}{2}\Gamma\int_{R^{2}}(\zeta-\zeta)\mu(d\zeta)$ ,

$a^{0}[t, ;, \mu]=\overline{a}(\zeta),$ $t\geqq 0,$ $\zeta\in R^{2}$ and $\mu\in \mathcal{P}(R^{2})$ .

Definition 4.1 implies that the condition (II) of Theorem 3.1 is satisfied for $(4.1)^{e}$

and (4.2). Hence Theorem 3.1 applies for (4.1)e and (4.2), and the $pr\ovalbox{\tt\small REJECT} f$ is
complete.

5. Oscillator with mean-field. Here we treat the oscillators strengthened

by the fluctuation depending on the phase variable. Under suitable conditions
on the coefficients, we can take the so-called energy function as a Lyapunov

function satisfying Assumption 1.1.

Example 5.1. (Li\’enard oscillator). We consider a response of an oscillator

$\ddot{x}+\epsilon f(x)\dot{x}+g_{\epsilon}(x)+\epsilon\gamma(\dot{x}-E(\dot{x}))=\sqrt{\epsilon}\delta(x)\dot{w}$

to a (formal) white noise $\dot{w}$ , where the dotted notation stands for the symbolic

derivative $d/dt$ and $E($ $)$ denotes the symbol of the mathematical expectation.
Here and below $\epsilon$ is a small parameter such that $0<\epsilon\leqq 1,$ $\gamma$ is a positive
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constant and $\{f(x), g_{\epsilon}(x), \delta(x)\}$ is a family of scalar functions, for which

$f(x)$ and $\delta(x)$ satisfy the local Lipschitz condition in $x\in R^{1}$ ,
$g_{\epsilon}(x)$ is an odd polynomial in $x\in R^{1}$ such that
$g_{\epsilon}(x)=\omega^{2}x+\epsilon h(x)$ , where $\omega$ is a positive constant and

$h(x)=\sum_{k\Rightarrow 1}^{n}(2k+2)\alpha_{2k+2}x^{2h+1}$ with a family $\{\alpha_{2k+2}\}$ of positive constants.

Introduce the function $F(x)=\int_{0}^{x}f(s)ds$, and then take the Li\’enard plane $(x, y)$,

where $y=\dot{x}+\epsilon F(x)+\epsilon\gamma(x-E(x))$ . Then we consider the solution $z(t)=(x(t), y(t))$

of the following stochastic differential equation;

$dx(t)=[y(t)-\epsilon F(x(t))-\epsilon\gamma\{x(t)-E(x(t))\}]dt$ ,

(5.1)
$dy(t)=-g_{\epsilon}(x(t))dt+\sqrt{\epsilon}\delta(x(t))dw(t)$ ,

where $w(t)$ is a one-dimensionaI Brownian motion process. This is a special

case of SDE(4.1), where

$A=\left(\begin{array}{ll}0 & 1\\-\omega^{2} & 0\end{array}\right)$ , $v(z)=\left(\begin{array}{l}-F(x)\\-h(x)\end{array}\right)$ , $z=\left(\begin{array}{l}\chi\\ y\end{array}\right)\in R^{2}$ ,

$\Gamma=\left(\begin{array}{ll}\gamma & 0\\0 & 0\end{array}\right)$ , $D(z)=\left(\begin{array}{ll}0 & 0\\0 & \delta(x)\end{array}\right)$ and $W(t)=\left(\begin{array}{l}w_{0}(t)\\w(t)\end{array}\right)$

is a two-dimensional Brownian motion process.

For $z=(x, y)\in R^{2}$ and $0<\epsilon\leqq 1$ , set

$G_{\epsilon}(x)=\int_{0}^{x}g_{\epsilon}(s)ds$ and $V_{\epsilon}(z)=G_{\epsilon}(x)+y^{2}/2$ ,

and also set
$g(x)=g_{1}(x)$ and $V(z)=V_{1}(z)$ .

Then we give the following assumption.

Assumption 5.1. $(L_{0})$ $|F(x)|+|g(x)|\leqq c(1+|x|^{p})$ for all $x\in R^{1}$ with a
constant $c>0$ and an integer $p\geqq 0$,

$(L_{0}^{\prime})$ $|\delta(x)|\leqq\overline{\delta}$ for all $x\in R^{1}$ with a constant $\overline{\delta}>0$,
$(L_{1})$ $-g_{\epsilon}(x)F(x)\leqq\alpha(1+G_{\epsilon}(x))$ for all $x\in R^{1}$ with a constant $\alpha>0$ being

independent of $\epsilon$ ,
$(L_{2})$ $-xF(x)\leqq\overline{\alpha}(1+x^{2}/2)$ for all $x\in R^{1}$ with a constant $\overline{\alpha}>0$ .
The conditions $(L_{0})$ and $(L_{0}^{\prime})$ together with the local Lipschitz condition on

the coefficients imply that (5.1) satisfies Assumption 1.0 with the family
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$\{K_{H}, K, c, p\}$ of constants independent of $\epsilon$ . The conditions $(L_{0}^{\prime})$ and $(L_{1})$

imply that (5.1) satisfies Assumption 1.1 for $\Psi(t, z)=V_{\epsilon}(z),$ $\beta(r)=r$ and $\{c_{1}, c_{2}, c_{3}\}$

replaced by $\{\text{\’{e}}(\alpha+\delta^{2}/2), \epsilon(\alpha+\overline{\delta}^{2}), \epsilon\gamma\}$ . Further $(L_{0}^{\prime})$ and $(L_{2})$ imply that (4.2)
derived from (5.1) satisfies Assumption 1.1 for $\Psi(t, z)=|z|^{2}/2$ and $\beta(r)=r$ .
Evidently, $(L_{0})$ and $(L_{0}^{\prime})$ imply that (4.2) derived from (5.1) satisfies Assumption
1.0 for the same integer $p$ . We note that $V_{\epsilon}(z)\leqq V(z)$ for $z\in R^{2}$ uniformly for
$0<\epsilon\leqq 1$ . Let $\phi$ be any two-dimensional random vector independent of the
Brownian motion process, such that

$ E[V(\phi)^{2q}]<\infty$ , $q=\max\{2p, 2\}$ .
For $z\in R^{2}$ , set $\overline{V}(z)=|z|^{2}/2$ . For $\phi=(\phi^{1}, \phi^{2})$ , put $\phi^{\omega}=(\phi^{1}, \phi^{2}/\omega)$ . Then, since
$\omega^{2}\overline{V}(\phi^{\omega})\leqq V(\phi)$ , the assumption on $\phi$ implies

$E[\overline{V}(\phi^{\omega})^{2q}]<\infty*$

Let $\zeta^{*}(t)$ be the solution of $(4.1)^{\epsilon}$ with the initial state $\zeta^{\epsilon}(0)=\phi^{\omega}$ derived from
(5.1). Then, in Theorem 4.1 we can take the functions $\Psi_{\epsilon}(z),\hat{\Psi}(z)$ and $\Psi(z)$

by $\Psi_{\epsilon}(z)=V_{e}(z),\hat{\Psi}(z)=V(z)$ and $\Phi(z)=\overline{V}(z)$ , respectively. Hence, under Assump-
tion 5.1, we can apply Theorem 4.1 for $\zeta^{\epsilon}(t)$ (for example see Narita [5]).

Example 5.2. (Quasiharmonic oscillator). We consider a response of an
oscillator

$\ddot{x}+\omega^{2}x+\epsilon\gamma(\dot{x}-E(\dot{x}))=\epsilon f(x,\dot{x})+\sqrt{\epsilon}\delta(x,\dot{x})\dot{w}$

to a (formal) white noise $\dot{w}$ , where $\epsilon$ is a small parameter such that $0<\epsilon\leqq 1$ ,
and $\omega$ and $\gamma$ are positive constants. Here $f(x, y)$ and $\delta(x, y)$ are scalar functions
satisfying the local Lipschitz condition in $(x, y)\in R^{2}$ . Take the usual position
and velocity variable; $y=\dot{x}$ . Then we consider the solution $z(t)=(x(t), y(t))$ of
the following stochastic differential equation;

$dx(t)=y(t)dt$ ,
(5.2)

$dy(t)=[-\omega^{2}x(t)+\epsilon f(x(t), y(t))-\epsilon\gamma\{y(t)-E(y(t))\}]dt$ ,

$+\sqrt{\epsilon}\delta(x(t), y(t))dw(t)$ ,

where $w(t)$ is a one-dimensional Brownian motion process. This is a special
case of SDE(4.1), where

$A=\left(\begin{array}{ll}0 & 1\\-\omega^{2} & 0\end{array}\right)$ , $v(z)=\left(\begin{array}{l}0\\f(z)\end{array}\right)$ , $z=\left(\begin{array}{l}x\\y\end{array}\right)\in R^{2}$ ,

$\Gamma=\left(\begin{array}{ll}0 & 0\\0 & \gamma\end{array}\right)$ , $D(z)=\left(\begin{array}{ll}0 & 0\\0 & \delta(z)\end{array}\right)$ and $W(t)=\left(\begin{array}{l}w_{0}(t)\\w(t)\end{array}\right)$
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is a two-dimensional Brownian motion process.

For $z=(x, y)\in R^{2}$ , define $V(z)$ by $V(z)=(\omega^{2}x^{2}+y^{2})/2$ . Then we give the follow-
ing assumption.

Assumption 5.2. $(Q_{0})$ $|f(z)|\leqq c(1+|z|^{p})$ for all $z\in R^{2}$ with a constant $c>0$

and an integer $p\geqq 0$,
$(Q_{0}^{\prime})$ $|\delta(z)|\leqq\delta$ for all $z\in R^{2}$ with a constant $\overline{\delta}>0$,
$(Q_{1})$ $y\beta(z)\leqq\alpha(1+V(z))$ for all $z\in R^{2}$ with a constant $\alpha>0$ .
The conditions $(Q_{0})$ and $(Q_{0}^{\prime})$ together with the local Lipschitz condition on

the coefficients imply that (5.2) satisfies Assumption 1.0 with the family
$\{K_{H}, K, c, p\}$ of constants independent of $\epsilon$ . The conditions $(Q_{0}^{\prime})$ and ( $ Q_{1}\rangle$

imply that (5.2) satisfies Assumption 1.1 for $\Psi(t, z)=V(z),$ $\beta(r)=r$ and $\{c_{1}, c_{2}, c_{8}\}$

replaced by $\{\epsilon(\alpha+\delta^{2}/2), \epsilon(\alpha+\gamma+\delta^{2}), \epsilon\gamma\}$ . Further $(Q_{0}^{\prime})$ and $(Q_{1})$ imply that (4.2)
derived from (5.2) satisfies Assumption 1.1 for $\Psi(t, z)=|z|^{2}/2$ and $\beta(r)=r$ .
Evidently, $(Q_{0})$ and $(Q_{0}^{\prime})$ imply that (4.2) derived from (5.2) satisfies Assumption
1.0 for the same imteger $p$ . Let $\phi$ be any two-dimensional random vector
independent of the Brownian motion process, such that

$ E[V(\phi)^{2q}]<\infty$ , $q=\max\{2p, 2\}$ .
For $z\in R^{2}$ , set $\overline{V}(z)=|z|^{2}/2$ . Then the condition on $\phi$ yields

$ E[\overline{V}(\phi^{\omega})^{2q}]<\infty$ .
Let $\zeta^{e}(t)$ be the solution of (4.1) with the initial state $\zeta^{\epsilon}(0)=\phi^{\omega}$ derived from
(5.2). Then, in Theorem 4.1 we can take the functions $\Psi_{*}(z),\hat{\Psi}(z)$ and $\Psi(z\rangle$

by $\Psi_{\epsilon}(z)=V(z),\hat{\Psi}(z)=V(z)$ and $F(z)=\overline{V}(z)$ , respectively. Hence, under Assump-
tion 5.2, we can apply Theorem 4.1 for $\zeta(t)$ .

Example 5.3. For the van der Pol oscillator

$\ddot{x}+\epsilon\kappa(x^{2}-1)\dot{x}+\omega^{2}x+\epsilon\gamma(\dot{x}-E(\dot{x}))=\sqrt{\epsilon}\delta\dot{w}$

with a family $\{\epsilon, \kappa, \omega, \gamma, \delta\}$ of positive constants, we can get the same limit
diffusion process governed by (4.2) as in Narita [4] whenever we start from
the formulations (5.1) and (5.2).
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