Yokohama Mathematical Journal Vol. 38, 1990

FREE INVOLUTIONS ON CERTAIN 3-MANIFOLDS

By

WOLFGANG HEIL

(Received April 24, 1989)

1.

The orbit spaces of a free involution on $S^1 \times S^2$ were first classified by Tao [T]. Tollefson [To] classified orbit spaces of connected sums of 3-manifolds where each factor is irreducible. In [K-T] a general structure theorem was found for nonprime 3-manifolds admitting involutions, with applications to non-prime manifolds with no 2-sphere bundle summands. In this paper we describe the orbit spaces of free involutions on connected sums of 2-sphere bundles (Theorem 4) and on connected sums of 3-manifolds where each summand is a 2-sphere bundle or irreducible with finite fundamental group (Theorem 5).

Let $T: N \to N$ be a free involution. The orbit space N/T is denoted by N^* . A 2-sphere S in N is equivariant if T(S)=S or $T(S) \cap S = \emptyset$; and S is invariant if T(S)=S. The complement of the interior of a regular neighborhood of S in N is the manifold N cut along S. A punctured 3-cell is obtained from the 3-cell B^3 by removing open cells from Int B^3 . By P^n we denote real projective nspace (for n=2, 3). By H we denote an S^2 -bundle over S^1 .

Given a 3-manifold M, denote by M' (resp. M'') the 3-manifold obtained by deleting one (resp. two) open 3-balls from Int M, and call the resulting boundary spheres of M the distinguished 2-spheres. Recall that $M_1 # M_2 =$ $M'_1 \cup M'_2$ where the union is along a sphere of $\partial M'_4$ and that M # H is obtained from M'' by identifying its distinguished spheres (see e.g. [He]). Note that if the free involution $T: M'' \to M''$ interchanges the two distinguished spheres then T can be extended to a free involution $M \to M$ and $(M'')^* = (M^*)'$.

2.

Lemma 1. Let N be a 3-manifold that contains a 2-sphere not bounding a punctured 3-cell in N. Let T be a free involution. Then N contains an equivariant 2-sphere S not bounding a punctured 3-cell. Furthermore, if N contains a nonseparating 2-sphere then N contains an equivariant nonseparating 2-sphere.

This is a generalization of Lemma 1 of [To]. The proof is similar to the proof in [To] and the proof of Lemma 4 of [H].

Proposition 2. Let N be a 3-manifold that contains a nonseparating 2-sphere and let $T: N \rightarrow N$ be a free involution. Let H denote a S²-bundle over S¹. Then N and N* admit one of the structures (a)-(e).

- (a) N=M#H and $N^*=M^*\#P^*$.
- (b) N = M # M # H and $N^* = M \# H$.
- (c) $N=M_1\#M_2\#H$ and $N^*=M_1^*\#M_2^*$
- (d) N=M#H#H and $N^*=M^*\#H$

(e) N=M#H, the two distinguished boundary spheres of M'' are invariant under T, and N* is obtained from $(M'')^*$ by identifying the two projective planes of $\partial(M'')^*$.

Proof. By Lemma 1 there is a nonseparating equivariant 2-sphere S. Case (1). $S \cap T(S) = \emptyset$.

(i) Suppose $S \cup T(S)$ bounds a submanifold $Q \approx S^2 \times I$ in N. Let $M'' = N-\operatorname{Int} Q$. Then $N \approx M \# H$. If T(M'') = M'' then $(M'')^* = (M^*)'$ and by filling in the boundary spheres of Q with 3-balls we can extend T to a free involution on S^3 . Hence $Q^* \approx (P^3)'$ and $N^* = (M^*)' \cup (P^3)' = M^* \# P^3$. This is case (a) of the Proposition. If T interchanges Q and M'' then $N \approx H$ and N^* is obtained from Q by identifying S and T(S). Thus $N^* \approx H$, which is case (b) with $M = S^3$.

(ii) Suppose S is not parallel to T(S) and $S \cup T(S)$ separates N into M''_1 and M''_2 . Identifying M''_1 and M''_2 along S we obtain $N''_1 \approx M'_1 \# M'_2$ and identifying M'_1 and M'_2 along T(S) we obtain $N \approx N_1 \# H \approx M_1 \# M_2 \# H$. If $T(M''_1) = M''_1$ then $N^* = (M''_1)^* \cup (M''_2)^* = (M^*_1)' \cup (M^*_2)' = M^*_1 \# M^*_2$ and we get case (c). If $T(M''_1) = M''_2$ then N^* is obtained from M''_1 by identifying the two boundary spheres S and T(S) of M''_1 . Hence $N^* \approx M_1 \# H$, which is case (b).

(iii) Suppose S is not parallel to T(S) and $S \cup T(S)$ does not separate N. Let M''' be N cut along $S \cup T(S)$. Then $N \approx M \# H \# H$ and N^* is obtained from $(M^*)''$ by identifying the two copies of $S^* = p(S \cup T(S))$ in $\partial(M^*)''$. Hence $N^* = M^* \# H$ which gives (d) of the Proposition.

Case (2). S=T(S).

Let U be a regular invariant neighborhood of S and let M''=N-IntU. If T interchanges the components of ∂U we get case 1(i). Otherwise $U^* \approx P^2 \times I$ and we get N^* as in (e).

Remark. In case (b) the S^2 -bundles H need not be the same, e.g. it could mean the orientable one in N and the nonorientable one in N^* .

Applying this proposition to the connected sum of S^2 -bundles we obtain the following lemma. **Lemma 3.** Let M_n be a connected sum of n S²-bundles over S¹ and let $T: M_n \rightarrow M_n$ be a free involution. Let H denote a S²-bundle over S¹. Then for $n \ge 2$ one of (a)-(d) below holds:

- (a) $M_n = M_{n-1} # H$ and $M_n^* = M_{n-1}^* # P^3$.
- (b) $M_n = M_{n-1} \# H$ and $M_n^* = M_{k+1}$, where 2k = n-1.
- (c) $M_n = M_i \# M_j \# H$ and $M_n^* = M_i^* \# M_j^*$ with i+j=n-1.
- (d) $M_n = M_{n-2} # H # H$ and $M_n^* = M_{n-2}^* # H$.

Proof. By uniqueness of the number of S^2 -bundle factors of M_n , cases (a)-(d) of Prop. 2 yield (a)-(d) of the lemma. In case (e) of Prop. 2 the manifold M_n is obtained from M''_{n-1} by identifying the two boundary spheres and $(M''_{n-1})^*$ by identifying the two projective plane boundaries. Since $n \ge 2$ there is an equivariant nonseparating 2-sphere S in M''_{n-1} , by Lemma 1. If $T(S) \cap S = \emptyset$ or if S is invariant and interchanges the boundary components of a regular neighborhood U of S then cases (a)-(d) of Prop. 2 (and hence of the lemma) apply. Thus assume T(S)=S and S does not interchange ∂U . Then M''_{n-1} cut along S is $(M''_{n-2})''$ which is invariant under T. Proceeding in this way we either obtain cases (a)-(d) or we end up with an invariant submanifold M_0 which is obtained by cutting M_n along n mutually disjoint non-separating spheres and $\hat{M}_0 \approx S^3$. Since each of the 2n boundary spheres of M_0 is invariant, M_0 covers a nonorientable 3-manifold with fundamental group Z_2 and 2n projective planes as boundary. This cannot happen for n > 1, by [E].

We now adopt the following notational convention. K denotes either an S^2 -bundle over S^1 or $P^2 \times S^1$. The symbol $\#P^3 \# K$ denotes a connected sum of m factors of P^3 and n factors each of which is a S^2 -bundle or $P^2 \times S^1$.

Theorem 4. Let M_n be a connected sum of n S²-bundles over S¹ and let $T: M_n \to M_n$ be a free involution. Then $M_n^* = \underset{n+1-2k}{\#} P^* \underset{k}{\#} K$ for some k, with $0 \le k \le \frac{n}{2}$ for n even and $0 \le k \le \frac{n+1}{2}$ for n odd.

Proof. For n=1, M_1^* is $\#P^3$ or K, by [T]. For n=2 we apply Lemma 3 to obtain $M_2^* = M_1^* \#P^3$ (hence $M_2^* = \#P^3$ or $M_2^* = P^3 \#K$).

The general case follows from Lemma 3 by straight forward induction. We illustrate the case when n+1=m is even and Lemma 3(c) applies: $M_m^*=M_i^*\#M_j^*$ with i+j=n and we can assume that *i* is odd, $0 < i \le n$, and *j* is even, $0 \le j < n$. By induction $M_i^*= \underset{i+1-2k}{\#} P_k^* K$ for some *k* with $0 \le k \le \frac{i+1}{2}$

25

and $M_{j}^{*} = \underset{l+j+2-2k}{\#} P^{*} \#_{l}^{K}$ for some l with $0 \le l \le \frac{j}{2}$. Thus $M_{m}^{*} = \underset{l+j+2-2k-2l}{\#} P^{*} \#_{k+l}^{K} = \underset{m+1-2s}{\#} P^{*} \#_{k}^{K}$ for s with $0 \le s \le \frac{m}{2}$.

It is clear that conversely any (orientable) 2-fold covering of the manifold M_n^* given by the Theorem is homeomorphic to M_n .

3.

Now let #H denote a connected sum of *n* factors, each homeomorphic to an S^2 -bundle over S^1 .

Theorem 5. Let N be a closed 3-manifold that contains no fake 3-cells and such that every irreducible factor of the prime decomposition of N has finite fundamental group. Let $T: N \rightarrow N$ be a free involution. Then there are prime manifolds A_i , B_j such that

 $N \approx (A_1 \# \cdots \# A_r) \# (B_1 \# \cdots \# B_s \# H) \# (A_1 \# \cdots \# A_r) \text{ and}$ $N^* \approx (A_1 \# \cdots \# A_r) \# (B_1^* \# \cdots \# B_s^*)$

Remark. Some of the B_i 's may be homeomorphic to S^s (in which case $B_i^* \approx P^s$).

Proof. Let k be the number of 2-spheres of a complete system of pairwise disjoint incompressible 2-spheres in N (see [Ha]). If N contains no nonseparating 2-sphere then the Theorem follows from the Theorem of [To] (with s=1). Thus we assume that N contains nonseparating 2-spheres and proceed by induction on k. (For k=0 we have r=0 and s=1). Denote $A_1 \# \cdots \# A_r$ by $A(r), B_1 \# \cdots \# B_s$ by B(s) and $B_1^* \# \cdots \# B_s^*$ by $B_*(s)$. Consider the cases of Prop. 2:

(a) $N \approx M \# H$, $N^* \approx M^* \# P^3$. Applying induction to M and M^* we obtain $N \approx A(r) \# (B(s) \# S^3 \# H) \# A(r)$ and $N^* \approx A(r) \# B_*(s+1)$.

(b) $N \approx M \# M \# H$, $N^* = M \# H$. Write $N \approx A(r) \# H \# A(r)$ and $N^* \approx A(r) \# H^*$.

(c) and (d) follow similarly.

(e) N is obtained from a manifold M_1 by identifying its two invariant boundary spheres S_{11} , S_{12} and N^* is obtained by identifying the two boundary projection planes of M_1^* . If \hat{M}_1 is irreducible then since $\pi_1(\hat{M}_1)$ is finite, it follows from [E] that $M_1^* \approx P^2 \times I$ and $N \approx H$. If \hat{M}_1 is not irreducible there is by Lemma 1 an equivariant 2-sphere S that does not bound a punctured 3-cell in M_1 .

(i) S separates M_1 and $T(S) \cap S = \emptyset$. M_1 cut along $S \cup T(S)$ consists of 3

components Q_1 , Q_2 , Q_3 with $S \cup T(S)$ in Q_3 . Then S_{11} , S_{12} are in Q_3 , T leaves Q_3 invariant and interchanges Q_1 and Q_2 . Thus $N \approx N_1 \# N_2 \# N_1$, where $N_1 \approx \hat{Q}_1$, $N_2 \approx \hat{Q}_3 \# H$, and $N^* \approx N_1 \# N_2^*$. Every irreducible factor of N_2 has finite fundamental group and the Theorem follows by induction applied to N_2 .

(ii) S separates M_1 , T(S)=S, and T interchanges the boundary components of an invariant neighborhood of S. This case cannot occur since M_1 contains invariant spheres S_{11} , S_{12} .

(iii) T(S)=S and either S does not separate M_1 or S separates M_1 and T does not interchange sides of S. Let M_2 denote either component of M_1 cut along S. If \hat{M}_2 is irreducible then since $\pi_1(\hat{M}_2)$ is finite, it follows from [E] that $M_2 \approx S \times I$ hence S separates M_1 and bounds a punctured 3-cell in M_1 which is not true. Thus \hat{M}_2 is not irreducible. Continuing this process of cutting along equivariant 2-spheres we eventually must get case (i) for M_n which is a component of N cut along n essential 2-spheres. Thus there is a separating S in M_n , $S \cap T(S) = \emptyset$, and all boundary spheres of M_n are invariant. So $S \cup T(S)$ separates M_n into Q_1, Q_2, Q_3 where Q_3 is invariant, T interchanges Q_1 and Q_2 , and $\partial M_n \subset Q_3$. Thus $N \approx N_1 \# N_2 \# N_1$ with $N_1 \approx Q_1$ and N_2 is obtained from Q_3 and other components of N cut along 2-spheres by identifying invariant boundary components in pairs; and $N^* \approx N_1 \# N_2^*$. As before the Theorem follows by induction.

As an example note that Theorem 5 applies to a connected sum of lens spaces (including $S^1 \times S^2$). In [M] it was shown that the orbit space of a free involution T on a lens space (different from $S^1 \times S^2$) is a Seifert fiber space.

References

- [B] F. Bonahon: Difféotopies des Espaces Lenticulaires, Topology 22 (1983), 305-314.
- [E] D.B.A. Epstein: Projective planes in 3-manifolds, Proc. London Math. Soc. (3)11 (1961), 469-484.
- [Ha] Wolfgang Haken: Some results on surfaces in 3-manifolds, Studies in Modern Topology, MAA, Prentice Hall (1968), 39-98.
- [H] W. Heil: Testing 3-manifolds for projective planes, *Pacific J. Math.* 44 (1973), 139-145.
- [He] John Hempel: 3-manifolds, Ann. Math. Studies 86, Princeton Univ. Press 1976.
- [K-T] P.K. Kim and J.L. Tollefson: Splitting the PL involutions of nonprime 3-manifolds Michigan Math. J. 27 (1980), 259-274.
- [M] R. Myers: Free involution on lens spaces, Topology 20 (1981), 313-318.
- [T] Y. Tao: On fixed point free involutions of $S^1 \times S^2$, Osaka Math. J. 14 (1962), 145-152.
- [To] J.L. Tollefson: Free involutions on non prime 3-manifolds, Osaka J. Math. 7 (1970), 161-164.

Department of Mathematics Florida State University Tallahassee, FL 32306-3027 U.S.A.