FREE INVOLUTIONS ON CERTAIN 3-MANIFOLDS

By
Wolfgang Heil
(Received April 24, 1989)

1.

The orbit spaces of a free involution on $S^{1} \times S^{2}$ were first classified by Tao [T]. Tollefson [T0] classified orbit spaces of connected sums of 3-manifolds where each factor is irreducible. In [K-T] a general structure theorem was found for nonprime 3 -manifolds admitting involutions, with applications to nonprime manifolds with no 2-sphere bundle summands. In this paper we describe the orbit spaces of free involutions on connected sums of 2 -sphere bundles (Theorem 4) and on connected sums of 3-manifolds where each summand is a 2-sphere bundle or irreducible with finite fundamental group Theorem 5).

Let $T: N \rightarrow N$ be a free involution. The orbit space N / T is denoted by N^{*}. A 2-sphere S in N is equivariant if $T(S)=S$ or $T(S) \cap S=\varnothing$; and S is invariant if $T(S)=S$. The complement of the interior of a regular neighborhood of S in N is the manifold N cut along S. A punctured 3 -cell is obtained from the 3-cell B^{3} by removing open cells from $\operatorname{Int} B^{3}$. By P^{n} we denote real projective n_{-} space (for $n=2,3$). By H we denote an S^{2}-bundle over S^{1}.

Given a 3-manifold M, denote by M^{\prime} (resp. $M^{\prime \prime}$) the 3-manifold obtained by deleting one (resp. two) open 3-balls from Int M, and call the resulting boundary spheres of M the distinguished 2-spheres. Recall that $M_{1} \# M_{2}=$ $M_{1}^{\prime} \cup M_{2}^{\prime}$ where the union is along a sphere of ∂M_{i}^{\prime} and that $M \# H$ is obtained from $M^{\prime \prime}$ by identifying its distinguished spheres (see e.g. [He]). Note that if the free involution $T: M^{\prime \prime} \rightarrow M^{\prime \prime}$ interchanges the two distinguished spheres then T can be extended to a free involution $M \rightarrow M$ and $\left(M^{\prime \prime}\right)^{*}=\left(M^{*}\right)^{\prime}$.

2.

Lemma 1. Let N be a 3-manifold that contains a 2-sphere not bounding a punctured 3-cell in N. Let T be a free involution. Then N contains an equivariant 2 -sphere S not bounding a punctured 3-cell. Furthermore, if N contains a nonseparating 2 -sphere then N contains an equivariant nonseparating 2 -sphere.

This is a generalization of Lemma 1 of [To]. The proof is similar to the proof in [To] and the proof of Lemma 4 of [H].

Proposition 2. Let N be a 3-manifold that contains a nonseparating 2-sphere and let $T: N \rightarrow N$ be a free involution. Let H denote a S^{2}-bundle over S^{1}. Then N and N^{*} admit one of the structures (a)-(e).
(a) $N=M \# H$ and $N^{*}=M^{*} \# P^{3}$.
(b) $N=M \# M \# H$ and $N^{*}=M \# H$.
(c) $N=M_{1} \# M_{2} \# H$ and $N^{*}=M_{1}^{*} \# M_{2}^{*}$
(d) $N=M \# H \# H$ and $N^{*}=M^{*} \# H$
(e) $N=M \# H$, the two distinguished boundary spheres of $M^{\prime \prime}$ are invariant under T, and N^{*} is obtained from $\left(M^{\prime \prime}\right)^{*}$ by identifying the two projective planes of $\partial\left(M^{\prime \prime}\right)^{*}$.

Proof. By Lemma 1 there is a nonseparating equivariant 2-sphere S.
Case (1). $S \cap T(S)=\varnothing$.
(i) Suppose $S \cup T(S)$ bounds a submanifold $Q \approx S^{2} \times I$ in N. Let $M^{\prime \prime}=$ $N-\operatorname{Int} Q$. Then $N \approx M \# H$. If $T\left(M^{\prime \prime}\right)=M^{\prime \prime}$ then $\left(M^{\prime \prime}\right)^{*}=\left(M^{*}\right)^{\prime}$ and by filling in the boundary spheres of Q with 3-balls we can extend T to a free involution on S^{3}. Hence $Q^{*} \approx\left(P^{3}\right)^{\prime}$ and $N^{*}=\left(M^{*}\right)^{\prime} \cup\left(P^{3}\right)^{\prime}=M^{*} \# P^{3}$. This is case (a) of the Proposition. If T interchanges Q and $M^{\prime \prime}$ then $N \approx H$ and N^{*} is obtained from Q by identifying S and $T(S)$. Thus $N^{*} \approx H$, which is case (b) with $M=S^{3}$.
(ii) Suppose S is not parallel to $T(S)$ and $S \cup T(S)$ separates N into $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$. Identifying $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$ along S we obtain $N_{1}^{\prime \prime} \approx M_{1}^{\prime} \# M_{2}^{\prime}$ and identifying M_{1}^{\prime} and M_{2}^{\prime} along $T(S)$ we obtain $N \approx N_{1} \# H \approx M_{1} \# M_{2} \# H$. If $T\left(M_{i}^{\prime \prime}\right)=M_{i}^{\prime \prime}$ then $N^{*}=\left(M_{1}^{\prime \prime}\right)^{*} \cup\left(M_{2}^{\prime \prime}\right)^{*}=\left(M_{1}^{*}\right)^{\prime} \cup\left(M_{2}^{*}\right)^{\prime}=M_{1}^{*} \# M_{2}^{*}$ and we get case (c). If $T\left(M_{1}^{\prime \prime}\right)=M_{2}^{\prime \prime}$ then N^{*} is obtained from $M_{1}^{\prime \prime}$ by identifying the two boundary spheres S and $T(S)$ of $M_{1}^{\prime \prime}$. Hence $N^{*} \approx M_{1} \# H$, which is case (b).
(iii) Suppose S is not parallel to $T(S)$ and $S \cup T(S)$ does not separate N. Let $M^{\prime \prime \prime \prime}$ be N cut along $S \cup T(S)$. Then $N \approx M \# H \# H$ and N^{*} is obtained from $\left(M^{*}\right)^{\prime \prime}$ by identifying the two copies of $S^{*}=p(S \cup T(S))$ in $\partial\left(M^{*}\right)^{\prime \prime}$. Hence $N^{*}=M^{*} \# H$ which gives (d) of the Proposition.

Case (2). $S=T(S)$.
Let U be a regular invariant neighborhood of S and let $M^{\prime \prime}=N$ - Int U. If T interchanges the components of ∂U we get case $1(\mathrm{i})$. Otherwise $U^{*} \approx P^{2} \times I$ and we get N^{*} as in (e).

Remark. In case (b) the S^{2}-bundles H need not be the same, e.g. it could mean the orientable one in N and the nonorientable one in N^{*}.

Applying this proposition to the connected sum of S^{2}-bundles we obtain the following lemma.

Lemma 3. Let M_{n} be a connected sum of $n S^{2}$-bundles over S^{1} and let $T: M_{n} \rightarrow M_{n}$ be a free involution. Let H denote a S^{2}-bundle over S^{1}. Then for $n \geqq 2$ one of (a)-(d) below holds:
(a) $M_{n}=M_{n-1} \# H$ and $M_{n}^{*}=M_{n-1}^{*} \# P^{3}$.
(b) $M_{n}=M_{n-1} \# H$ and $M_{n}^{*}=M_{k+1}$, where $2 k=n-1$.
(c) $M_{n}=M_{i} \# M_{j} \# H$ and $M_{n}^{*}=M_{i}^{*} \# M_{j}^{*}$ with $i+j=n-1$.
(d) $M_{n}=M_{n-2} \# H \# H$ and $M_{n}^{*}=M_{n-2}^{*} \# H$.

Proof. By uniqueness of the number of S^{2}-bundle factors of M_{n}, cases (a)-(d) of Prop. 2 yield (a)-(d) of the lemma. In case (e) of Prop. 2 the manifold M_{n} is obtained from $M_{n-1}^{\prime \prime}$ by identifying the two boundary spheres and $\left(M_{n-1}^{\prime \prime}\right)^{*}$ by identifying the two projective plane boundaries. Since $n \geqq 2$ there is an equivariant nonseparating 2 -sphere S in $M_{n-1}^{\prime \prime}$, by Lemma 1. If $T(S) \cap S=\varnothing$ or if S is invariant and interchanges the boundary components of a regular neighborhood U of S then cases (a)-(d) of Prop. 2 (and hence of the lemma) apply. Thus assume $T(S)=S$ and S does not interchange ∂U. Then $M_{n-1}^{\prime \prime}$ cut along S is $\left(M_{n-2}^{\prime \prime}\right)^{\prime \prime}$ which is invariant under T. Proceeding in this way we either obtain cases (a)-(d) or we end up with an invariant submanifold M_{0} which is obtained by cutting M_{n} along n mutually disjoint non-separating spheres and $\hat{M}_{0} \approx S^{3}$. Since each of the $2 n$ boundary spheres of M_{0} is invariant, M_{0} covers a nonorientable 3-manifold with fundamental group Z_{2} and $2 n$ projective planes as boundary. This cannot happen for $n>1$, by [E].

We now adopt the following notational convention. K denotes either an S^{2}-bundle over S^{1} or $P^{2} \times S^{1}$. The symbol $\underset{m}{\#} P^{3} \underset{n}{\#} K$ denotes a connected sum of m factors of P^{3} and n factors each of which is a S^{2}-bundle or $P^{2} \times S^{1}$.

Theorem 4. Let M_{n} be a connected sum of $n S^{2}$-bundles over S^{1} and let $T: M_{n} \rightarrow M_{n}$ be a free involution. Then $M_{n}^{*}=\underset{n+1-2 k}{\#} P^{3} \# K$ for some k, with $0 \leqq k \leqq \frac{n}{2}$ for n even and $0 \leqq k \leqq \frac{n+1}{2}$ for n odd.

Proof. For $n=1, M_{1}^{*}$ is $\underset{2}{\#} P^{3}$ or K, by [T]. For $n=2$ we apply Lemma 3 to obtain $M_{2}^{*}=M_{1}^{*} \# P^{3}\left(\right.$ hence $M_{2}^{*}=\underset{3}{\#} P^{3}$ or $M_{2}^{*}=P^{3} \# K$).

The general case follows from Lemma 3 by straight forward induction. We illustrate the case when $n+1=m$ is even and Lemma 3(c) applies: $M_{m}^{*}=M_{i}^{*} \# M_{j}^{*}$ with $i+j=n$ and we can assume that i is odd, $0<i \leqq n$, and j is even, $0 \leqq j<n$. By induction $M_{i}^{*} \underset{i+1-2 k}{\#} P^{3} \# K$ for some k with $0 \leqq k \leqq \frac{i+1}{2}$
and $M_{j}^{*}=\underset{j+1-2 l}{\#} P^{3} \# K$ for some l with $0 \leqq l \leqq \frac{j}{2}$. Thus $M_{m}^{*}=\underset{i+j+2-2 k-2 l}{\#} P^{3} \# K=$ $\underset{m+1-2 s}{\#} P_{s}^{s} \# K$ for s with $0 \leqq s \leqq \frac{m}{2}$.

It is clear that conversely any (orientable) 2 -fold covering of the manifold M_{n}^{*} given by the Theorem is homeomorphic to M_{n}.

3.

Now let $\underset{n}{\#} H$ denote a connected sum of n factors, each homeomorphic to an S^{2}-bundle over S^{1}.

Theorem 5. Let N be a closed 3-manifold that contains no fake 3-cells and such that every irreducible factor of the prime decomposition of N has finite fundamental group. Let $T: N \rightarrow N$ be a free involution. Then there are prime manifolds A_{i}, B_{j} such that

$$
\begin{aligned}
& N \approx\left(A_{1} \# \cdots \# A_{r}\right) \#\left(B_{1} \# \cdots \# B_{s} \# H\right) \#\left(A_{1} \# \cdots \# A_{r}\right) \text { and } \\
& N^{*} \approx\left(A_{1} \# \cdots \# A_{r}\right) \#\left(B_{1}^{*} \# \cdots \# B_{s}^{*}\right)
\end{aligned}
$$

Remark. Some of the B_{i} 's may be homeomorphic to S^{3} (in which case $\left.B_{i}^{*} \approx P^{3}\right)$.

Proof. Let k be the number of 2 -spheres of a complete system of pairwise disjoint incompressible 2 -spheres in N (see [Ha]). If N contains no nonseparating 2 -sphere then the Theorem follows from the Theorem of [To] (with $s=1$). Thus we assume that N contains nonseparating 2 -spheres and proceed by induction on k. (For $k=0$ we have $r=0$ and $s=1$). Denote $A_{1} \# \cdots \# A_{r}$ by $A(r), B_{1} \# \cdots \# B_{s}$ by $B(s)$ and $B_{1}^{*} \# \cdots \# B_{s}^{*}$ by $B_{*}(s)$. Consider the cases of Prop. 2:
(a) $N \approx M \# H, N^{*} \approx M^{*} \# P^{3}$. Applying induction to M and M^{*} we obtain $N \approx A(r) \#\left(B(s) \# S^{s} \# H\right) \# A(r)$ and $N^{*} \approx A(r) \# B_{*}(s+1)$.
(b) $N \approx M \# M \# H, N^{*}=M \# H$. Write $N \approx A(r) \# H \# A(r)$ and $N^{*} \approx A(r) \# H^{*}$.
(c) and (d) follow similarly.
(e) N is obtained from a manifold M_{1} by identifying its two invariant boundary spheres S_{11}, S_{12} and N^{*} is obtained by identifying the two boundary projection planes of M_{1}^{*}. If \hat{M}_{1} is irreducible then since $\pi_{1}\left(\hat{M}_{1}\right)$ is finite, it follows from [E] that $M_{1}^{*} \approx P^{2} \times I$ and $N \approx H$. If \hat{M}_{1} is not irreducible there is by Lemma 1 an equivariant 2 -sphere S that does not bound a punctured 3-cell in M_{1}.
(i) S separates M_{1} and $T(S) \cap S=\varnothing . \quad M_{1}$ cut along $S \cup T(S)$ consists of 3
components Q_{1}, Q_{2}, Q_{3} with $S \cup T(S)$ in Q_{3}. Then S_{11}, S_{12} are in Q_{3}, T leaves Q_{3} invariant and interchanges Q_{1} and Q_{2}. Thus $N \approx N_{1} \# N_{2} \# N_{1}$, where $N_{1} \approx \hat{Q}_{1}$, $N_{2} \approx \hat{Q}_{3} \# H$, and $N^{*} \approx N_{1} \# N_{2}^{*}$. Every irreducible factor of N_{2} has finite fundamental group and the Theorem follows by induction applied to N_{2}.
(ii) S separates $M_{1}, T(S)=S$, and T interchanges the boundary components of an invariant neighborhood of S. This case cannot occur since M_{1} contains invariant spheres S_{11}, S_{12}.
(iii) $T(S)=S$ and either S does not separate M_{1} or S separates M_{1} and T does not interchange sides of S. Let M_{2} denote either component of M_{1} cut along S. If \hat{M}_{2} is irreducible then since $\pi_{1}\left(\hat{M}_{2}\right)$ is finite, it follows from [E] that $M_{2} \approx S \times I$ hence S separates M_{1} and bounds a punctured 3-cell in M_{1} which is not true. Thus \hat{M}_{2} is not irreducible. Continuing this process of cutting along equivariant 2 -spheres we eventually must get case (i) for M_{n} which is a component of N cut along n essential 2 -spheres. Thus there is a separating S in $M_{n}, S \cap T(S)=\varnothing$, and all boundary spheres of M_{n} are invariant. So $S \cup T(S)$ separates M_{n} into Q_{1}, Q_{2}, Q_{3} where Q_{3} is invariant, T interchanges Q_{1} and Q_{2}, and $\partial M_{n} \subset Q_{3}$. Thus $N \approx N_{1} \# N_{2} \# N_{1}$ with $N_{1} \approx Q_{1}$ and N_{2} is obtained from Q_{3} and other components of N cut along 2 -spheres by identifying invariant boundary components in pairs; and $N^{*} \approx N_{1} \# N_{2}^{*}$. As before the Theorem follows by induction.

As an example note that Theorem 5 applies to a connected sum of lens spaces (including $S^{1} \times S^{2}$). In [M] it was shown that the orbit space of a free involution T on a lens space (different from $S^{1} \times S^{2}$) is a Seifert fiber space.

References

[B] F. Bonahon: Difféotopies des Espaces Lenticulaires, Topology 22 (1983), 305-314.
[E] D.B. A. Epstein: Projective planes in 3-manifolds, Proc. London Math. Soc. (3) 11 (1961), 469-484.
[Ha] Wolfgang Haken: Some results on surfaces in 3-manifolds, Studies in Modern Topology, MAA, Prentice Hall (1968), 39-98.
[H] W. Heil: Testing 3-manifolds for projective planes, Pacific J. Math. 44 (1973), 139-145.
[He] John Hempel: 3-manifolds, Ann. Math. Studies 86, Princeton Univ. Press 1976.
[K-T] P.K. Kim and J.L. Tollefson: Splitting the PL involutions of nonprime 3-manifolds Michigan Math. J. 27 (1980), 259-274.
[M] R. Myers: Free involution on lens spaces, Topology 20 (1981), 313-318.
[T] Y. Tao: On fixed point free involutions of $S^{1} \times S^{2}$, Osaka Math. J. 14 (1962), 145152.
[To] J.L. Tollefson: Free involutions on non prime 3-manifolds, Osaka J. Math. 7 (1970), 161-164.

Department of Mathematics
Florida State University Tallahassee, FL 32306-3027
U.S.A.

