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We classify free actions of a finite abelian group on orientable and non-
orientable surfaces of high genus.

Let $\tilde{M}$ be a closed surface of genus $g$ (orientable or nonorientable), and $G$

a finite abelian group. We consider fixed-point free actions of $G$ on $\tilde{M}$. To
each such action corresponds a finite covering $\tilde{M}\rightarrow M:=\tilde{M}/G$ determined by a
surjection $s;F:=\pi_{1}M\rightarrow G$ with kernel $\pi_{1}\tilde{M}$. We call two such actions of $G$ on
$\tilde{M}$ equivalent if they are conjugate by a homeomorphism of $\tilde{M}$ (orientation
preserving if $\tilde{M}$ is orientable), inducing the identity on $G$ . Two such actions
are equivalent iff for the corresponding surjections $S_{1},$ $s_{2}$ : $F\infty G$ there exists a
commutative diagram

where $a$ is an automorphism of the fundamental group $F$ of the quotient surface
$M$ which is the same for both actions by the Riemann-Hurwitz formula; one
direction of this is clear, for the other one uses that every automorphism of a
surface group is induced by a homeomorphism of the surface. In the above
situation, we also call $s_{1}$ and $s_{2}$ equivalent.

Theorem. Let $\tilde{M},$ $M$ and $G$ be as above, $\tilde{g}=genus\tilde{M},$ $g=genus$ M. Let $n$

be the minimal number of generators of $G$ .
a) Suppose $\tilde{M}$ is orientable, $2(\tilde{g}-1)=|G|2(g-1)$ and $g\geqq n$ . Then the equivalence

classes of orientation preserving actions of $G$ on $\tilde{M}$ correspond bijectively to
the elements of the second homology group $H_{2}(G, Z)$ of $G$ .

b) Suppose $\tilde{M}$ is nonorientable, $\tilde{g}-2=|G|(g-2)$ and $g\geqq 2n+4$ . Then the
equivalence classes of actions of $G$ on $M$ correspond to the elements of
$H_{2}(G, Z_{2})$ .

c) Suppose $\tilde{M}$ is orientable, $2(\tilde{g}-1)=|G|(g-2),$ $g\geqq 2n+4$ and the action of $G$

on $\tilde{M}$ has orientation reversing elements; let $G_{0}\subset G$ be the (fixed) subgroup
of index 2 of orientation preserving elements. We have two cases:
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cl) There exists an element of order 2 in $G-G_{0},$ $i.e$ . $G\cong G_{0}\oplus Z_{2}$ . Then the
number of equivalence classes of such actions is half the order of $H_{2}(G, Z)$ ,

where 2 is the G-module $Z$ with $G_{0}$ operating trivially and the elements in
$G-G_{0}$ by (-identity) (half of the elements in $H_{2}(G, Z)$ corresp0nd to actions
with $g$ odd, the other half to actions with $g$ even).

$c2)$ There exists no element of order 2 in $G-G_{0},$ $i.e$ . $G\not\equiv G_{0}\oplus Z_{2}$ . Then there
is no action for $g$ odd, and for $g$ even the equivalence classes of such actions
corresp0nd to the elements of $H_{2}(G, Z)$ .

Note that the equalities in the theorem between $\tilde{g},$ $g$ and $|G|$ are forced
by the Riemann-Hurwitz formula.

In the proof of the theorem, we also give normal forms for the equivalence
classes of surjections $F\rightarrow G$ , and an algorithm to bring such a surjection into
normal form, hence we get:

Corollary. There exists an algorithm to decide whether two surjections $F\rightarrow G$

(resp. the corresp0nding G-actions on $\tilde{M}$ ) are equivalent or not, for $g=genusF$

as in the theorem.

The main invariant associated to an action of $G$ on $\tilde{M}$ resp. to the corre-
sponding surjection $s:F\rightarrow G$ is $\Omega(s)$ defined as follows:

a) $\tilde{M}$ orientable, $G$ orientation preserving:

$s_{*};$ $H_{2}(F, Z)\cong Z\rightarrow H_{2}(G, Z)$ , $\Omega(s);=s_{*}(1),$ $1\in Z$ .
b) $\tilde{M}$ nonorientable:

$s_{*};$ $H_{2}(F, Z_{2})\cong Z_{2}\rightarrow H_{2}(G, Z_{2})$ , $\Omega(s)$ $:=s_{*}(-1),$ $-1\in Z_{2}=\{\pm 1\}$ .
c) $\tilde{M}$ orientable, $G$ with orientation reversing elements:

$s_{*}:$
$H_{2}(F, Z)\cong Z\rightarrow H_{2}(G, Z)$ , $\Omega(s):=s_{*}(1),$ $1\in Z$ ,

where 2 is the twisted F- resp. G-module $Z$, with the orientation reversing
elements in $F$ resp. $G$ operating by (-identity), the orientation preserving ones
trivially.

It is clear that for equivalent surjections $s_{1},$ $s_{2}$ : $F\rightarrow G$ we have $\Omega(s_{1})=\Omega(s_{2})$ .

Remarks. 1) Part a) of the theorem has also been proved by Edmonds
([E1]), by different methods. For a classification of actions of certain non-
abelian finite groups on orientable surfaces, see [E2]. It follows from [L] that
for finite nonabelian groups actions are not classified by $H_{2}$ , in general (at

least for small $g$ ).
2) In [Z1] we classified orientable 4-dimensional Seifert fiber spaces over
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orientable base-surfaces. For this we had to classify surjections $F\rightarrow K\subset SL_{2}(Z)$

(the ”structure maps” of the fibrations) from the fundamental group $F$ of an
orientable surface onto subgroups of the special linear group $SL_{2}(Z)$ , up to
equivalence. The methods of the present paper allow such a classification also
for nonorientable surface groups $F$, leading to a classification of nonorientable
4-dimensional Seifert fiber spaces (see [Z2]).

1. Proof of the theorem, part a)

Let $G=Z_{p_{1}}\oplus\cdots\oplus Z_{p_{n}},$ $p_{i}>1,$ $p_{n}|p_{n-1}\cdots|p_{1}$ ; let $x_{i}$ be a generator of $Z_{p_{\ell}}$ ,
$i=1,$ $\cdots$ $n$ .

Let $F=$ \langle $a_{1},$ $b_{1},$ $\cdots$ , $a_{g},$ $b_{g}$ lfi $[a_{\ell},$ $ b_{i}]=1\rangle$ .

1.1 Lemma. For $g\geqq n$ , each surjective homomorphism $s:F\rightarrow G$ is equivalent
to one of the following:

$(s(a_{1}), s(b_{1}))=(x_{1}, x_{2}^{m_{12}}\cdots x_{n}^{m_{1n}})$ ,

$(s(a_{2}), s(b_{2}))=(x_{2}, x_{3}^{m_{23}}\cdots x_{n}^{m_{2n}})$ ,
:. :.
$(s(a_{n}), s(b_{n}))=(x_{n}, 1)$ ,

$(s(a_{j}), s(b_{j}))=(1,1)$ for $j>n$ .
Proof. We need the following automorphisms of $F$ ; here $\overline{a}_{i}$ resp. $\overline{b}_{i}$

denotes the image of $a_{i}$ resp. $b_{i}$ , generators which don’t occur remain fixed.

1. $2a$) $[\overline{a}_{1},\overline{b}_{1}]=[a_{1}, b_{1}]$ , with
$\overline{a}_{1}=a_{1}b_{1}^{k}$ , $\overline{b}_{1}=b_{1}$ or
$\overline{a}_{1}=b_{1}$ , $\overline{b}_{1}=b_{1}a_{1}^{k}$ , $k\in Z$ .

b) $[\overline{a}_{1},\overline{b}_{1}][\overline{a}_{2},\overline{b}_{2}]=[a_{1}, b_{1}][a_{2}, b_{2}]$ , with
$\overline{a}_{1}=a_{1}a_{2}b_{2}^{-1}$ , $\overline{b}_{1}=b_{2}a_{2}^{-1}b_{1}a_{2}b_{2}^{-1}$ ,

$\overline{a}_{2}=b_{2}a_{2}^{-1}b_{1}a_{2}b_{2}^{-1}b_{1}^{-1}a_{2}b_{2}a_{2}^{-1}b_{1}^{-1}a_{2}b_{2}^{-1}$ ,
$\overline{b}_{2}=b_{2}b_{2}a_{2}^{-1}b_{1}^{-1}a_{2}b_{2}^{-1}$ ;
$s(\overline{a}_{1})=s(a_{1}a_{2}b_{2}^{-1})$ , $s(\overline{b}_{1})=s(b_{1})$ ,

$s(\overline{a}_{2})=s(a_{2}b_{1}^{-1})$ , $s(\overline{b}_{2})=s(b_{2}b_{1}^{-1})$ .
c) automorphism inverse to 1. $2b$):

$\overline{a}_{1}=a_{1}b_{1}^{-1}b_{2}a_{l}^{-1}b_{1}$ , $\overline{b}_{1}=b_{1}^{-1}a_{2}b_{2}^{-1}b_{1}b_{2}a_{2}^{-1}b_{1}$ ,

$\overline{a}_{2}=b_{1}^{-1}a_{2}b_{Z}^{-1}b_{1}b_{2}b_{1}$ , $\overline{b}_{2}=b_{2}b_{1}$ , with
$s(\overline{a}_{1})=s(a_{1}a_{2}^{-1}b_{2})$ , $s(\overline{b}_{1})=s(b_{1})$ ,
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$s(\overline{a}_{2})=s(a_{2}b_{1})$ , $s(\overline{b}_{2})=s(b_{2}b_{1})$ .
d) permutations of the commutators $[a_{\ell}, b_{i}],$ $e.g$ . for $i=1,2$ :

$a_{1}=a_{2},$ $b_{1}=b_{2}$ ,

$\overline{a}_{2}=[a_{2}, b_{2}]^{-1}a_{1}[a_{2}, b_{2}]$ , $\overline{b}_{2}=[a_{2}, b_{2}]^{-1}b_{1}[a_{2};b_{2}]$ .

We prove lemma 1.1 by induction on $n$ . We compose $s$ with automorphisms

1.2 and call the new surjection again $s$ .
The case $n=1$ is easy. Suppose the lemma is true for $n-1$ . We divide

out $Z_{p_{n}}$ and apply the induction hypothesis. Therefore we can assume that $s$

has the following form:

$(s(a_{1}), s(b_{1}))=(x_{1}x_{n}^{m_{1}}, x_{2}^{m_{12}}\cdots x_{n}^{m_{1n}})$ ,

$(s(a_{2}), s(b_{2}))=(x_{2}x_{n}^{m_{2}}, x_{3}^{m_{23}}\cdots x_{n}^{m_{2n}})$ ,
. .
$(s(a_{n}), s(b_{n}))=(x_{n}^{m_{n}}, 1)$ ,

$(s(a_{j}), s(b_{j}))=(1,1)$ for $j>n,$ $m_{i}\in Z,$ $i=1,$ $\cdots$ , $n$ .
By applying all automorphisms 1.2, we achieve $m_{n}=1$ (because $s$ is surjective),

without changing all other values $(s(a_{i}), s(b_{i}))$ (see also [Z3, Lemma 2.6]).

After a permutation of commutators, we apply the following process to
$(s(a_{1}), s(b_{1}))(s(a_{n}), s(b_{n}))$ :

$(x_{1}x_{n}^{m_{1}}, x_{2}^{m_{12}}\cdots x_{n}^{m_{1n}})(x_{n}, 1)\overline{iterationofl.2b})$

$(x_{1}, x_{2}^{m_{12}} ... x_{n}^{m_{1n}})(x_{n}x_{2}^{m_{12}^{\prime}}\cdots x_{n}^{m_{1n}^{\prime}}, x_{2}^{m_{12}^{\prime}}\cdots x_{n}^{m_{1n}^{\prime}})$ .
Now the pair $(s(a_{1}), s(b_{1}))$ is in normal form 1.1. We consider the “restriction”
of $s$ to the generators $a_{i},$

$b_{i},$ $i\geqq 2$ , with image $Z_{p_{2}}\oplus\cdots\oplus Z_{p_{n}}$ . By the induction
hypothesis we bring this restriction into normal form. Then also $s$ is in normal

form. This finishes the proof of the lemma.

Proof of part a) of the theorem.
We have $H_{2}(G, Z)=H_{2}(Z_{p_{1}}\oplus\cdots\oplus Z_{p_{n}}, Z)=Z_{p_{2}}\oplus Z_{p_{3}}^{2}\oplus\cdots\oplus Z_{p_{n-1}}^{n-2}\oplus Z_{p_{n}}^{n-1}$

(apply the K\"unneth-formula, see $e.g$ . [B], [HS] or $[McL]$ ), so there are as
many different normal forms 1.1 as elements in $H_{2}(G, Z)$ . Now for big enough

$g$ every element in $H_{2}(G, Z)$ is the image $\Omega(s)=s_{*}(1)$ of some surjection
$s:F\rightarrow G$ (represent the element by a 2-cycle in a $K(G, 1)$ which is the image

of some closed orientable surface; by adding homologically trivial handles to
the surface we can make $s$ surjective. For a purely algebraic proof see [Z3]).

It follows that $\Omega(s_{1})\neq\Omega(s_{2})$ for any two different normal forms $s_{1},$ $s_{2}$ in 1.1.
Therefore different normal forms are not equivalent and the normal forms
correspond bijectively via $\Omega$ to the elements in $H_{2}(G, Z)$ .



FINITE ABELIAN GROUP ACTIONS ON SURFACES 17

2. Proof of the theorem, part b) and c)

Let $ F=\langle v, a_{i}, b_{i}|v^{2}\prod_{i}[a_{\ell}, b_{i}]=1\rangle$ if $g$ is odd,

$ F=\langle c, d, a_{i}, b_{i}|\{c, d\}\prod_{i}[a_{\ell}, b_{\ell}]=1\rangle$ if $g$ is even,

where $\{c, d\}:=cdc^{-1}d$ .
For a surjection $s:F\rightarrow G$ , let $G_{0}\subset G$ be the image of the orientation pre-

serving elements in $F$ (a subroup of index 1 or 2; note that the generators $\nu$

and $c$ in the presentations above are orientation reversing, all other generators
are orientation preserving). Let $G_{0}=Z_{p_{1}}\oplus\cdots\oplus Z_{p_{n}},$ $p_{i}>1,$ $p_{n}|p_{n-1}|\ldots|p_{1}$ (so
$G_{0}$ is in the role of $G$ now). If $G_{0}=G$ , let $r=1$ , otherwise let $r\in G$ be a fixed
representative of the nontrivial coset of $G_{0}$ in $G$ .

2.1 Lemma. For $g\geqq 2n+4$ , each surjective homomorphism $s;F\rightarrow G$ is equi-
valent to one of the following:

$s(v)$ resp. $s(d)=arbitrary$ element of order $\leqq 2$ in $G$ resp. $G_{0}$ ,

$s(c)=r,$ $(s(a_{\ell}), s(b_{i}))=as$ in 1.1,

with $m_{\ell j}\in\{0,1\},$ $m_{ij}=0$ if 2 does not divide $p_{j},$ $i+1\leqq j\leqq n$ .

Proof. We need the following changes of generators for $F$ :
2. $2a$) $v^{2}[a, b]=v_{1}^{2}v_{2}^{2}v_{8}^{2}$ , with

$v_{1}$ $:=v^{2}abv^{-1}$ , $v_{2}$ $:=vb^{-1}a^{-1}v^{-1}a^{-1}v^{-1}$ , $v_{3}$ $;=va$ ;

2. $2b$) $v^{2}[a, b]=\overline{v}^{2}[\overline{a},\overline{b}]$ , with
$\overline{v};=a^{-1}va$ , $\overline{a}:=a^{-1}v^{-2}av^{2}a$ , $\overline{b}:=ba^{-1}v^{2}a$ ;

2. $2c$) $\{c, d\}=\{\overline{c},\overline{d}\}$ , with $\overline{c}:=cd^{k}$ , $\overline{d}:=d$ , $k\in Z$ ;

2. $2d$) $\{c, d\}[a, b]=\{\overline{c},\overline{d}\}[\overline{a},\overline{b}]$ , with
$\overline{c}:=cab^{-1}$ , $\overline{d}:=ba^{-1}dab^{-1}$ ,

$\overline{a};=ba^{-1}d^{-1}ab^{-1}daba^{-1}dab^{-1}$ , $\overline{b}:=b^{2}a^{-1}dab^{-1}$ ,

$s(\overline{c})=s(cab^{-1})$ , $s(\overline{d})=s(d)$ , $s(\overline{a})=s(ad)$ , $s(\overline{b})=s(bd)$ ;

2. $2e$) $\{c, d\}=v_{1}^{2}v_{2}^{2}$ , with $v_{1}$ $:=c$ , $v_{2}$ $;=c^{-1}d$ .
i) Suppose first that $g$ is odd.

We prove 2.1 by induction on $n$ . The case $n=1$ is easy. Suppose 2.1 is
true for $n-1$ . We divide out $Z_{p_{n}}$ . By the induction hypothesis we can assume

$s(v)=w\in G$ , $w^{2}=1$ ,

$(s(a_{\ell}), s(b_{i}))=(x_{i}x_{n}^{m_{i}}, x_{i+1}^{m_{ii+1}}\cdots x_{n}^{m_{in}})$ , $i<n$ ,

$(s(a_{n}), s(b_{n}))=(x_{n}^{m_{n}}, 1)$ ,
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$(s(a_{\ell}), s(b_{i}))=(1,1)$ , $i>n$ ,

where $m_{ij}\in\{0,1\},$ $m_{ij}=0$ if $(2, p_{f})=1,$ $i+1\leqq j<n$ (but not for $j=n$ for the
moment).

As in the proof of 1.1 we achieve $m_{n}=1$ .
We use the following process to normalize $m_{1n}$ and $(s(a_{1}), s(b_{1}))$ (together

with some permutations of commutators):

$v^{2}[a_{n}, b_{n}]\rightarrow v_{1}^{2}v_{2}^{2}v_{3}^{2}2.2a)$
with $s(v_{s})=wx_{n}$ ;

$v_{3}^{2}[a_{1}, b_{1}]\rightarrow\overline{v}_{3}^{2}[\overline{a}_{1},\overline{b}_{1}]2.2b)$
with $s(\overline{v}_{3})=s(v_{3})$ , $s(\overline{a}_{1})=s(a_{1})$ ,

$s(\overline{b}_{1})=s(b_{1}v_{3}^{2})=x_{2}^{m_{12}}\cdots x_{n}^{m_{1n}}x_{n}^{2}$ ;
$v_{1}^{2}v_{2}^{2}\overline{v}_{3^{-\neq}}^{2}\overline{v}^{2}[\overline{a}_{n},\overline{b}_{n}]$ , with $s(\overline{v})=w$ , $(s(\overline{a}_{n}), s(\overline{b}_{n}))=(x_{n}, 1)j$

inverse of 2. $2a$)

Using this we can achieve $m_{1n}\in\{0,1\},$ $m_{1n}=0$ if $(2, p_{n})=1$ . Now, using
an iteration of 1. $2b$) as in the proof of 1.1, we achieve $m_{1}=0$ . Then $(s(a_{1}), s(b_{1}))$

is in normal form 2.1.
Now we bring the commutator $[a_{1}, b_{1}]$ to the end of the defining relation

of $F$ and consider the restriction of $s$ to the subgroup generated by $v$ and
$a_{\ell},$

$b_{i},$ $i>2$ , with $Z_{p_{2}}\oplus\cdots\oplus Z_{p_{n}}$ as the new $G_{0}$ . By the induction hypothesis,
we can bring this restriction into normal form 2.1. Then also $s$ is in normal
form.

ii) Now suppose that $g$ is even.
By processes 2. $2c$), $d$) and 1. $2a$), $d$) we achieve $s(c)=r$ . If $s(a_{i}),$ $s(b_{\ell}),$ $i\geqq 1$ ,

generate a proper subgroup of $G_{0}$ , we bring $(s(a_{i}), s(b_{t})),$ $i\geqq 1$ , into orientable
normal form to get $s(a_{n+1})=s(b_{n+1})=1$ . Then we apply 2. $2d$) to $\{c, d\}[a_{n+1}, b_{n+1}]$

and get $s(a_{n+1})=s(b_{n+1})=s(d)$ . To get also $s(c^{2})$ , we apply 2. $2e$) to $\{c, d\}=v_{1}^{2}v_{2}^{2}$ ,
with $s(v_{1})=s(c),$ $s(v_{2})=s(c^{-1}d)$ , then 2. $2b$ ) to $v_{2}^{2}[a_{n+1}, b_{n+1}]$ , getting $s(v_{2})=s(c^{-1}d)$ ,
$s(a_{n+1})=s(d),$ $s(b_{n+1})=s(dc^{-2})$ (note that $s(d^{2})=1$ ) and then the inverse of 2. $2e$)

to get back $\{c, d\}$ . Therefore we can assume that $s(a_{i}),$ $s(b_{i}),$ $i>1$ , generate
$G_{0}$ . Now lemma 2.1 follows from the following

2.3 Lemma. Let $s:F\rightarrow G$ and $U$ the subgroup of $G$ generated by $s(a_{i})$ ,
$s(b_{i}),$ $i>1$ . Supp0se $U=Z_{p_{1}}\oplus\cdots\oplus Z_{p_{n}},$ $p_{n}|p_{n-1}|\ldots|p_{1}$ . Then $s$ can be brought
into normal form 2.1 by automorphjsms of $F$ which don’t change the values $s(c)$ ,
$s(d)$ and the subgroup generated by $s(a_{i}),$ $s(b_{\ell}),$ $i\geqq 1$ .

Proof. We proceed as in case i) by induction on $n$ , the case $n=1$ being
clear. In the induction step, we again divide out $Z_{p_{n}}$ and bring $s$ into the form

$s(c)=somer,$ $s(d)=somew$ with $w^{2}=1$ ,
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$(s(a_{i}), s(b_{i}))$ : as in the proof of part i).

We normalize $(s(a_{1}), s(b_{1}))$ by the following process:

$\{c, d\}\rightarrow\overline{v}^{2}v^{2}2.2e)$ with $s(\overline{v})=r$ , $s(v)=r^{-1}w$ ;

$v^{2}[a_{n}, b_{n}]\rightarrow v_{1}^{2}v_{2}^{2}v_{3}^{2}2.2a)$ with $s(v_{3})=r^{-1}wx_{n}$ ;

$v_{S}^{2}[a_{1}, b_{1}]\rightarrow\overline{v}_{3}^{2}[\overline{a}_{1}2.2b)\overline{b}_{1}]$
, with $s(\overline{v}_{3})=s(v_{3})$ , $s(\overline{a}_{1})=s(a_{1})$ ,

$s(\overline{b}_{1})=x_{2}^{m_{12}}\cdots x_{n}^{m_{1n}}r^{-2}x_{n}^{2}$ ;

$\overline{v}^{2}[\overline{a}_{1},\overline{b}_{1}]\rightarrow v^{2}=[a_{1}2.2b)=b_{1}]=$ , with $s(=v)=s(\overline{v})$ , $s(a_{1}=)=s(a_{1})$ ,

$s(b_{1})=x_{2}^{m_{12}}\cdots x_{n}^{m_{1n}}x_{n}^{2}$ ;
$=$

Use this to normalize $m_{1n}$ , then apply the inverse of 2. $2a$ ) and 2. $2e$) to get back
$\{c, d\}$ . Then apply 1. $2b$ ) to get $m_{1}=1$ . Note that we also used some permut-
ations between the parts of the defining relation of $F$, and that the values
$s(c),$ $s(d)$ and the subgroup $U$ are not changed by the above processes. Now
we bring the commutator $[a_{1}, b_{1}]$ to the end of the defining relation and con-
sider the restriction of $s$ to the generators $c,$ $d,$ $a_{\ell},$ $b_{i},$ $i\geqq 2$ , with $s(\langle a_{\ell}, b_{i}, i\geqq 2\rangle)$

$=Z_{p_{2}}\oplus\cdots\oplus Z_{p_{n}}$ . By the induction hypothesis, we can bring $s$ into normal
form. This finishes the proof of lemma 2.3 and also of lemma 2.1.

Proof of part b) of the theorem.
Note that here we are interested in actions on nonorientable surfaces, so

the kernel of the corresponding $s;F\rightarrow>G$ contains orientation reversing elements.
Therefore we have $G=G_{0}=Z_{p_{1}}\oplus\cdots\oplus Z_{p_{n}}$ . Now $ H_{2}(G, Z_{2})\cong H_{2}(G, Z)\otimes Z_{2}\oplus$

$Tor(H_{1}(G, Z),$ $Z_{2}$ ) $\cong(Z_{p_{2}}\oplus Z_{p_{3}}^{2}\oplus\cdots\oplus Z_{p_{n}}^{n-1})\otimes Z_{2}\oplus Tor(G, Z_{2})$ . The elements of
$Tor(G, Z_{2})$ correspond bijectively to the elements of $order\leqq 2$ in $G$ . It follows
that the different normal forms 2.1 are in bijective correspondence to the
elements in $H_{2}(G, Z_{2})$ , which proves part b) of the theorem (note that each
element in $H_{2}(G, Z_{2})$ is the image in a $K(G, 1)$ of a nonorientable surface of
odd and also of even genus because we can always add a projective plane
which is mapped trivially).

Proof of part c) of the theorem.
Now the kernel of $s;F-\mapsto G$ contains no orientation reversing element, so

$G_{0}$ is a subgroup of index 2 in $G$ . For $g$ even, the possible $s(d)s$ in the normal
form 2.1 are in bijective correspondence to the elements of $order\leqq 2$ in $G_{0}$ .
For $g$ odd, $s(v)$ has order 2 and $s(v)\not\in G_{0}$ , so there is no surjection $s:F\rightarrow G$ if
$G\not\equiv G_{0}\oplus Z_{2}$ ; if $G\cong G_{0}\oplus Z_{2}$ , the possible $s(v)s$ are in bijective correspondence to
the elements of $order\leqq 2$ in $G_{0}$ . For a moment we discuss the case $G=Z_{2}=$
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$\langle x|x^{2}=1\rangle,$ $G_{0}=1$ . For $g$ odd we have only one normal form 2.1, namely

$s(v)=x,$ $s(a_{i})=s(b_{i})=1$ , and for this $\Omega(s)\in H_{2}(Z_{2},\tilde{Z})\cong Z_{2}$ is nontrivial because

a nonorientable surface of odd genus does not bound. For $g$ even we have

also one normal form $s(c)=x,$ $s(d)=1,$ $s(a_{i})=s(b_{i})=1$ , with $\Omega(s)$ representing

the trivial element in $H_{2}(Z_{2}, Z)$ . It follows similarly that $\Omega(s_{1})\neq\Omega(s_{2})$ , where
$s_{1}$ : $F\rightarrow G$ is a surjection from a surface group of odd genus, $s_{2}$ a surjection

from a surface group of even genus (in the situation of part c) of the theorem),

$e.g$ . by dividing out $G_{0}$ . Now we compute $H_{2}(G, Z)$ for a general $G$ , using

the Lyndon-Hochschild-Serre spectral sequence for the group extension
$1\rightarrow G{}_{0}C,G\rightarrow Z_{2}\rightarrow 1$ (see [B], [HS] or $[McL]$ ). The $E^{2}$-terms of the spectral

sequence are as follows:

$E_{0.2}^{2}\cong H_{0}(Z_{2}, H_{2}(G_{0},\tilde{Z}))=H_{0}(Z_{2}, Z_{p_{2}}\oplus Z_{p_{3}}^{2}\oplus\cdots\oplus Z_{p_{n}}^{n-1})$

$\cong(Z_{p_{2}}\oplus\cdots\oplus Z_{p_{n}}^{n-1})\otimes Z_{2}$ ,

because the nontrivial element of $Z_{2}$ operates by (-identity). Note that the
elements of $E_{0}^{2}.$ ’ are in bijective correspondence to the possible values $m_{\ell.j}$ in

the normal forms 2.1.
$E_{1.1}^{2}\cong H_{1}(Z_{2}, H_{1}(G_{0}, Z))\cong H_{1}(Z_{2}, G_{0})\cong G_{0}\otimes Z_{2}$ ,

because the nontrivial element in $Z_{2}$ operates by (-identity); the elements of
$E_{1,1}^{2}$ are in bijective correspondence to the elements of $order\leqq 2$ in $G_{0}$ .

$E_{2.0}^{2}\cong H_{2}(Z_{2}, H_{0}(G, Z))\cong H_{2}(Z_{2}, Z)\cong Z_{2}$ .

It is easy to check (using induction on $n$ for example), that all differentials
entering or leaving $E_{0.2}^{2}$ and $E_{1.1}^{2}$ are trivial. If $G\not\equiv G_{0}\oplus Z_{2}$ , the elements of
$E_{0.2}^{2}\cup E_{1.1}^{2}$ are in bijective correspondence to the different normal forms 2.1
(for $g$ even, no normal form for $g$ odd). As we cannot have more elements
in $H_{2}(G, Z)$ than normal forms, the normal forms correspond bijectively to the
elements in $H_{2}(G, Z)$ (and $E_{0.2}^{2}$ gives no contribution to $H_{2}(G,$ $Z)$). If
$G\cong G_{0}\oplus Z_{2}$ , we have the same number of normal forms in the cases $g$ odd and
$g$ even, corresponding to the elements in $E_{0.2}^{2}\cup E_{1.1}^{2}$ in each case, so the normal
forms in each case are all nonequivalent (or divide out $Z_{2}\subset G$ and use the
classification in case b) of the theorem). As the cases $g$ odd and $g$ even also
give different values in $H_{2}(G,\tilde{Z})$ , the number of different normal forms in
each case is half the order of $H_{2}(G, Z)$ (and the differential leaving $E_{2.0}^{2}$ is
also trivial, so $E_{2.0}^{2}$ gives a contribution to $H_{2}(G, Z)$ ; for another computation
of $H_{2}(G,\tilde{Z})$ see the following remark).

This finishes the proof of part c) of the theorem.

Remark. To compute $H_{2}(G, Z)$ , one can also use the exact coefficient
sequence $1\rightarrow 2_{l}\rightarrow Z\rightarrow Z_{2}\rightarrow 1$ , from which one gets the long exact sequence
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$ H,(G, \ell)\rightarrow H_{f}(G, Z)\rightarrow H_{g}(G, Z_{g})\rightarrow H_{1}(G, p)\rightarrow H_{1}(G, Z)\rightarrow$

$\lambda_{o}^{2}\nearrow$ $\backslash _{0}2\nearrow$

$H_{1}(G, Z_{\epsilon})\rightarrow H_{0}(G, p)\rightarrow H_{0}(G, \ell)\rightarrow H_{0}(G, Z_{a})\rightarrow 0$ .
$Z_{\epsilon}||l\lambda_{o}^{2}\nearrow Z_{g}||l$

$Z_{l}||l$

It follows $|H_{2}(G, Z_{2})|=|H_{2}(G, Z)|\cdot|H_{1}(G,\tilde{Z})|$ ,

$|H_{1}(G, Z_{2})|=2|H_{1}(G, Z)|=2|H_{1}(G, 2)|$ , so
$|H_{2}(G, Z)|=2|H_{2}(G, Z_{2})|/|H_{1}(G, Z_{2})|$ .

Problem. 1) Show that for finite nonabelian groups $G$ actions of $G$ on
surfaces of high genus ( $i.e$ . in a “stable” range) are not classified by $H_{2}$ , in
general; for low genus this follows from [L] (see also [E2]).

2) Is it true that a surjection $F\rightarrow G,$ $G$ a fixed finite group, has always a
nontrivial simple closed curve in its kernel, for high genus of $F$ ?
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