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Abstract. In this paper, the relations between the notions of “wave move”

[HOJ and “frame” are investigated.

A genus three frame of S® is produced, giving a counterexample to a
conjecture of [T]; on the contrary, the conjecture is proved to be true in
genus two.

1. Introduction and notations.

In Tsukui introduces a special class of edge-coloured graphs, called
frames, which represent, via a standard construction, closed 3-manifolds and
conjectures the non-existence of frames for the 3-sphere S°.

In the present paper, we relate the notion of frame with wave theory on
the bridge-presentation of links. This kind of relations appear as a useful tool
for the study of Tsukui’s conjecture. In particular, we prove that there are no
genus g<2 frame for S®, while we produce counterexamples to the conjecture
for the genus three and four.

Throughout this paper, all spaces and maps are piecewise-linear (P.L.) in
the sense of or [RS]. Manifolds are always assumed to be closed, con-
ected and orientable.

For basic graph theory, we refer to [H].

An edge-coloration on a muligraph I'=V(I"), EI")) is a map 7: E(I" )~
A,={0, 1, -, n} such that 7(e)#7(f) for each pair e, f of adjacent edges. The
pair (I, 7), where I' denotes a regular multigraph of degree n+1 and 7: E(I")
—A, is an edge-coloration, is said to be an (n+1)-coloured graph. 1f I' has no
multiple edge (i.e. if I is a graph), (I', 7) is said to be simple. Given two
(n+1)-coloured graphs (I”, 7) and (I, v’) with colour set C and C’ respectively,
an isomorphism ¥: I'-I" is called a colour-isomorphism iff there exists a
bijection @:C—C’ such that y’-¥=@.y. For each FESA,, we set [g=
(V({I™), r"Y(F)); each connected component of I's is often called an G -residue.
An m-residue is an F-residue such that the cardinality of & is m. For each

* Work performed under the auspicies of the G.N.S.A.G.A. of the C.N.R. (National
Research Council of Italy) and financially supported by M.P.1. (project “Geometria delle
Varieta’ Differenziabili”).



2 M.R. CASALI AND L. GRASSELLI

colour ;€4A,, we set i=A,—{i}.

A c-coloured edge of an (n-+1)-coloured graph (I7, r) is said to be {7, j}-
diagonal (i, j#c) if its end-points belong to the same {7, j}-residue; an edge is
called diagonal if it is {7, j}-diagonal for some i, j.

Two ball complexes B, and B, are said to be isomorphic if there is a
bijection f: B,—B, preserving the face-incidence relation. A pseudocomtlex
is a ball complex in which each h-ball, considered with all its faces, is
isomorphic with the complex underlying an h-simplex. As shown in [FGG],
every (n+1)-coloured graph (I, r) represents an n-dimensional pseudocomplex
K(I'); moreover, K(I") is a pseudomanifold [STJ, which is orientable iff I" is
bipartite.

An (n+1)-coloured graph (I, 1) is contracted if I'; is connected, for each
¢€EA,; the geometrical interpretation of this property is that the associated
pseudocomplex K(/I') has exactly n-+1 vertices. A crystallization of an n-
manifold M is any contracted (n+1)-coloured graph representing M; every n-
manifold admits a crystallization [P].

A 2-cell embedding a: I'-F of an (n+1)-coloured graph (I, 7) into a
closed surface F is said to be regular iff there is a cyclic permutation e=
(&1, €3, -+, €,) of A, such that each region of a is bounded by the image of a
cycle whose edges are alternatively coloured by e, 4, (/ being an integer
mod.(n+1)). Given a bipartite (n-+1)-coloured graph (I, 7), its (regular) genus
g(I') is the smallest integer 2 such that (I, 7) regularly embeds into the
orientable closed surface of genus 2. The regular genus of an n-manifold M
is the non-negative integer g(M)=min{g(I")/(I", 1) is a crystallization of M}.
If h(M) denotes the Heegaard genus of a 3-manifold, then A(M)=g(M) ([GD.
For a survey on crystallization theory, see [FGG].

For each natural number », let us call the r-bridge presentation of the
trivial knot the 2r-gonal if its projection has no crossing.

Let L=(B,, -+, B,; by, ---, b,) be an r-bridge presentation of a link .C,
where B, are the bridges and b; are the arcs (or underbridges). Let = be the
plane containing all arcs b; and let P be the projection of L on . The pro-
jection of the bridge B; is denoted by P;.

The projection P of a link £ is said to be reduced if it has no cancelling
region (that is, a region bounded by only two edges) and each bridge (resp.
arc) of L has at least one undercrossing (resp. overcrossing).

A wave in L is a path w in 7= such that:

—wNP=0wN A;, A; being a suitable P; or a suitable b;;

—if B denotes the subpath of A; bounded by dw, the interior of B; must
contain at least one crossing of P.

The corresponding wave move is the replacement of A; with (4;—B,;)Uw which

leads to the projection P’ of a new r-bridge presentation L’ of .£ having a



WAVE MOVES ON CRYSTALLIZATIONS 3

fewer number of crossings than P.

Proposition 1 [HO]. Every 3-bridge presentation of the trivial knot can be
transformed into the hexagonal one by a finite sequence of wave moves. [ |

Since the presence of a wave w can be established by checking if the same
P; (or the same b,) appears twice in the boundary of each region of P and
since a wave move strictly decreases the number of crossings, Homma-Ochiai
result leads to an algorithm for recognizing the triviality of a knot from the
projection of a 3-bridge presentation of it.

Wave moves are also defined for Heegaard diagrams; the relations between
the two wave theories are investigated in [NOJ.

2. Frames and wave moves.

If 7,7, k are distinct colours in A,, the pair (7, {j, k}) is briefly denoted by
(57, k); let 2 be the set of all these pairs.

Definition 1. A 4-coloured graph (I, 7) is said to be (¢; 7, k)-irreducible,
(#Z;7, )R, if any {7, j}-residue and {7, k}-residue meet at most in one i-
coloured edge.

Definition 2. A simple crystallization (I, 7) of a 3-manifold M is said to
be a frame of M if it is (i; j, k)-irreducible, for each (i;j, k)= f.

Note that the only non-simple crystallization which is (¢; j, k)-irreducible
for each (7; j, k)R is the standard genus zero crystallization of S* with two
vertices and four multiple edges.

The idea of wave move on the projection of a link .£ is strictly related to
the notion of frame for the 3-manifold M which is the 2-fold covering space
of S*® branched over .£, via the following construction [F1.

If L=(B,, - B,; by, -+, b,) is an r-bridge presentation of a link ., let =
denote the plane containing all arcs b; and let P be the projection of L on =.
P can always be assumed to be connected; this is immediate if L is not split-
table. If L splits, we can isotope arcs of L on = to pass “in and out” under
bridges of different components. Let E; G€N,={1, ---, r}) be an ellipse in =
whose principal axis is the projection P; of the bridge B, and such that E;

intersects each arc of P at most in one point; set V=i€\g (E:NL).
r

V subdivides LNx into edges: let C (resp. D) be the set of these edges
which are internal (resp. external) to the ellipsis. Let a be the involution on
V which exchanges the end-points of the edges in C and fixes the points of
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U (E:N\B,); let & be the involution on V which exchanges the end-points of

iEN,

the edges in D. Note that V subdivides the ellipsis into a set F' consisting of
an even number of edges. Colour all the edges in D by 2 and colour all the
edges in E, alternatively by 0 and 1, starting from an arbitrary vertex.
Complete the coloration of F by 0 and 1 so that each region of the planar 2-
cell embedding of FUD is bounded by edges alternatively coloured by two
colours (note that the edges of the regions not bounded by E,, ---, E, alter-
natively belong to F and D). Join by a 3-coloured edge any pair of vertices
in V exchanged by the involution ada and let D’ be the set of these edges.

If I" is the graph defined by V(I")=V, E(I')=DUD"UF and 7 is the edge-
coloration defined above, then F(L)=(I",7) is a crystallization of the 2-fold
covering space of S*® branched over .L.

Since the involution @ may be thought of as the symmetry in z whose
axis contains the projections P; and which exchanges colour 0 (resp. 2) with
colour 1 (resp. 3) in F(L), it seems natural to call F(L) 2-symmetric.

Definition 3. If L’ is obtained from L by a wave move, the crystallization
F(L’) is also said to be obtained from F(L) by a wave move.

Note that F(L’) has strictly fewer vertices than F(L).

Proposition 2. Let P be the projection of a bridge-presentation L of a link.

(a) Each cancelling region in P gives rise to an {i,, i,}-residue and an {i,, is}-
-residue in F(L), both of length two, where (io, i,) (resp. (is, 15)) is a suitable
permutation on {0, 1} (resp. {2, 3}), and viceversa.

(b) Each bridge (resp. arc) with no under-crossing (resp. overcrossing) gives
rise to a {0, 1}-residue (resp. {2, 3}-residue) of length two in F(L), and viceversa.

(¢c) If P is reduced, then P admits no wave iff F(L) is (0;1, 2)-, (1;0, 2)-,
(2;0, 3)- and (2; 1, 3)-irreducible.

In order to prove the previous result, we need the following notations:

Given a bridge-presentation L of a link and the projection P of L on a
plane =, let m, (resp. =_) be the upper (resp. lower) half-space of = whose
generatrix is the symmetry axis containing all bridge-projections of L.

If B is a region of P, let S be a connected component of the intersection
(supposed non-void) of B with a bridge-projection P,. Let x be any end-point
of the edge S and U(x, p) the disk centered at x of radius p.

We call intersection index between B and S the symbol &(B, S)e{+, —}
defined in the following way:

‘ (B, S) { + if there exists >0 such that BNU(x, p)C7x,;
s ’ =
— ” BmU(x, p)Cﬂ'-.
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Proof of Proposition 2. (a) and (b) are direct consequences of Ferri’s
construction.

(c1) Suppose that P admits a wave.

First, assume that there is a wave on a bridge, that is a bridge projection
P; intersects a region B of P at least in two connected components S and T.
Let S.Crny, S_.Cr_ (resp. T.Cr,, T_Cr_) be the edges belonging to the {0,, 1}-
residue C; of F(L) arising from S (resp. T) by means of Ferri’s construction.

Let ¢ be the one-to-one correspondence between the set of all regions of P .
and the set of all {0,2}- and {1, 2}-residues in F(L);. Then ¢(B) contains
Ses. 5y, Te,my- Note that the edges Secs sy, Tecs.ry have the same colour ¢
(ce{0, 1}); thus, the {0, 1}-residue C, and the {c, 2}-residue ¢)(B) meet at least
the two c-coloured edges S.z. sy, Tes.ry and F(L) is (c; ¢’, 2)-reducible, with
{¢, ¢'}={0, 1}.

Assume now that there is a wave on an arc, that is, an arc b; intersects a
region B of P at least in two connected components S, T. Let ¢ be the one-
to-one correspondence between the arcs of P and the {2, 3}-residues of F(L).
The edge S (resp. T) gives rise to the 2-coloured edge S, (resp. T,) belonging
to the {2, 3}-residue ¢(b,)in F(L). Moreover, ¢(B)isa {c, 2}-residue (c€{0, 1})
containing S, and T,; thus, the {2, 3}-residue @(b;) and the {c, 2}-residue ¢(B)
meet at least the two 2-coloured edges S,, T, and F(L) is (2; ¢, 3)-reducible,
with c={0, 1}.

(c2) Suppose now P reduced.

Assume that there is a {0, 1}-residue C; and a {c, 2}-residue R (c<{0, 1})
in F(L) meeting at least two c-coloured edges @, 7. In this situation, the region
¢~}(R) intersects the projection P; at least in two (disjoint) edges obtained by
orthogonally projecting ¢ and = over P; in x.

Finally, the existence of a {2, 3}-residue Q and a {c, 2}-residue R (c{0, 1})
meeting at least two 2-coloured edges ¢ and t implies that the arc ¢ %(Q)
intersects the region ¢ '(R) at least in two (disjoint) edges of P respectively
containing ¢ and 7. |

Remark. If & denotes the permutation of A; exchanging colour 0 with 1
and colour 2 with 3, then the (7;j, k)-irreducibility is equivalent to the
(a(2); a(7), a(k))-irreducibility. [ ]

This immediately follows from the 2-symmetry of F(L) induced by the
involution a. ' ‘

Note that, if a crystallization (I, 7) contains a 2-residue of length two,
then (I, 7) is not simple; hence, it can not be a frame. Thus, Prop. 2 yields
a necessary condition on L for F(L) to be a frame. ‘
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Corollary 3. If a 2-symmetric crystallization F(L) is a frame, then the
projection P of L is reduced and admits no wave. [ |

Actually, Prop. 2 and the related remark prove that, if the projection P is
reduced and admits no wave, it suffices to test the (2; 0, 1)- (or its symmetric
(351, 0)-) irreducibility and the (0; 2, 3)- (or its symmetric (1; 3, 2)-) irreduci-
bility for proving that F(L) is a frame. Nevertheless, the converse of
3 is false since it is possible to find (simple) 2-symmetric crystallizations F(L)
which are (2;0, 1)-reducible and/or (0; 2, 3)-reducible and such that the pro-
jection P of L is reduced and admits no wave (see, for example, Fig. la, 1b).

In [T], the following conjecture is stated :

Conjecture [T]. S*® admits no frame.

implies that possible counterexamples to Tsukui’s conjecture
may be found among 2-symmetric crystallizations F(L), for some bridge-present-
ation L of the trivial knot whose projection P is reduced and admits no wave.
For such an F(L) it suffices to check (2; 0, 1)-irreducibility and (0; 2, 3)-
irreducibility.

Fig. 2a represents the projection P of a 4-bridge presentation I of the
trivial knot; this projection, firstly given in [M], is reduced and admits no
wave. If F(L) is the 2-symmetric crystallization obtained as the result of
Ferri’s construction applied to L (Fig. 2b), it is easy to prove that F(L) is
both (2; 0, 1)-irreducible and (0; 2, 3)--irreducible. Hence, we have:

Proposition 4. F(L) is a genus three frame of S°. n

Remark. If L is the 5-bridge-presentation of the trivial knot given in [O],

the genus four crystallization F(f) is a counterexample to Tsukui’s conjecture,
too.

Nevertheless, Tsukui’s conjecture is true in genus g<2, as we will prove
in the next section.

3. The genus two case.

From now on, we restrict our attention to genus two 3-manifolds.
First, we recall the possibility of representing these 3-manifolds by means
of 2-symmetric crystallizations.

Proposition 5 [CG]V. If (I, 1) is a simple genus two crystallization of a 3-
manifold with no diagonal edge, then there exists a 3-bridge presentation L of a



WAVE MOVES ON CRYSTALLIZATIONS 7

link such that the 2-symmetric crystallization F(L) is colour-isomorphic to (I, .
|

In order to prove that Tsukui’s conjecture is true in genus g=<2, we need
the following straightforward lemma :

Lemma 6. If (I',r) is a simple crystallization which contains an 1, 5)-
diagonal k-coloured edge, then (I, 1) is (i; j, k)-reducible. [ |

Propositioh 7. S® admits no genus two frame.

Proof. It is well known that there are no simple genus zero crystallization
(of S®), while the only simple genus one crystallizations are the “normal”
crystallizations of the lens spaces L(p, ¢), p>1 [DG]. Thus, if g=0 or g= 1
the result is straightforward.

Let (I, 7) be a genus two frame of S°; ensures that (I”, 7) has
no diagonal edge. Thus, Prop. 5 gives (I, y)=F(L) for a suitable 3-bridge
presentation L of the trivial knot.

implies that the projection P of L is reduced and admits no
wave; this contradicts the fact that the only 3-bridge projection of the trivial
knot without waves is the hexagonal one (which is not reduced). n

We point out that Homma-Ochiai algorithm leads to an algorithm for
recognizing if a given genus two crystallization (I”, 7) represents S°® or not.
We now show that, for r-bridge presentations, »=<3, the converse of

holds, too.

The following lemmas are straightforward.

Lemma 8. If the projection P of a 3-bridge presentation L of a link is
reduced and admits no wave, then P is of “triangular type” [N]. [}

Lemma 9. Let L be a 3-bridge presentation of a link such that its projection
is of triangular type. If c={0, 1} and c'{2, 3}, then every {c, c¢'}-residue of
the 2-symmetric crystallization F(L) has length <6. [ |

Proposition 10. If the projection P of an r-bridge presentation L of a link
(r=3) is reduced and admits no wave, then F(L) is a frame.

Proof. If r<2, the only r-bridge presentations L whose projections P are
reduced and admit no wave, are the Schubert’s normal form K(p, ¢) of a 2-
bridge knot; since F(K(p, ¢)) is the “normal” crystallization of L(p, ¢), the
result is true for r<2.
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Assume r=3; since P is reduced, Prop. 2 (cases (a), (b)) proves that F(L)
is simple. By Prop. 2 (case (¢)), we only have to prove the (2;0, 1)- and
(0; 2, 3)-irreducibility of F(L). Lemmas 8 and 9 prove that, if ¢c={0, 1} and
c’'€e1{2, 3}, every {c, ¢’}- residue of F(L) has length <6.

Suppose F(L) is (2; 0, 1)-reducible: let o, T be two 2-coloured edges belong-
ing both to the same {0, 2}-residue R and to the same {1, 2}-residue S. Since
R has length =<6, ¢ and 7 respectively have at least one end-point (¢(0) and
7(0), say) which are adjacent on the same {0, 1}-residue C; if ¢’ (resp. ')
denotes the 1-coloured edge adjacent to ¢ (resp. 7) in a(0) (resp. 7(0)), ¢’ and
7’ must be distinct edges, otherwise C would be a {0, 1}-residue of length two
(and F(L) would not be simple). Moreover, ¢’ and 7’ belong both to C and
to S. Hence, F(L) is also (1; 0, 2)-reducible, against the hypothesis that P
admits no wave (Prop. 2, case (c)).

Suppose F(L) is (0; 2, 3)-reducible: let g, = be two 0-coloured edges belong-
ing both to the same {0, 3}-residue R and to the same {0, 2}-residue S. Since
R has length <6, ¢ has at least one end-point (¢(0), say) which is adjacent to
one end-point of 7 (z(0), say); if ¢’ (resp. 7’) denotes the 2-coloured edge
adjacent to o (resp. ) in 0(0) (resp. 7(0)), ¢’ and 7z’ must be distinct edges,
otherwise F(L) would contain a {2, 3}-residue of length two (and F(L) would
not be simple). Moreover, ¢’ and 7’ belong both to S and to the {2, 3}-residue
containing ¢(0) and 7(0). Hence, F(L) is also (2;0, 3)-reducible, against the
hypothesis that P admits no wave (Prop. 2, case (c)).
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Fig. 1la.

Fig. 1b.
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Fig. 2a.

Fig. 2b.
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