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Abstract. In this paper, the relations between the notions of “wave move“
[HO] and ”frame” [T] are investigated.

A genus three frame of $S^{3}$ is produced, giving a counterexample to a
conjecture of [T] ; on the contrary, the conjecture is proved to be true in
genus two.

1. Introduction and notations.

In [T] Tsukui introduces a special class of edge-coloured graphs, called
frames, which represent, via a standard construction, closed 3-manifolds and
conjectures the non-existence of frames for the 3-sphere $S^{s}$ .

In the present paper, we relate the notion of frame with wave theory on
the bridge-presentation of links. This kind of relations appear as a useful tool
for the study of Tsukui’s conjecture. In particular, we prove that there are no
genus $g\leqq 2$ frame for $S^{3}$ , while we produce counterexamples to the conjecture
for the genus three and four.

Throughout this paper, all spaces and maps are piecewise-linear (P. L.) in
the sense of [G1] or [RS]. Manifolds are always assumed to be closed, con-
ected and orientable.

For basic graph theory, we refer to [H].

An edge-coloration on a muligraph $\Gamma=(V(\Gamma$ ], $ E(\Gamma$ ]] is a map $\gamma:E(\Gamma$ ] $\rightarrow$

$\Delta_{n}=\{0,1, \cdots , n\}$ such that $\gamma(e$ ] $\neq\gamma(f$ ] for each pair $e,$ $f$ of adjacent edges. The
pair $(\Gamma, \gamma$ ], where $\Gamma$ denotes a regular multigraph of degree $n+1$ and $\gamma:E(\Gamma)$

$\rightarrow\Delta_{n}$ is an edge-coloration, is said to be an ( $n+1$ ]-coloured graph. If $\Gamma$ has no
multiple edge ( $i.e$ . if $\Gamma$ is a graph), $(\Gamma, \gamma$ ] is said to be simple. Given two
( $n+1$ ]-coloured graphs $(\Gamma, \gamma$ ] and $(\Gamma^{\prime}, \gamma^{\prime}$ ] with colour set $C$ and $C^{\prime}$ respectively,
an isomorphism $\Psi:\Gamma\rightarrow\Gamma^{\prime}$ is called a colour-isomorphism iff there exists a
bijection $\Phi:C\rightarrow C^{\prime}$ such that $\gamma^{\prime_{\circ}}\Psi=\Phi\circ\gamma$ . For each $\mathcal{F}\subseteqq\Delta_{n}$ , we set $r_{g}=$

$(V(\Gamma], \gamma^{-1}(\mathcal{F}$ ]]; each connected component of $\Gamma_{\mathcal{F}}$ is often called an $\mathcal{F}$ -residue.
An m-residue is an $\mathcal{F}$ -residue such that the cardinality of 9 is $m$ . For each
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colour $i\in\Delta_{n}$ , we set $i=\Delta_{n}-\wedge\{i\}$ .
A c-coloured edge of an ( $n+1$ ]-coloured graph $(\Gamma, \gamma$ ] is said to be $\{i, j\}-$

diagonal $(i, j\neq c$ ] if its end-points belong to the same $\{i, j\}$ -residue; an ed $ge$ is
called diagonal if it is $\{i, j\}$ -diagonal for some $i,$ $j$ .

Two ball complexes $B_{1}$ and $B_{2}$ are said to be isomorphic if there is a
bijection $f:B_{1}\rightarrow B_{2}$ preserving the face-incidence relation. A Pseudocomtlex
[HW] is a ball complex in which each h-ball, considered with all its faces, is
isomorphic with the complex underlying an h-simplex. As shown in [FGG],
every ( $n+1$ ]-coloured graph ( $\Gamma$ . $\gamma$ ] represents an n-dimensional pseudocomplex
$ K(\Gamma$ ]; moreover, $ K(\Gamma$ ] is a pseudomanifold [ST], which is orientable iff $\Gamma$ is
bipartite.

An ( $n+1$ ]-coloured graph $(\Gamma, \gamma$ ] is contracted if $\Gamma_{\hat{c}}$ is connected, for each
$c\in\Delta_{n}$ ; the geometrical interpretation of this property is that the associated
pseudocomplex $ K(\Gamma$ ] has exactly $n+1$ vertices. A crystallization of an n-
manifold $M$ is any contracted ( $n+1$ ]-coloured graph representing $M$ ; every n-
manifold admits a crystallization [P].

A 2-cell embedding [W] $\alpha:\Gamma\rightarrow F$ of an ( $n+1$ ]-coloured graph $(\Gamma, \gamma$ ] into a
closed surface $F$ is said to be regular iff there is a cyclic permutation $\epsilon=$

\langle $\epsilon_{1},$ $\epsilon_{2},$
$\cdots$ , $\epsilon_{n}$ ] of $\Delta_{n}$ such tbat each region of $\alpha$ is bounded by the image of a

cycle whose edges are alternatively coloured by $\epsilon_{\ell},$
$\epsilon_{\ell+1}(i$ being an integer

$mod.(n+1$ ]]. Given a bipartite ( $n+1$ ]-coloured graph $(\Gamma, \gamma$ ], its (regular) genus
$ g(\Gamma$ ] is the smallest integer le such that $(\Gamma, \gamma$ ] regularly embeds into the
orientable closed surface of genus $k$ . The regular genus of an n-manifold $M$

is the non-negative integer $g(M$ ] $=\min$ { $g(\Gamma]/(\Gamma,$ $\gamma]$ is a crystallization of $M$ }.
If $h(M$ ] denotes the Heegaard genus of a 3-manifold, then $h(M$ ]$=g(M$ ] ([G]).
For a survey on crystallization theory, see [FGG].

For each natural number $r$ , let us call the r-bridge presentation of the
trivial knot the $2r$-gonal if its projection has no crossing.

Let $L=(B_{1},$ $\cdots$ , $B_{r}$ ; $b_{1},$ $\cdots$ , $b_{r}$ ] be an r-bridge presentation of a link $X$ ,
where $B_{\ell}$ are the bridges and $b_{\ell}$ are the arcs (or underbridges). Let $\pi$ be the
plane containing all arcs $b_{i}$ and let $P$ be the projection of $L$ on $\pi$ . The pro-
jection of the bridge $B_{i}$ is denoted by $P_{i}$ .

The projection $P$ of a link $X$ is said to be reduced if it has no cancelling
region (that is, a region bounded by only two edges) and each bridge (resp.
arc) of $L$ has at least one undercrossing (resp. overcrossing).

A wave in $L$ is a path $\omega$ in $\pi$ such that:
$-\omega\cap P=\partial\omega\cap A_{i},$ $A_{i}$ being a suitable $P_{i}$ or a suitable $b_{i}$ ;
–if $\beta_{\ell}$ denotes the subpath of $A_{i}$ bounded by $\partial\omega$ , the interior of $\beta_{i}$ must

contain at least one crossing of $P$.
The corresponding wave move is the replacement of $A_{i}$ with ( $A_{i}$– $\beta_{i}$ ] $\cup\omega$ which
leads to the projection $P^{\prime}$ of a new r-bridge presentation $L^{\prime}$ of $X$ having a
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fewer number of crossings than $P$.

Proposition 1 [HO]. Every 3-bridge Presentation of the trivial knot can be
transformed into the hexagonal one by a finite sequence of wave moves. $\blacksquare$

Since the presence of a wave $\omega$ can be established by checking if the same
$P_{i}$ (or the same $b_{\ell}$ ] appears twice in the boundary of each region of $P$ and
since a wave move strictly decreases the number of crossings, Homma-Ochiai
result leads to an algorithm for recognizing the triviality of a knot from the
projection of a 3-bridge presentation of it.

Wave moves are also defined for Heegaard diagrams; the relations between
the two wave theories are investigated in [NO].

2. Frames and wave moves.
If $i,$ $j,$ $k$ are distinct colours in $\Delta_{3}$ , the pair ( $i,$ $\{J, k\}$ ] is briefly denoted by

$(i;j, k]$ ; let $\Omega$ be the set of all these pairs.

Definition 1. A 4-coloured graph $(\Gamma, \gamma$ ] is said to be $(i;j, k$ ]-irreducible,
$(i;j, k]\in\Omega$ , if any $\{i, j\}$ -residue and $\{i, k\}$ -residue meet at most in one i-
coloured edge.

Definition 2. A simple crystallization $(\Gamma, \gamma$ ] of a 3-manifold $M$ is said to
be a frame of $M$ if it is $(i;j, k$ ]-irreducible, for each $(i;j, k$ ] $\in\Omega$ .

Note that the only non-simple crystallization which is $(i;j, k$ ]-irreducible
for each $(i;j, k$ ] $\in\Omega$ is the standard genus zero crystallization of $S^{3}$ with two
vertices and four multiple edges.

The idea of wave move on the Projection of a link $X$ is strictly related to
the notion of frame for the 3-manifold $M$ which is the 2-fold covering space
of $S^{3}$ branched over $X$ , via the following construction [F].

If $L=(B_{1},$ $B_{r}$ ; $b_{1},$ $\cdots$ , $b_{r}$ ] is an r-bridge presentation of a link $X$ , let $\pi$

denote the plane containing all arcs $b_{i}$ and let $P$ be the projection of $L$ on $\pi$ .
$P$ can always be assumed to be connected; this is immediate if $L$ is not split-
table. If $L$ splits, we can isotope arcs of $L$ on $\pi$ to pass “in and out” under
bridges of different components. Let $E_{\ell}(i\in N_{r}=\{1, \cdots , r\}$ ] be an ellipse in $\pi$

whose principal axis is the Projection $P_{i}$ of the bridge $B_{i}$ and such that $E_{i}$

intersects each arc of $P$ at most in one point; set $V=\bigcup_{i\in N_{r}}(E_{i}\cap L$ ].

$V$ subdivides $ L\cap\pi$ into edges: let $C$ (resp. $D$ ] be the set of these edges
which are internal (resp. external) to the ellipsis. Let $\alpha$ be the involution on
$V$ which exchanges the end-points of the edges in $C$ and fixes the points of
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$\bigcup_{\ell\in N_{r}}(E_{i}\cap B_{i}$
]; let $\delta$ be the involution on $V$ which exchanges the end-points of

the edges in $D$ . Note that $V$ subdivides the ellipsis into a set $F$ consisting of
an even number of edges. Colour all the edges in $D$ by 2 and colour all the
edges in $E_{1}$ alternatively by $0$ and 1, starting from an arbitrary vertex.
Complete the coloration of $F$ by $0$ and 1 so that each region of the planar 2-
cell embedding of $F\cup D$ is bounded by edges alternatively coloured by two
colours (note that the edges of the regions not bounded by $E_{1},$ $\cdots$ , $E_{r}$ alter-
natively belong to $F$ and $D$ ]. Join by a 3-coloured edge any pair of vertices
in $V$ exchanged by the involution $\alpha\delta\alpha$ and let $D^{\prime}$ be the set of these edges.

If $\Gamma$ is the graph defined by $ V(\Gamma$ ] $=V, E(\Gamma$ ] $=DUD^{\prime}\cup F$ and $\gamma$ is the edge-

coloration defined above, then $F(L$ ] $=(\Gamma, \gamma$ ] is a crystallization of the 2-fold
covering space of $S^{3}$ branched over $X$ .

Since the involution $\alpha$ may be thought of as the symmetry in $\pi$ whose
axis contains the projections $P_{t}$ and which exchanges colour $0$ (resp. 2) with
colour 1 (resp. 3) in $F(L$ ], it seems natural to call $F(L$ ] 2-symmetric.

Definition 3. If $L^{\prime}$ is obtained from $L$ by a wave move, the crystallization
$F(L^{\prime}$ ] is also said to be obtained from $F(L$ ] by a wave move.

Note that $F(L^{\prime}$ ] has strictly fewer vertices than $F(L$ ].

Proposition2. Let $P$ be the $pr0jection$ of a bridge-presentation $L$ of a link.
(a) Each cancelling region in $P$ gives rise to an $\{i_{0}, i_{2}\}$ -residue and an $\{i_{1}, i_{3}\}$ -

-residue in $F(L$], both of length two, where $(i_{0}, i_{1}$ ] (resp. $(i_{2}, i_{3}$]] is a suitable
permutatiOn on $\{0,1\}$ (resp. {2, 3}], and viceversa.

(b) Each bridge (resp. arc) with no under-crossing (resp. overcrossing) gives
rise to a $\{0,1\}$ -residue (resp. {2, 3}-residue) of length two in $F(L$], and viceversa.

(c) If $P$ is reduced, then $P$ admits no wave iff $F(L)$ is $(0;1,2)-,$ $(1;0,2)-$ ,

(2; $0,3$ ] $-$ and (2; 1, 3]-irreducible.

In order to prove the previous result, we need the following notations:
Given a bridge-presentation $L$ of a link and the projection $P$ of $L$ on a

plane $\pi$ , let $\pi_{+}$ (resp. $\pi_{-}$ ] be the upper (resp. lower) half-space of $\pi$ whose
generatrix is the symmetry axis containing all bridge-projections of $L$ .

If $B$ is a region of $P$, let $S$ be a connected component of the intersection
(supposed non-void) of $B$ with a bridge-projection $P_{\iota}$ . Let $x$ be any end-point
of the edge $S$ and $ U(x, \rho$ ] the disk centered at $x$ of radius $\rho$ .

We call intersection index between $B$ and $S$ the symbol $\epsilon(B, S$ ] $\in\{+$ , - $\}$

defined in the following way:

$\epsilon(B, S]=\left\{\begin{array}{l}+if there exists \rho>0 such that B\cap U(x, \rho] \subset\pi_{+};\\’’\end{array}\right.$

$B\cap U(x,$ $\rho I\subset\pi_{-}$ .
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Proof of Proposition2. (a) and (b) are direct consequences of Ferri’s
construction.
(c1) Suppose that $P$ admits a wave.

First, assume that there is a wave on a bridge, that is a bridge projection
$P_{\ell}$ intersects a region $B$ of $P$ at least in two connected components $S$ and $T$ .
Let $S_{+}\subset\pi_{+},$ $S_{-}\subset\pi_{-}$ (resp. $T_{+}\subset\pi_{+},$ $T_{-}\subset\pi_{-}$ ] be the edges belonging to the $\{0,, 1\}-$

residue $C_{i}$ of $F(L$ ] arising from $S$ (resp. $T$ ] by means of Ferri’s construction.
Let $\phi$ be the one-to-one correspondence between the set of all regions of $P$

and the set of all $\{0,2\}-$ and {1, 2}-residues in $F(L)^{\wedge}$ . Then $\phi(B$ ] contains
$S_{\epsilon(B.S)},$ $T_{\epsilon(B.T)}$ . Note that the edges $S_{\epsilon(B.S)},$ $T_{\epsilon(B.T)}$ have the same colour $c$

( $c\in\{0,1\}$ ]; thus, the $\{0,1\}$ -residue $C_{i}$ and the $\{c, 2\}$ -residue $\psi(B$ ] meet at least
the two c-coloured edges $S_{\epsilon(B.S)},$ $T_{\epsilon(B.T)}$ and $F(L$ ] is $(c;c^{\prime}, 2$ ]-reducible, with
$\{c, c^{\prime}\}=\{0,1\}$ .

Assume now that there is a wave on an arc, that is, an arc $b_{i}$ intersects a
region $B$ of $P$ at least in two connected components $S,$ $T$ . Let $\phi$ be the one-
to-one correspondence between the arcs of $P$ and the {2, 3}-residues of $F(L$ ].

The edge $S$ (resp. $T$ ] gives rise to the 2-coloured edge $S_{2}$ (resp. $T_{2}$ ] belonging
to the {2, 3}-residue $\phi(b_{\ell}$ ] in $F(L$ ]. Moreover, $\psi(B$ ] is a $\{c, 2\}$ -residue ( $c\in\{0,1\}$ ]

containing $S_{2}$ and $T_{2}$ ; thus, the {2, 3}-residue $\phi(b_{i}$ ] and the $\{c, 2\}$ -residue $\phi(B$ ]

meet at least the two 2-coloured edges $S_{2},$ $T_{2}$ and $F(L$ ] is (2; $c,$
$3$]-reducible,

with $c\in\{0,1\}$ .
( $c2$ ] Suppose now $P$ reduced.

Assume that there is a $\{0,1\}$ -residue $C_{i}$ and a $\{c, 2\}$ -residue $R(c\in\{0,1\}$ ]

in $F(L$ ] meeting at least two c-coloured edges $\sigma,$ $\tau$ . In this situation, the region
$\psi^{-1}(R$ ] intersects the projection $P_{i}$ at least in two (disjoint) edges obtained by
orthogonally projecting $\sigma$ and $\tau$ over $P_{\ell}$ in $\pi$ .

Finally, the existence of a {2, 3}-residue $Q$ and a $\{c, 2\}$ -residue $R(c\in\{0,1\}$ ]

meeting at least two 2-coloured edges $\sigma$ and $\tau$ implies that the arc $\phi^{-1}(Q$ ]

intersects the region $\phi^{-1}(R$ ] at least in two (disjoint) edges of $P$ respectively
containing $\sigma$ and $\tau$ . $\blacksquare$

Remark. If $\tilde{\alpha}$ denotes the permutation of $\Delta_{3}$ exchanging colour $0$ with 1
and colour 2 with 3, then the $(i;j, k$ ]-irreducibility is equivalent to the
$(\tilde{\alpha}(j];\tilde{\alpha}(j],\tilde{\alpha}(k$ ]]-irreducibility. $\blacksquare$

This immediately follows from the 2-symmetry of $F(L$ ] induced by the
involution $\alpha$ .

Note that, if a crystallization $(\Gamma, \gamma$ ] contains a 2-residue of length two,

then $(\Gamma, \gamma$ ] is not simple; hence, it can not be a frame. Thus, Prop. 2 yields
a necessary condition on $L$ for $F(L$] to be a frame.
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Corollary 3. If a 2-symmetric crystallization $F(L$ ] is a frame, then the
projection $P$ of $L$ is reduced and admits no wave. $\blacksquare$

Actually, Prop. 2 and the related remark prove that, if the projection $P$ is
reduced and admits no wave, it suffices to test the (2; $0,$ 1I- (or its symmetric
(3; 1, $0]_{-}$ ] irreducibility and the $(0;2,3$ ] $-$ (or its symmetric (1; 3, $2$ ] $- I$ irreduci-
bility for proving that $F(L$ ] is a frame. Nevertheless, the converse of Corollary
3 is false since it is possible to find (simple) 2-symmetric crystallizations $F(L$ ]

which are $(2; 0,1)$-reducible $and/or(0;2,3$]-reducible and such that the pro-
jection $P$ of $L$ is reduced and admits no wave (see, for example, Fig. la, lb).

In [T], the following conjecture is stated:

Conjecture [T]. $S^{3}$ admits no frame.

Corollary 3 implies that possible counterexamples to Tsukui’s conjecture
may be found among 2-symmetric crystallizations $F(L$ ], for some bridge-present-
ation $L$ of the trivial knot whose projection $P$ is reduced and admits no wave.
For such an $F(L$ ] it suffices to check (2; $0,1$ ]-irreducibility and $(0;2,3$ ] $-$

irreducibility.
Fig. $2a$ represents the projection $P$ of a 4-bridge presentation $\overline{L}$ of the

trivial knot; this projection, firstly given in [M], is reduced and admits no
wave. If $F(\overline{L}$ ] is the 2-symmetric crystallization obtained as the result of
Ferri’s construction applied to $\overline{L}$ (Fig. $2b$ ], it is easy to prove that $F(\overline{L}$ ] is
both (2; $0,1$ ]-irreducible and $(0;2,3$ ] $-$-irreducible. Hence, we have:

Proposition 4. $F(\overline{L}$ ] is a genus three frame of $S^{3}$ . $\blacksquare$

Remark. If $\overline{L}$ is the 5-bridge-presentation of the trivial knot given in $[0]$ ,
the genus four crystallization $F(L^{=}$ ] is a counterexample to Tsukui’s conjecture,
too.

Nevertheless, Tsukui’s conjecture is true in genus $g\leqq 2$ , as we will prove
in the next section.

3. The genus two case.

From now on, we restrict our attention to genus two 3-manifolds.
First, we recall the possibility of representing these 3-manifolds by means

of 2-symmetric crystallizations.

Proposition5 [CG]. If $(\Gamma, \gamma$] is a simPle genus two crystallization of a 3-
manifold with no diagonal edge, then there exists a 3-bridge presentation $L$ of a
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link such that the 2-symmetric crystallization $F(L$ ] is colour-isomorphic to $(\Gamma, \gamma$ ]
$-\cdot$

In order to prove that Tsukui’s conjecture is true in genus $g\leqq 2$ , we need
the following straightforward lemma:

Lemma 6. If $(\Gamma, \gamma$] is a simple crystallization which contains an $(i, j$] $-$

diagonal k-coloured edge, then $(\Gamma, \gamma$ ] is $(i;j, k$ ]-reducible. $\blacksquare$

Proposition 7. $S^{3}$ admits no genus two frame.

Proof. It is well known that there are no simple genus zero crystallization
(of $S^{s}$ ], while the only simple genus one crystallizations are the ”normal“
crystallizations of the lens spaces $L(p, q$ ], $p>1$ [DG]. Thus, if $g=0$ or $g=1$ ,
the result is straightforward.

Let $(\Gamma, \gamma$ ] be a genus two frame of $S^{s}$ ; Lemma 6 ensures that $(\Gamma, \gamma$ ] has
no diagonal edge. Thus, Prop. 5 gives $(\Gamma, \gamma$ ]$=F(L$ ] for a suitable 3-bridge
presentation $L$ of the trivial knot.

Corollary 3 implies that the projection $P$ of $L$ is reduced and admits no
wave; this contradicts the fact that the only 3-bridge projection of the trivial
knot without waves is the hexagonal one (which is not reduced). $\blacksquare$

We point out that Homma-Ochiai algorithm leads to an algorithm for
recognizing if a given genus two crystallization $(\Gamma, \gamma$ ] represents $S^{3}$ or not.

We now show that, for r-bridge presentations, $r\leqq 3$ , the converse of
Corollary 3 holds, too.

The following lemmas are straightforward.

Lemma 8. If the Projection $P$ of a 3-bridge presentatiOn $L$ of a link is
reduced and admits no wave, then $P$ is of ”triangular type”[N]. $\blacksquare$

Lemma 9. Let $L$ be a 3-bridge presentatiOn of a link such that its projection
is of triangular tyPe. If $c\in\{0,1\}$ and $c^{\prime}\in\{2,3\}$ , then every $\{c, c^{\prime}\}$ -residue of
the 2-symmetric crystallization $F(L$] has length $\leqq 6$ . $\blacksquare$

Proposition 10. If the prOjectiOn $P$ of an r-bridge Presentation $L$ of a link
( $r\leqq 3$ ] is reduced and admits no wave, then $F(L$] is a frame.

Proof. If $r\leqq 2$ , the only r-bridge presentations $L$ whose projections $P$ are
reduced and admit no wave, are the Schubert’s normal form $K(p, q$ ] of a 2-
bridge knot; since $F(K(p, q$ ]] is the ”normal” crystallization of $L(p, q$ ], the
result is true for $r\leqq 2$ .
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Assume $r=3$ ; since $P$ is reduced, Prop. 2 (cases (a), ( $b$ ]] proves that $F(L$]

is simple. By Prop. 2 (case ( $c$ ]], we only have to prove the (2; $0,1$ ] $-$ and
\langle $0i2,3$ ]-irreducibility of $F(L$ ]. Lemmas 8 and 9 prove that, if $c\in\{0,1\}$ and
$c^{\prime}\in\{2,3\}$ , every $\{c, c^{\prime}\}$ - residue of $F(L$ ] has length $\leqq 6$ .

Suppose $F(L$] is (2; $0,1$ ]-reducible: let $\sigma,$ $\tau$ be two 2-coloured edges belong-
ing both to the same $\{0,2\}$ -residue $R$ and to the same {1, 2}-residue $S$ . Since
$R$ has length $\leqq 6$ , $\sigma$ and $\tau$ respectively have at least one end-point ( $\sigma(0$ ] and

$\tau$( $0]$, say) which are adjacent on the same $\{0,1\}$ -residue $C$ ; if $\sigma^{\prime}$ (resp. $\tau^{\prime}$ ]

denotes the l-coloured edge adjacent to $\sigma$ (resp. $\tau$ ] in $\sigma(0$] (resp. $\tau(0$]], $\sigma^{\prime}$ and
$\tau^{\prime}$ must be distinct edges, otherwise $C$ would be a $\{0,1\}$ -residue of length two
(and $F$ ( $L]$ would‘ not be simple). Moreover, $\sigma^{\prime}$ and $\tau^{\prime}$ belong both to $C$ and
to $S$ . Hence, $F(L$] is also (1; $0,2$]-reducible, against the hypothesis that $P$

admits no wave (Prop. 2, case ( $c$]].

Suppose $F(L$] is $(0;2,3$ ]-reducible: let $\sigma,$ $\tau$ be two O-coloured edges belong-
ing both to the same $\{0,3\}$ -residue $R$ and to the same $\{0,2\}$ -residue $S$ . Since
$R$ has length $\leqq 6,$ $\sigma$ has at least one end-point ( $\sigma$ ( $0]$ , say) which is adjacent to
one end-point of $\tau(\tau$( $0]$ , say); if $\sigma^{\prime}$ (resp. $\tau^{\prime}$ ] denotes the 2-coloured edge
adjacent to $\sigma$ (resp. $\tau$] in $\sigma(0$] (resp. $\tau(0$]], $\sigma^{\prime}$ and $\tau^{\prime}$ must be distinct edges,
otherwise $F(L$] would contain a {2, 3}-residue of length two (and $F(L$] would
not be simple). Moreover, $\sigma^{\prime}$ and $\tau^{\prime}$ belong both to $S$ and to the {2, 3}-residue
containing $\sigma(0$] and $\tau(0$]. Hence, $F(L$] is also (2; $0,3$]-reducible, against the
hypothesis that $P$ admits no wave (Prop. 2, case ( $c$]].
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