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Abstract. A large deviations result is obtained for a class of self-similar
processes represented by multiple Wiener integrals, which includes the limit
processes appearing in functional “non-central” limit theorems.

1. Introduction

Let B={B(t), te R=(—o0, )} be a standard Brownian motion with B(0)=0,
and let Hr denote the reproducing kernel Hilbert space (RKHS) associated with
{B(®), |t| ST} (T<), i.e., Hr is the Hilbert space consisting of absolutely
continuous functions ¢ on [—T, T'] such that ¢(0)=0 and its Radon-Nikodym

T - /
derivative d¢/dt is square integrable, with the norm |g| H:(S_T(dqb/dt)”'dt)1 z.
We then have the following asymptotic estimates.

Theorem A. (i) Let ¢<Hr. Then, for any o, 8 >0, there is a number
a,=a,(8, &', |§lr) such that

o) P(_sup_| B(t)/a—g(t)| <&)zexp[—(a*/2)I$14+3"]

for all aza,.
(i) Let Kr,.={¢<Hr: |@llr<r} for any r>0. Then, for any §, >0,
there is a number as;=as(d, &', r) such that

2) P( inf sup |B(®)/a—¢(t)| >8)<exp[—(a®/2)(r*—d")]
peKyp y -TstsT
for all a=as.

The estimates of the type (1) and (2) were first obtained by Freidlin-
Wentzell for diffusion processes. A above is a particular case of
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general results for Gaussian processes (cf. e.g. [1]). The purpose of this note
is to remark that analogous estimates can be derived for a class of self-similar
processes represented by multiple Wiener integrals.

2. Result
Let X={X(), teR*=[0, =)} be a process defined by '

® X®={, - |Quus, -, un)dBla) - dB(un), t<R",

where the right hand side is a multiple Wiener integral with respect to standard
Brownian motion {B(u), xR} with B(0)=0. We assume that the kernel
Q.(uy, -, un) is of the form

4 Q.(uy, -, um)=S:q(v—u1, o, V—Ugr)dy, tER*,

where g(u,, ---, un) is symmetric, homogeneous with degree —i=H—1—m/2
(1/2<H<1), i.e.

glcuy, -, cum)=c *q(uy, =+, Un), for any ¢>0,

and satisfies the condition |
SRm--- Slq(ul, s Um)q(uat1, e um )| duy o dum<oo.

The process X is self-similar with parameter H, i.e., {X(ct)} and {cZX(t)}
have the same finite dimensional distributions for any ¢>0, and it has stationary
increments. Furthermore X may be supposed to have continuous paths [2).
In the case when
tvmax u; m

1L (v—u,)*dv,

ovvmax uj j=1

(5) Qt(uh Tty um)=g
a:(l/Z)-}-(l-H)/m’ m=1, 2, -,

the process X is a limit self-similar process appearing in the so-called non-
central limit theorems ([3]). If m=1, it is a fractional Brownian motion, and
if m=2, it is non-Gaussian.

Let H? denote a class of real valued continuous functions y on R* which
can be represented in the form

yo={ - JQuu, -, un)ew) - Eumdu, - dun,

with §= L*(R). Write y=Q[£], and define, for ye H?,
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Iyllg=inf{||§l.: y=Q[&1},
w 1/2
where Il&llzz(g_ E*(u)du) , and put

Ke={y=Q[&]: l€l.=r}.

Denote by |- |l the supremum norm and by d the metric defined by ||« in
C[0,1]. Then we have

Theorem (i) Let y=H®. Then for any J, 0'>0, there is a number a,=
ay(8, &, || yllq) such that

(6) P(| X/a—yl-<d)zexp[—(a®™/2)|y[5+0")]

for all aza,.
(i) For any 8, &, r>0, there is a number a,=ax(0, &', r) such that

@) P(d(X/a, K&)>8)<exp[—(a*™/2)(r*—d")]
for all azas.

The estimates of this type, which will be called Freidlin-Wentzell type
estimates, are closely related to functional laws of the iterated logarithm, and
the above theorem will be proved by arguments parallel to the ones used in [2].

3. Proof of the Theorem

Let C,(R) denote the space of real continuous functions x on R such that
x(0)=0 and
cl_irir; x(@®)/ T(t)=1tigl x@t(/rt)=0,

where
r®={[t1(1+|loglt|)}'?, t=+0,
7(0)=0.

Define a norm
Ixl,=sup | x(1 /1),  xECAR).

Then (C/R), ||-l;) is a Banach space, and, by the iterated logarithm law,
B={B(u), ucR} with B(0)=0 may be considered as a C,(R)-valued random
element. Let H denote the RKHS associated with B, i.e., H is the Hilbert
space of all absolutely continuous functions x on R such that x(0)=0 and
i=dx/dt< Ly(R) with the norm ‘

Ieha=lite=({"_Grat)”.
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H is a subspace of C,(R) because

fx@®I1Z 1812 %)e, for xeH.
Let
K,={xeH: |x|g=r}, r>O0.

We need the following Freidlin-Wentzell type estimates for B.

Lemma 1. For any 0, 0'>0, there are numbers a,=(d, &', ||x||g) and a,=
as(0, 0’, v) such that

® P(I(B/a)— x|, <8)=exp[—(a®/2)(|| x|%+d")]
for all a=a;,, and
)] P(d(B/a, K;)>0)<exp[—(a?/2)(r*—d")]

for all a=a,, where d, is the metric defined by |-, in C,(R).

Proof. For any T >0,
P(I|(B/a)—xll;<0)2P(_sup_(1/r®)|B@)/a—x()|<8/3)
- —P(_sup /1) B@)/a—x(t)|20/3)
—P(sup (1/7(t)| B(t)/a—x(t)| 26/3).
Applying A, we have, for and 0<d”<¢’,
P( sup (/1) B@t)/a—x(@)] <5/3)2P(”T3;fgsrl B(t)/a—x(t)| <(8/3)r(1/T))
2P(sup | B(t)/a—x(t)| <(8/3)r(1/T))
=2exp[—(a?/2)(|| x||3+06")]

T
for sufficiently large a, where l|x|l%=g_r(x)2dt. Since ||x]|r<| x| g for any T >0,
x& H, we have

P(x/rss‘fgsr(l/r(t)) | B(t)/ a—x(t)| <8/3)zexp[—(a*/2)(|| x|} +0”)]
for sufficiently large a.
Since, for x=H,
sup | x(1)] /1()< sup 1 /(1+ | log | ¢] |
=|#l:/(1+log T2

—>0, as T—co,

and similarly
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sup lx(t)l/T(t) E— 0) as T_’OOJ
oIt sy T

we may assume, choosing T large enough, that
sup | x()|/7#)<6/6 and  sup _|x(@®)|/r(t)<d/6.
12127 oitisyT
Then
P (311121;,(1/ TN B/ a—xt)| =£d/3)=P(1/ a)ﬁ}lz% {B(t)|/7(t)=0/6)

<2P((1/a) sup | BO)| /11)25/6),

and similarly
P(,_sup (1/7(t)| B@Y/ a—x(t)| 28/3)

<2P((1/a) sup_|B®|/rt)=d/6).
o<ts1T
Now we may assume that T=2%, Then

P(sup | BO|/T0)Zad/6)s 3 P( sup | BO)I/1(t)2ad/6),

tz2K 2kgesekt
and
P( sup |B®|/r(t)zad/6)<P( sup |B(t)|=r(2*)ad/6)

shgesek+l skgtsek+l

<P( sup |B()|zr(2*)ad/6)

osts2k+l
<2P(B(2**")zr(2*)ad/6)
<2P(B(l)=¢&'ak'’?)
with &’=(log2/2)!/%(8/6)
<constant-exp[—(¢’a)*k/2].
Hence

P(sug | B(t)|/7(t)=ad/6)<constant: kf_‘,x exp[—(&’a)’k/2]
t22 =

<constant-exp[—(¢"?K/2)a*].
Using a well known fact that {¢tB(1/t), t>0} is also a Brownian motion, we have

P( sup |B@)|/r(t)=ad/6)<constant-exp[—e&"*K ) a?®/2)].

o<tgy/2 K
Thus we have, taking T=2% large enough,

P(|B/a—x|,<d)=exp[—(a*/2)(|| x||%+06”)]—constant - exp[ —(¢"* K X(a?/2)]
=exp(—(a®/2)(|| x|%+4")]
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for sufficiently large a. This proves (8).
Now, for any T >0,

P(d(B/a, K)>)<P(inf sup (1/7(t))| B(t)/a—x(t)|>8/3)

zeEK, 1/Ts1818T

+P(inf sup (/1) Bt)/ a—x(t)| >8/3)

zeK, 0<It

+P(inf sup(1/7(t))| Bt)/a—x(t)| >6/3).
zEKy 1LI2T

It follows from [Theoreml A that
P(inf sup_ (l/r(t))lB(t)/a x(t)| >0/3)

€Ky UTSIL

<P(inf sup | B{t)/a—x(t)| >r(1/T)3/3)

.‘!‘Er

<exp[—(a®/2)(r*—d")],

for any 0<0”<9’, if a is sufficiently large.
Next, choose T large enough that

sup .?.‘L%' x| /r#)<d/6, and Sup  sup [(x(@)]/r)<d/6.
Then
P( }QL ,S:‘.‘zpr(l/r(t)) | B(t)/a—x(t)| >8/3)
§P((1/a)l§}1=gl B@)|/r(t)>d/6)
and

P(inf sup (1/7(t)|B@®)/a— x(t)| >4/3)

2eKy 0it1sYyT

<P((1/a) sup |BQ@)|/r(t)>8/6).
oIt1syT

Hence, just as in the proof of (8), we have, taking T'=2% large enough,
P(d(B/a, K,)>0d)<exp[—(a®/2)(r*—8”)]+constant-exp[ —(a?/2)e"2K ]
sexp[—(a®/2)(r*—d")]
for sufficiently large a. The proof is complete.

Let F(-) be a continuous mapping from (C,(R), I-1;) to (C[O, 17, [I+[l=).
Assume further that F is is homogeneous with degree p>0, i.e., F(c:)=c?F(-)
for any ¢>0. Then, from Lemma 1, we immediately obtain

Lemma 2. For any x<H, 8, 8’>0, there is a number a,, such that

P(|F(B)/a—F(x)[l»<8)Zexp(—(a*?/2)|| x||%+8")]

for all aza,.
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(ii) For any 8, &', ¥>0, there is a number a, such that
P(d(F(B)/a, F(K,.))>5)§exp(_(a2/p/2)(rz_5;)]

for all a=as.
Furthermore, by the reasoning used in [1] (cf. Theorem 8), we have

Lemma 3.
lim(1/a*?)log P(| F(B)||>a)=—b%/2,

where
b*=inf {|| x|} : |1 F(x)]l=>1}
=sup {r*: sup(| F(x)|l-: x€K,)<1}.

Let ,(R™) denote the space of all symmetric functions f which are defined
by

fat, oy umd =1 [ g o, v/ @) - 1@, - dvm,

ECuy,»,um)

with ¢= L (R™), where E(uy, - um)=E(u,)X -+ X E(up) for each (uy, -+, un)<
R™ (u;#0, 1<7<m) with E(u)=(—oo, u) or (u, ) according as u<0 or u>0,
and /=[(u,, -, un) is the number of positive u;, 1<j<m. For fe%,(R™), put

ft(ul) "ty um)::tH-mnf(ul/t} Sty um/t)) t>0’
and

fo(uu oy um)=0-

Then (cf. Lemma 7.2 [2]), for any >0, there exists a function f*€F(R™)
such that

(10) [ o 1@ rt1%d U, e dum<st/m!
and

SR’"’ Slff+n—ff|2du1 e dun<Ah*®, 0<h<1,

where A is a constant independent of s.
Define, for each ¢>0, a process X¢ by

xo=(_ | i, -, un)dBw) - dBlun), 120

Then X°* is self-similar with parameter H, and we have
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Lemma 4. For any 3, M>0,
P(| X—X*|->n)<constant-exp(—Mn*/™)
for all sufficiently small ¢>0.

Proof. Put Z:(t)=X(t)—X*(t). Then (cf. [2], p.387) {E|Z*(t+h)—2Z*)t)|%}/*
=<constant- h¥, for t=0, 0<h<1, and |E|Z%t)|%|. can be made arbitrarily small
by choosing £>0 small enough. Thus the lemma follows from Lemma 6.3 (ii)

of [2].
Let

(f:)[rj<uh Sty um—27)= o f:(ub s Um-zry, Uy, Vyy ***, Uy, vr)dvl Lo dvr
RT

for r=1, 2, .-, [m/2], and (f§)*?=f:. Define mappings FI, r=0, 1, ---, [m/2],
from C,(R) to C[0, 1] by

Fre®=(=0m| (D Dacn (£, s e
’x(ul) x(um—zr)dul dum—zr ’ t>09 xECr(R):

where D;=0/0u;. Then F? are continuous and homogeneous with degree
m—2r (cf. [2], pp. 378-379). Applying Lemma 5.3 of [2], we can write X* in
the form

m!

{m/2]
V=Rt 2 D rm—r

F{(B),

where F,=F{? and

FE”(B)=S ---Sf:(vl, Uiy ey Upy V) e, dv, i m=2r.

RM

Lemma 5. For any 5, M’'>0,
P(|| X *—Fy(B)||l«>an)=constant-exp(— M’ a® ™)
for all sufficiently large a.

Proof. Since

X —F(B)les 5 e T
¢ = A 27 (m—2r)!

IFE(B)le s
it suffices to show that, for and %', M’>0.
P(|F¥I(B)|l»>an’)<constant-exp(—M’'a* ™)

for all sufficiently large a, for r=1, 2, -+, [m/2]. But by
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P(||FETJ(B)l|m>aﬂ')_S_exp(_Cazl(m-zr))

for all sufficiently large «, with some constant C>0, for r=1, 2, .-, [m/2],
and the lemma follows. '
Note that, if xeH, then F,(x)=F(x) can be written as

Fo=_, [ fitu, -, un)iuw) -+ sum)du; - dun.

Lemma 6. For any element y=H® and for any n>0, there is an element
F(x)eF.(H) such that |y—F.(x)|«<7 if >0 is small enough. Also, if (K#)
denotes the n-neighborhood of K&, then F.(K,)C(K®)" for all sufficiently small
e>0. :

Proof. Let y=H® be of the form

»O=QLaID=|__ -~ {Quu, -, umt(u) - Eum)dus - dun, §ELYR).

Let xH be such that £=¢&. Then, by Schwarz’s inequality and

ly—Feolle=gup{[_, - {1Qu—rt1du, - dun} “1e1p

RM

=supt#{| - (10i—siitdu, - dua} ele

<(e/(m"'*)- €15 .

The lemma follows immediately from the above.

Now, let yeH? and §, ’>0 be given. Assume that y is of the form
y=QI[£], é L*R). Let xH be an element such that £=§ By Lemmas 4, 5,
and 6 we can choose f*=%F,(R™) such that

|ly—F(x)lle<d/4,
and
P(| X— X*||>ad/4)<constant-exp[— M (6/4)* ™a*™],
P(| X ;—F(B)||«>ad/4)<constant-exp(—M’'a* ™),
for all sufficiently large «, where M and M’ are some constants such that

M@6/42™, M'>| x||%+06’. Note that F.(-) is continuous and homogeneous with
degree m. Hence, by Lemma 2 (i), for any 0<97<0'/2,

P(|F(B)/a—F(x)|«<d/4)zexp[—(a®™/2)|| x|} +6")],

if « is large enough. Thus
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P(1X/a—]=<8)zZ P(I| FB)/ a—F(x)=<d/4)
—P(| X—X*|=>ad/4)
—P(| X*—F(B)|l=>ad/4)
Zexp[—(a¥™/2) x 1% +3")]
—constant-exp[— M (d/4)* ™a® ™]—constant-exp(—M’a®' ™)
zexp[—(a®™/2)||x|%+8")],

for all sufficiently large a, where 87 <§"<d'/2. Since ||yllo=inf{|xllx: y=Q(%)},
we obtain ‘ '
P(| X/a—3||-<0)zexp[—(a*™/2)(| y[5+d")]

for sufficiently large a, which is (6).
To prove (7), we choose f*=%,(R™) such that

F(K (K9P
and
P(| X—X*||l«>ad/6)<constant-exp[—M(3/6)* mq*™],

P(llX‘—F.(B)l|m>a6/6)§constant-exp(—M’a”’“)
for all sufficiently large a, with sufficiently large constants M and M’. By
(if), for 0<3"<d'/2, |

P(d(F(B)/a, F(K,))>d/6)<exp[—(a®'™/2)(r*—7")],

if a is sufficiently large. Hence

P(d(X/a, K§)>0<P(d(X/a, F(K,))>08/2)
<P(d(F(B)/a, F(K,))>0/6)
+P(| X—X*||w>ad/6)+ P(|| X *—F(B)|l=>ad/6)
<exp[—(a¥™/2)(r*—8")]
4 constant-exp[— M (d/6)* ™a?/™]
+constant-exp[—M'a?™]
<exp[—(a®*™/2)r*—d")]

for all sufficiently large a. This completes the proof of the theorem.
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