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Abstract. Local solvability in the space of hyperfunctions is proved for
Fuchsian elliptic or hyperbolic partial differential equations without any addi-
tional conditions.

Let $P$ be a Fuchsian partial differential operator of weight $m-k$ in the
sense of Baouendi-Goulaouic [1]. The local solvability of the equation $Pu=f$

for hyperfunctions ( $f$ given, and $u$ unknown) has been proved by Tahara [7]
in hyperbolic case and by \^Oaku [6] in elliptic case. However, both authors
assume some genericness conditions on characteristic exponents of $P$. The aim
of this article is to remove these conditions.

First, let us recall the definition of Fuchsian partial differential operators (cf.

[1]). Put $N=\{x=(x_{1}, X_{2}, \cdots , x_{n})\in R^{n} ; x_{1}=0\}$ with an integer $n\geqq 2$ . We use the
notation $x^{\prime}=(x_{2}, \cdots , x_{n}),$ $D_{j}=\partial/\partial_{X_{j}},$ $D^{\prime}=(D_{2}, \cdots , D_{n})$ . Then $P$ is said to be a
Fuchsian partial differential operatOr of weight $m-k$ with respect to $N$ (around

$x^{0}\in N)$ if $0\leqq k\leqq m$ and if, on a neighborhood of $x^{0},$ $P$ is written in the form

$P=a(x)(x_{1}^{k}D_{1}^{m}+$ $\sum_{=,j1}^{m}A_{j}(x, D^{\prime})x_{1}^{\max(0.k-j)}D_{1}^{m-j})$ ,

where $A_{j}(x, D^{\prime})$ is a linear partial differential operator of order at most $j$ for
$j=1,$ $\cdots$ , $m;A_{j}(0, x^{\prime}, D^{\prime})$ equals a function $a_{j}(x^{\prime})$ for $j=1,$ $\cdots$ , $k;a(x^{\prime})$ is a
real analytic function with $a(x^{0})\neq 0$ . Then the indicial equation of $P$ at $x^{0}$ is the
polynomial

$e(P, \lambda, x^{0})=\prod_{\nu=0}^{m-1}(\lambda-\nu)+\sum_{j=1}^{k}a_{j}(x^{0})\prod_{\nu=0}^{m-j-1}(\lambda-\nu)$

in $\lambda$ and the non-trivial characteristic exp0nents $\lambda_{j}=\lambda_{j}(x^{0})$ ($j=1,$ $\cdots$ , k) of $P$ at
$x^{0}$ are defined as the roots of the equation

$\frac{e(P,\lambda,x^{0})}{\Pi_{\nu=0}^{m-k-1}(\lambda-\nu)}=0$
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in $\lambda$ .
In this article we assume that the principal symbol

$\sigma_{m}(P)(x)\xi)$ of $P$ is written
in the form

$\sigma_{m}(P)(x, \xi)=x_{1}^{k}p_{m}(x, \xi)$

with a (complex valued) real analytic function $p_{m}(x, \xi)$ defined on $U\times R^{n}$ where
$U$ is an open neighborhood of $x^{0}$ .

Then $P$ is said to be Fuchsian elliptic (at $x^{0}$) if $p_{m}(x^{0}, \xi)\neq 0$ for any
$\xi\in R^{n}\backslash \{0\}$ . Note that Fuchsian elliptic equations appear, $e.g.$ , in the represent-
ation theory of semi-simple Lie groups.

On the other hand, $P$ is said to be Fuchsian hyperbolic if $p_{m}$ is hyperbolic
in the $x_{1}$ direction, $i.e.$ , the equation $p_{m}(x, \zeta, \xi^{\prime})=0$ in $\zeta$ has only real roots
for any $x\in U$ and $\xi^{\prime}\in R^{n-1}$ . One of the most typical Fuchsian hyperbolic
operators is

$x_{1}(D_{1}^{2}-\sum_{j=2}^{n}D_{j}^{2})+\alpha D_{1}$

with $\alpha\in C$ , which is called the Euler-Poisson-Darboux operator.
We denote by $\ovalbox{\tt\small REJECT}_{x0}$ the stalk at $x^{0}$ of the sheaf $B$ of hyperfunctions. Hence,

$f\in B.0$ means that $f$ is a hyperfunction defined on a neighborhood (in $R^{n}$ ) of
$x^{0}$ , and $f=0$ holds if and only if its restriction to some smaller neighborhood
of $x^{0}$ vanishes.

Theorem. Let $P$ be a Fuchsian elliptic or hyperbolic operatOr of weight
$m-k$ with $0\leqq k\leqq m$ with respect to a hypersurface $N$ defined on a neighborhood
of $x^{0}\in N$. Then

$P:\ovalbox{\tt\small REJECT}_{x0}\rightarrow B_{x0}$

is surjective; $i.e$ , the equation $Pu=f$ is locally solvable at $x^{0}$ for any hyper-
function $f$.

Proof. (i) First we assume $\lambda_{j}\not\in\{\nu\in Z;\nu\geqq m-k\}$ for any $j=1,$ $\cdots$ , $k$ . If
$P$ is Fuchsian elliptic, the local solvability has been proved in [6]. If $P$ is
Fuchsian hyperbolic, the local solvability was proved essentially by H. Tahara.
However, in Theorem 2.3. 6 of [7] an additional condition that $\lambda_{\ell}-\lambda_{j}\not\in Z$ if
$i\neq j$ is imposed. Here we give a proof of local solvability without this additional
assumption.

Hence now we assume that $P$ is Fuchsian hyperbolic and that $\lambda_{j}\not\in\{\nu\in Z$ ;
$\nu\geqq m-k\}$ for any $j=1,$ $\cdots$ , $k$ . Let $\sqrt{-1}S^{*}R^{n}=R^{n}\times\sqrt{-1}S^{n-1}\ni(x, \sqrt{-1}\xi\infty)$ be
the purely imaginary cosphere bundle of $R^{n}$ with $\xi=(\xi_{1}, \cdots , \xi_{n})=(\xi_{1}, \xi^{\prime})\in R^{n}\backslash \{0\}$

( $\xi\infty$ is the projection of $\xi$ to the $(n-1)$-sphere $S^{n-1}$ ). Put

$Z=(\sqrt{-1}S^{*}R^{n}|_{N})\backslash \sqrt{-1}S_{N}^{*}R^{n}=\{(0, x^{\prime}, \sqrt{-1}\xi\infty);x^{\prime}\in R^{n-1}, \xi\in R^{n}, \xi^{\prime}\neq 0\}$
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and let
$\rho:Z\rightarrow\sqrt{-1}S^{*}N=\sqrt{-1}S^{*}R^{n-1}$

be the map defined by $\rho(0, x^{\prime}, \sqrt{-1}\xi\infty)=(x^{\prime}, \sqrt{-1}\xi^{\prime}\infty)$ . We denote by $C$ the
sheaf of microfunctions on $\sqrt{-1}S^{*}R^{n}$ and by $\rho_{1}$ the functor of direct image

with proper support with respect to $\rho$ .
By Theorem 2 of [3] (see also [4] for details of the proof), for any

$g\in\rho_{1}(C|_{Z})_{x*}$ with $x^{*}\in\sqrt{-1}S^{*}N$, there exists a $v\in\rho_{1}(C|_{Z})_{x*}$ such that $Pv=g$

and that $D_{1}^{\nu}v(0, x^{\prime})=0$ for any $\nu=0,$ $\cdots$ , $m-k-1$ . Moreover, in view of Theorem
2.3 of [5], such $v$ is unique (Note that sections of $\rho_{!}(C|_{Z})$ are naturally regarded

as F-mild microfunctions in the sense of [5]).

Now let $f\in B_{x0}$ and denote by $sp(f)$ the spectrum of $f(i.e$ . the micro-
function defined by $f$). By the flabbiness of the sheaf of microfunctions, we
can take a microfunction $g$ defined on $V\times\sqrt{-1}S^{n-1}$ with an open neighborhood
$V$ of $x^{0}$ such that $g=sp(f)$ on

$\{(x, \sqrt{-1}\xi\infty)\in\sqrt{-}1S^{*}R^{n} ; x\in V, |\xi_{1}|<|\xi^{\prime}|\}$

and its support $supp(g)$ is contained in

$\{(x, \sqrt{-1}\xi\infty)\in\sqrt{-1}S^{*}R^{n} ; x\in V, |\xi_{1}|\leqq|\xi^{\prime} \}$ .
By the above argument, we can take, for any $\eta\infty\in S^{n-2}$ , a microfunction $v_{\eta}$ on

$\Omega(\eta)=\{(x, \sqrt{-1}\xi\infty);|x-x^{0}|<\epsilon(\eta), \xi\in R^{n}, |\xi^{\prime}-\eta|<\epsilon(\eta)\}$

such that
$Pv_{\eta}=g$ on $\Omega(\eta)$ ,

$D_{1}^{\nu}v_{\eta}(0, x^{\prime})=0$ for $\nu=0,$ $\cdots$ , $m-k-1$ ,

$supp(v_{\eta})\subset\{(x, \sqrt{-1}\xi\infty)\in\Omega(\eta);|\xi_{1}|\leqq\frac{|\xi^{\prime}|}{\epsilon(\eta)}\}$

with some $\epsilon(\eta)>0$ .
We can take finite number of $\eta^{(1)},$ $\cdots$ , $\eta^{(J)}\in S^{n-t}$ such that

$\bigcup_{j=1}^{J}\Omega(\eta^{(f)})\supset Z_{0}=Z\cap(\{x^{0}\}\times\sqrt{-1}S^{n-1})$ .

By the uniqueness we have $v_{\eta^{(i)}}=v_{\eta^{(j)}}$ on a neighborhood of $\Omega(\eta^{(\ell)})\cap\Omega(\eta^{(j)})\cap Z$ .
Hence these $v_{\eta^{(f)}}s$ define a microfunction $v$ on

$\Omega=\{(x, \sqrt{-1}\xi\infty);|x-x^{0}|<\epsilon, |\xi_{1}|<|\xi^{\prime}|\}$

with some $\epsilon>0$ such that $Pv=sp(f)$ on $\Omega$ . Hence by the same argument as
the proof of Theorem 1 of [6], we get the surjectivity of
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$P:(B/d)_{x0}\rightarrow(B/A)_{x^{0}}$ ,

where a denotes the sheaf of real analytic functions on $R^{n}$ . Since $P:\Delta_{x^{0}}\rightarrow d_{x^{0}}$

is surjective, $P:St_{x^{0}}\rightarrow B_{x^{0}}$ is also surjective.
(ii) Now we make no assumptions on characteristic exponents. But we

assume $k=m$ for the moment. Let $\lambda_{1},$ $\cdots$ , $\lambda_{m}$ be the characteristic exponents
of $P$ at $x_{0}$ . We can take a nonnegative integer $\nu$ such that $\lambda_{j}-\nu\not\in\{0,1, 2, \}$

for any $j=1,$ $\cdots$ , $m$ .
Note that $P$ can be rewritten in the form

$P=(x_{1}D_{1})^{m}+$ $\sum_{=,j1}^{m}B_{j}(x, D^{\prime})(x_{1}D_{1})^{m-j}$

with linear partial differential operators $B_{j}(x, D^{\prime})$ of $order\leqq j$ such that
$B_{j}(0, x^{\prime}, D^{\prime})$ equals a function $b_{j}(x^{\prime})$ . Then it is easy to see that

$e(P, \lambda, x^{0})=\lambda^{m}+\sum_{j=1}^{m}b_{j}(x^{0})\lambda^{m-j}$ .
Using the formula

$x_{1}D_{1}x_{1}^{\nu}=x_{1}^{\nu}(x_{1}D_{1}+\nu)$

\langle here $x_{1}$ is considered as a differential operator of order $0$) we have

$Px_{1}^{\nu}=x_{1}^{\nu}Q$

with

$Q=(x_{1}D_{1}+\nu)^{m}+\sum_{j=1}^{m}B_{j}(x, D^{\prime})(x_{1}D_{1}+\nu)^{m-j}$ .

Then $Q$ is also a Fuchsian elliptic or hyperbolic operator (since $\sigma_{m}(P)=\sigma_{m}(Q)$)
and we have

$e(Q, \lambda, x^{0})=e(P, \lambda+\nu, x^{0})$ .
Since $Q$ satisfies the assumptions in (i) with $k=m$ ,

$Q:B_{x0}\rightarrow B_{x0}$

is surjective. Since $x_{1}$ ; $B_{x0}\rightarrow B_{x0}$ is surjective (see, $e.g$ . [2] for the proof),
we get the surjectivity of

$x_{1}^{\nu}Q:B_{x0}\rightarrow B_{x0}$ .
Hence for any $f\in\ovalbox{\tt\small REJECT}_{x^{0}}$ there exists $u\in B_{x0}$ such that

$Px_{1}^{\nu}u=x_{1}^{\nu}Qu=f$ .
This means the local solvability of $P$.

(iii) Finally we consider general case. First note that $Q=x_{1}^{m-i}P$ is a
Fuchsian elliptic or hyperbolic operator of weight $0$ . Put $R=Px_{1}^{m-k}$ . Then
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since
$Qx_{1}^{m-k}=x_{1}^{m-k}R$ ,

we know that $R$ is also a Fuchsian elliptic or hyperbolic operator of weight $0$ by

the same argument as in (ii). Hence by (ii)

$R:B_{x0}\rightarrow B_{x^{0}}$

is surjective. This means the surjectivity of

$P:\ovalbox{\tt\small REJECT}_{x^{0}}\rightarrow B_{x^{0}}$

since $R=Px_{1}^{m-k}$ . This completes the proof.
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