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Bernstein’s Theorem, which states that the only entire minimal surfaces in
R?® are planes, is one of the most striking. theorems in global geometry.

It has been known for some time (e.g. [G]) that such a result does not
hold for entire timelike surfaces in RY, three dimensional Lorentz space. T.
Milnor discusses the indefinite Bernstein problem in and proves a conformal
Bernstein’s Theorem.

This paper gives one version of a solution to the indefinite Bernstein problem.
We look at entire timelike surfaces in R} which are critical points of the area
functional, i.e., which have zero mean curvature. This is equivalent to finding
global solutions f(x, y) or h(x, y) to the partial differential equations
A+ FDfoe=2f o fyfeyt(Fi=1fyy=0 or (1—h}hso+2hshyhey+1—h2)h,,=0.
We show that such a graph over a timelike or spacelike plane is a global trans-
lation surface (Theorems 1 and 1’). We also obtain a standard form for all
such graphs (Theorems 2 and 2). These last two theorems give an answer to the
question “What do all the entire timelike surfaces with zero mean curvature in R}
look like ?” As an application we calculate the sectional curvature of these
surfaces and find that the sectional curvature can be negative. Along the way
we give all solutions to a hyperbolic Monge-Ampeére equation : ¢, ¢, ,—(¢.,)*=—1.

1. Introduction

We assume that the metric in R}, has the standard form g((x, y, 2), (x, ¥, 2))
=—x+3%+2% Thus a graph over a timelike plane has the form

1 F(x, y)=(x, 3, f(x, ¥)),
where f: R*—>R, while a graph over a spacelike plane can be written
1 H(y, 2)=(h(y, 2), 3, 2)

for some h: R*—R.

* Partially supported by a grant from Wellesley College and NSF Grant DMS 8802664.
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(We will not consider the case of a graph over a light-like plane, which can
be written as

1 PG, v)=( ““’(“ LIS L)

From equations (1) and (1’) we have

oF oF

Fr=L0 S =01, £y
oH o
5y = LO 5= 0,1),

of

where, for example, f. denotes IR

Therefore the metrics induced on the graphs have determinants

@ ggf’gf)(aF aF) (aF aF)__l f2+f.z

and
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We want the induced metric to be timelike, so these determinants must be
negative. Therefore we require

) =1—h3+ht.

3 1+ f%—f3>0 and
3" h:+hi—1>0.
The unit normal vector in each case is
_ e =S D
4 &(x, y)_‘\/(lT——Ziﬂ—_
, 1, hy, ko)
4) 80, D= ST

A tedious, but straight-forward, calculation of the shape operator shows that
the trace of the shape operator is zero iff

(5) (1+f2)fzz—2fvafxy+(_f2 —l)fyy=0 or
'GP (1—hDhyy+2h hhy (1 —h3)h,,=0.

We will find all global solutions to (5) and (5') satisfying (3) and (3").

Some simple solutions are found in [Mi].
(i) f(x, y)=Fk(xxy), for any C* function &,

(ii) f(x, y)=xtanh(y),
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(i) f(x, y)=x+k(y), for k+0 and

(iv) h(y, 2)=y+k(2), for k'+0.
Note that (i), (iii), and (iv) have zero sectional curvature &, while (ii) has positive
sectional curvature. We will see that it is possible to have x<O0.

2. Reducing the problem to the classification of isometric immersions
from E? to H:.

We begin with a function F(x, y) as in (1), satisfying (3) and (5), and
employ the standard abbreviations: p=f,, ¢g=f, and W=(1+¢’—p*)"?, the
positive root. Since

o(155) A (45 (2
— = &y ™ T,

we can find a ¢: R*—R satisfying

-1
(6) QD.z.z:"pW—’ @zyz% and Pyy=

i
w
Such a ¢ satisfies the hyperbolic Monge-Ampére equation
@ PrzPyy—(Pzy)=—1.
For H(y, z) satisfying (3') and (5') we set p="h,, g=h,, W=(p*+4¢*—1)"*>0
1—¢® 1—p?
a( w. ) (— (“ a( )
and .
dy dy
This yields ¢: R*>>R with

) 1—p? 1—ag?
(6) §bv = p 9¢yz _Wq— and ¢zn= Wq ’
as well as

(7’) ¢yy¢zz_'(¢yz)2="’

Given such a ¢ or ¢ we can construct a 2X2 matrix A using the second
partials :

a=[fzx oor) o [Grr de].

The matrices both have determinant —1.
From the Fundamental Theorem of Surfaces it follows that A is the shape
operator of an isometric immersion of E*® into H}, the 3-dimensional Lorentzian
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space form with constant curvature —1. We use the standard rectangular
coordinates {x, y} or {y, 2z} in E®. The Gauss equation holds because det A=
—1, while the equations (¢.:),=(¢:,): and (¢.,),=(¢,,): etc. gives Codazzi’s
equation. (See [D-NJ, pp. 74-75.) also shows that the same shape
operator gives an isometric immersion from E? into S®, while B=[ Pz ¢’”]

vy & . ) L ) —Pzy Pyy
or[ vy ”'] yields an isometric immersion from the Lorentzian plane into H3.

"‘¢'1/z ¢’u

Thus each global solution to (3) and (5) or (3’) and (5') gives an isometric
immersion from E? into H3.

3. The classification of isometric immersions of E? into H3.

In S. Buyske proves a generalization of a theorem due to J.D. Moore:
Let M be a complete, simply connected n-dimensional Riemannian manifold of
constant curvature x isometrically immersed in a 2n—1 dimensional semi-
Riemannian manifold M of constant curvature # such that the metric restricted
to the normal space is negative definite. If x—&>0, then there exist n linearly
independent unit-length asymptotic vector fields Z,, ---, Z, on M which deter-
mine a global coordinate system whose coordinate vectors are the Z,’s.

Using this theorem isometric immersions from E? into H$ are classified. It
is shown that the shape operator of such an isometric immersion must take the

form

@) 1 [—cos(U+V)+cos(U—V) sin(U—V) ]

sin(U+V) sin(lU—V) | —cos(U+V)—cos(U—-V)

with respect to a Euclidean coordinate system {x, y}. Here O<U+V<r. U

and V are initially given as pure functions of global asymptotic coordinates

{u, v} on E?, that is, U=U(u) and V=V (v). This gives all solutions to (7).
The relationship between {x, y} and {u, v} is given by

0 —sinV 9  sinU 9
o ox  sin(U+V) ou sin(U+V) ov
@ 0 —cosV @ | cosU @

3y sin(U+V) ou ' sin(U+V) v

In [B] the author begins with functions U(x) and V(v) satisfying 0<e<U+V
<m—e<m and constructs a metric g=du*+2cos(U+V)dudv+dv® on R? which
he shows to be complete. In fact we do not need the e&. With the above
change of variable the metric g is transformed to dx®*+dy?, which is clearly
complete.

We note in passing that U and V, considered as functions of x and ¥,
must satisfy the Codazzi equations. These are equivalent to the system:
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—(cos VYU +(sinV)U ,=0
(cosU)V . +(sinU)V ,=0.

Using (9) we can generate the entries of the Jacobian matrices of the coor-
dinate transformations :

o —sinV _ —cosV
(10) *=sm@+V) T sin(U+V)
o —sinU o= cosU
T sin(U+V) VT sin(U+V)
xq=—cos(U xp=—cos(V)
(1D @)

yu=—sin(lU) yy,=sin(V).
To summarize, if we begin with F(x, y) satisfying (3) and (5) then we can
find, using equation (8), functions ¢, U, and V satisfying (6) and (7), as well as
__—cos(U+V)+cos(U-V) _ 2sin(U)sin(V)
Paz= SinU+V) = sin(U+V)
__sin(U-V)
P2y =Sn(U+V)
_ —cos(U+V)—cos(U—V) _ —2cos(U)cos(V)
Pve= Sin(U+V) = smU+V)

(12)

We now look at the metric F induces on R? using the variables {u, v}.
That is, start with F: R*>—R} with zero mean curvature. This determines
functions U and V' by Change to the coordinate system {u, v} using
equations (9). Then we have

Proposition 1. {u, v} is a global null cordinate system on R*® with the metric
induced by F.

Proof. We look at F(u, v)=(x(u, v), y(u, v), f(x(u, v), y(u,v))). Thus
Fu=(%u, Yur faxutfyyu) and Fo=(xo, Yo faXotfyD0).-
Using (11) these become
F,=(—cosU, —sinU, —cos(U)f.—sin(U)f,) and
F,=(—cosV, sinV, —cos(V)f.+sin(V)f,).
Using (6) and we calculate :

8(Fy, Fu)
=(ft—1)costU+(f%+1)sin?U+2f, f,sinUcosU

13)
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=W(@.:c08*°U~+@,,sin?U+2¢, ,sin U cos U)

_ w - < Tr ooca . .
_~————sin(U+V)(2 cos®Usin U sin V —2sin®U cos U cos V+2 cos U sin U sin(U—V))
=0.

In the same way we can see that g(F,, F,)=0and g(F,, F,)=W sin(U+V)=+0.

Q.E.D.

The crucial point is that, according to [Mc], F(u, v) has zero mean curvature
with respect to a (local) null coordinate system iff each coordinate function of
F(u, v) is a sum of the form a(u)4B(v). Roughly speaking this is so because
the Laplacian has the form 0%°/0udv=0 in this coordinate system. Thus we can
write

(14) F(u, v)=(a,(u)+ B:(v), ax(u)+ B:(v), as(u)+ B:)).

We record this as

Theorem 1. FEvery timelike graph over a timelike plane in R} with zero
mean curvature is a global translation surface.

There is more information to be gleaned about the a,’s and B,’s. It is also
shown in that (a,(u), @x(u), as(u)) and (B,(v), B:(v), Bs(v)) are linearly
independent null curves., Therefore (a;)*=(a;)*+(a:)* and (B:1)*=(B:)*+(Bs)?,
where ’ and * denote differentiation with respect to u and v respectively. From
equation (13) we then have

Theorem 2. If F: R*-R} define a timelike graph over a timelike plane
with zero mean curvature then there are coordinates {u, v} in R® and functions
U(u) and V(v) so that

F,=(—cosU, —sinU, *(cos(2U))!/?)

F,=(—cosV, sinV, +(cos(2V))!/?).

The same change of variables gives a more striking result in the case of a
graph over a spacelike plane with zero mean curvature H(y, z)=(h(y, 2), ¥, 2).
Given such an H we have found ¢, U and V so that ¢ satisfies (6'), (7’) and

_ —cos(U+V)+cos(U—V) _ 2sin(U)sin(V)

byy= SinU+V) = s +7)
, __sin(U—-V)
) o= SO +V)

_ —cos(U+V)—cosU—V) _ —2cosU)cos(V)
Pu= SinU+V) = sinU+V)
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We then change variables using

d —sinV 4  sinU 9
) oy sinU+V) ou sin(U+V) ov

d —cosV @ cosU @

0z sin(U+V) ou  sinU+V) ov ~
This gives

yu=—coslU yp=—cosV
zy=—sinU z,=sinV .
Writing H(u, v)=(h(y(u, v), z(u, v)), y(u, v), 2(u, v)), we get
H,=(—h,cosU—h,sinU, —cosU,' —sinU) and
Hy=(—hycosV+hsinV, —cosV, sinV).

As before we have

Proposition 1’. {u, v} is a global null cordinate system on R® with the
metric induced by H. '

Theorem 1'. Every timelike graph over a spacelike plane in R} with zero
mean curvature is a global translation surface.

If we write H(u, v)=(@(u)+8,v), r2(u)+0:v), rs(w)+0:()), then (1=
()24 (7L implies that (7)?=cos*U +sin?U=1. Similarly (3;*=1. Thus hA(u, v)=
+u+v-+constant. In this case then the first function is a linear function. This
is perhaps not so surprising if we realize that we have chosen two null vectors
H, and H, which happen to lie in the null cone at the circle of height +1. We
again have

Theorem 2’. If H: R*—R} defines a timelike graph over a spacelike plane
with zero mean curvature then there are coordinates {u, v} in R*® and functions
U(u) and V(v) so that

H,=(x1, —cosU, —sinU)

H,=(+1, —cosV, sinV).

4. Necessary and sufficient conditions to generate entire surfaces with
zero mean curvature.

In order to obtain explicit, or at least computable, examples it is neceésary
to know which function U(u) and V(v) generate surfaces with zero mean
curvature. We first give the result for the case of a graph over a timelike
plane.
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Proposition 2. Given non-constant functions U(u) and V(v): R*->R with
0<U+V <& there exist functions p and q: R*—R satisfying
(i) 14¢*—p*>0
" *—~1  2sinUsinV
) JTFF—5 = sn@+V)
(i) g+l _ —2cosUcosV
vV 14+g*—p? sin(lU+V)
if (1) 0>cosUcosV
(2) 0=(sinU+-cosU)sinV +cos V)
(3) cos(2U)=0 and cos(2V)=0.
We need a lemma before beginning the proof of this proposition.

Lemma 1. If 0=(sinU+cosU)sinV+cosV) and 0O<U+V<m then
cos(2U) cos(2V)=0.

Proof of Lemma 1. Condition (2) is equivalent to —sinUsinV —cosU cosV
=sinUcosV+4-cosUsinV. Because sin(U+V)>0 condition (2) then implies

(sinUsinV +4cosUcos V) =(sinU cos V+cosUsin V)?
or
cos®U cos*V +sin®U sin®*V —sin?U costV —cos?U sin®V =0

or
' cos(2U) cos(2V)=0. Q.E.D.

Proof of Proposition 2L We will use the abbreviations

fo 2sinUsinV and for —2cosUcosV
Pzz 10— @+V) Puy sin({U+V)

Assume that we have p and g satisfying (i), (ii) and (iii). Let W=(1+¢%—p?)!/?

—(¢*+1) sin(U+V)
W 2

2 — hHe 2
W is a positive real number satisfying ¢,,—¢.= g +1Wp 1 _ Wl;'l

be the positive square root. Then cosU cos V <0 because <0.

(15) W24W(pzz—¢@y,)+1=0.

From the quadratic formula we see that the solution W is positive iff ¢,.,—¢,,<
—2. Thus we have

2sinUsinV+2cosUcosV

sin(U+V) =-2

or 2sinUsinV+42cosU cos V+2sinU cosV +2cosUsin V <0, which is (2).
To see that (3) holds we note that ¢*=0 implies ¢, ,W=>=1. Solving for W
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in and substituting in ¢, ,W =1 gives

—2cosUcosV [—(cos U cos V +sin U sin V)+o+/cosU) cos(2V)

sin(U+V) sin(U+V) ]gl’

for ¢==+1. Simplifying, this becomes

2cos®U cos®*V +2cosUsin U cos V sin V —2¢ cos U cos V +/cos(2U ) cos(2V)

=(sinU cos V+cosUsinV)?
or

2 cos®U cos®V —sin?U cos?V —costU sin®V =2¢ cos U cos V+/cos(2U) cos(2V) .

This reduces to

() cos?U cos(2V)+cos®V cos(U)=2a cos U cos V4/cos(2U)cos(2V) .

By Lemma 1| cos(2U) and cos(2V) have the same sign. If both were negative
then 20 cosUcosV<0. By squaring both sides of (*) we get

cos*U cos?(2V)+cos*V cos?(2U)+2 cos*U cos®*V cos(2U) cos(2V)
<4cos®*U cos?*V cos(2U)cos(2V),

which implies that
(cos®U cos(2V )—cos®V cos(2U))*=0.

This yields sin*U=sin®*V. Since U and V are pure functions of # and v this
cannot occur unless both are constant. Suppose (1), (2) and (3) hold. We can
set

—(cos(U—V))+a+/cos(2U) cos(2V)
sin(lU+V)

W=[ ], for ==+1.
W is a positive solution to In order to define p and ¢ we must have
©z:W+1=0 and ¢,,W—1=0. If this were so then we could set p=+(¢..W+1)'/*
and g==+(p, WV —1)"%

¢z:W+1=0 can be rewritten

2sinUsinV [ —(cos U cos V +sin U sin V)+a+/cos(2U) cos(2V)

sin(U+V) sin(U+V) ]g—l

or

—2sin?Usin®*V +2¢ sin U sin V v/cos2U) cos(2V )= —sin®U cos?V —cos?U sin®V .
Equivalently

sin®*U cos(2V)+sin?V cos(2U)= —2¢ sin U sin V +/cos(2U) cos(2V)

This holds because (sin U+/cos(2V)+a sin V 4/cos(20))*=0.



134 M. A. MAGID

In the same way ¢,,=1 is equivalent to the valid inequality

cos?U cos(2V)+cos?V cos(2U)—2a cos U cos V4/cos(2U) cos(2V) =0.

Finally if p*’=¢..W+1 and ¢’=¢, ,W—1 then 1+¢°—p*=(¢,y,— @, )W —1=
W*>0. Q.E.D.

From p*=¢..W+1 and ¢*=¢, , W —1 we obtain:
sin U+/¢cos(2V) +¢ sin V4/cosRU ))

p==( sin(U+7) and
__+( a cos(V )/ cos(2U)—cos U~/cos2V)
=== sin(U+V) )

In order to check that p=/f, and ¢=f, for some f: R* >R, we must of course
check that p,=gq., which is true.

In the case of a graph over a spacelike plane there are no conditions on U
and V beyond =>U+V >0.

Proposition 2’. Given functions U and V with a>U+V >0 there exist
functions p and q satisfying
(i") p*+¢*—1>0
(ii") 1—p*  2sinUsinV
VPP +1T sin(U+V)

(iii") 1—¢>*  —2cosUcosV
Vprtgt+lT  sin(U+V)

Proof. Again we use the abbreviations

2sinUsinV —2cosUcoslV
$uy for ~mrvy. 24 du for —y

_(¢y v +¢u)+ ’\/(¢y v +¢u)2 +4
2 0

Set W= This is the only positive solutioh of

(15") W2+W(dyy=+¢.)—1=0.

We need to show that 1-W¢,, =0 and 1-W¢,, =0, so that p and ¢ can be defined,
and that (i’) holds. 1=W¢,, iff

1

v

2sinUsinV [ —(sinUsinV —cosUcos V)+1 ]
sinlU+V) sin(lU+V) )

Equivalently
sin?lU cos®V +cos?Usin®V = —2sin®U sin®*V +2sin Vsin U
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or sin®U+sin®’V —2sinUsin V=0, which always holds.
In the same way 1=¢,.W iff

—2cosUcosV . .
Sn* (U V) [—sinUsinV +4cosUcosV +1]
iff
sin®U cos®*V +-cos?U sin?V = —2 costU cos?V —2cos U cos V
iff

cos?V 4-cos*U+2cosUcosV =0.

Once p and ¢ are defined P4t —-1=1-W¢,,+1-W¢,,—1=1-W(p,,+¢..)
=W?*>0. Q.E.D.

Here we must verify that p,=gq,, using the formulas:

p=+( sinU—sinV

cosU-+cosV )
sin(U+V)

and g=—x( Sin(U+7)

5. Sectional curvature of global Lorentzian graphs with zero mean
curvature.

Using the representation of and 2’ we can calculate the sectional
curvature of global Lorentzian graphs in terms of U and V.

We first consider the graph over a timelike plane. We let ¢==+1 and
r==1. A unit normal vector is in the direction of the Lorentzian cross product
N=(—cosU, —sinU, ¢+/cosU))x(—cosV, sinV, r4/cos(2V)) = (¢ sin U~/cos(ZV)
+0sin V4/cos(2U), tcos UV cos(ZV)—a cos V+/cos2D), —sin(U+V)). g(N, N)=
(rcos(U—V)—a+/cos2U)cos(2V))?, so the unit normal vector is

N

§= zcos(U—V)—a+/cos(2U) cos(2V) °

With respect to the null basis {9/du, d/ov} the shape operator Afz[(c) 8] )
that the sectional curvature

x=—bc=—g(Da/au%, $)g(Da/av7av—, 5)

__ -1 0 P
_mg(Da/au-a—;, N)g(Da,avW, N) .
Now
0 _ur(si _—osin(2U)
Doy =Y (sm U, —cosl, v/cos(2U) )

and
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_:z'sin(ZV) )
vcos(2V) /°

Da,av—aav—=V'(sin V,cosV,

In the end we get’
o= atU'V’
~ 4/cos(2U)cos(2V) *

The sign of £ depends on U’V" and can be chosen to be whatever one wishes.
If we consider the graph H(y, z) and assume that H,=(¢, —cosU, —sinU)
and H,=(z, —cosV, sinV), then the normal vector

1
T r—acos(U+V)

¢ (sin(U+V), —zsinU—¢asinV, —acosV+zcosU).

The shape operator is

—tV

0 t—acos(U+V)

—alU’

t—o cos(U+V) 0

Thus the sectional curvature is

—ozU'V’
(t—ocos(U+V))? *

6. A new example.

The only obstacle to calculating new examples is to find functions U and
V so that F,, F, or H,, H, can be explicitly integrated. We find an H(u, v).

_ e* _ e’ . e*
Example.nLet U —arccos( I +e“) and V—arccos(T_|_—ev—). Since 1>(1—+e—;)
>0 we have 7>U, V>0.
_ —e*  +/142¢% _ —e®  V/142¢°
Hu—(a, Tre®’ The® ) and H,=(r, T5e"’ 1t )

H(u, v)=(ou+rv, —In((1+e*)1+e"),

1n( (V1427 —1) (V1+2e%+1)
(VIF2e"+1) (v/1+2e%—1)

)+2arctan(«/—1+2e")——2arctan(«/_1 T2e%).

Note. After this work was completed I learned that Professor T.K. Milnor
obtained many of these results, as well as others, using quite different methods.
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These are contained in a preprint entitled: “Entire timelike minimal surfaces

in E{”.

[B]
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