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1. Introduction

The purpose of this paper is to prove a viability theorem for a class of
nonlinear evolution inclusions of parabolic type. Then we use that theorem to
establish the existence of admissible “state-control” pairs for a class of nonlinear,
distributed parameter, feedback control systems with state constraints.

We approach the solution to the viability problem through Galerkin approxima-
tions. This allows us to make use of well known finite dimensional results.
This method was first used by Williamson and later extended to a larger
class of semilinear problems by Shuzhong [7]. Here we consider nonlinear
systems extending this way both the above mentioned works.

We will be using mathematical setting of Lions[6]. Thus (X, H, X*) will
be a Gelfand triple of spaces, i.e. H is a separable Hilbert space and X a sub-
space of H carrying the structure of a separable, reflexive Banach space, which
is continuously and densely embedded in H. Identifying H with its dual (pivot
space), we get XCG, Ho, X*, with all embeddings being continuous and dense.
- We will also assume that they are compact. To have an example in mind take
H=L%*0, 1) and X=H}O0, 1). By |-]|| (resp. ||, ||-llx), we will denote the norm

of X(resp. of H, X*). Also by <-, -> we will denote the duality brackets for
the pair (X, X*), while by (-, -) we will denote the inner product in H. Recall
that the two are compatible in the sense that if xe XS H and h€ HE X*, then
we have {x, h)=(x, x*). '

Given a Banach space Y, by P;(Y) we will denote the family of nonempty,
closed, (convex) subsets of Y. If V, W are Hausdorff topological spaces, then
a multifunction G: V—2%\{0} is said to be upper semicontinuous (u.s. c.) if and
only if for every UEW open, GHU)={veV : G)&U} is open.

A “projection scheme” for a Banach space Y is a sequence of finite-dimen-
sional subspaces Y ,EY and a sequence of continuous linear projections P, : Y —Y,

s. t. P,.y—s+y for every y<Y. Evidently such a space is separable, since
Y=\211Y" and we have sgPIPnI =k<oo (see for example Deiming [3], p. 257).
n n

* Research supported by N.S.F. Grant D. M. S.-8802688.



102 E.P. AVGERINOS AND N.S. PAPAGEORGIOU

If K is a nonempty subset of ¥ and x<K, then by T x(x) we will denote the
Bouligand tangent cone to K at x, which is defined by:

dx(x+2h) ~o}.

TK(x)={heY : 1}?01 7

(recall that for any ASY and x&Y, d(x)=inf{|x—al : a= A}-the distance of
x from the set A). This set is a nonempty cone in Y, not necessarily convex
and T x(x)=Tz(x). However if K is convex, then T x(x) is convex too0.

Finally for B&Y nonempty, by o(-, B) we will denote the support function
of B i.e. o(x*, B)=sup{(x*, b): b= B} for all x*Y*,

2. YViable trajectories.

Let T=[0, 4] and (X, H, X*) a Gelfand triple of spaces as in the invtro-
duction. The evolution inclusion under consideration is the following :

{ 2+ Ax@)eF(x(t)) a.e. } )
*
x0)=x.€K, x(t) =K

We will make the following hypotheses concerning the data of problem ():
H,: A: X—>X* is an operator s.t.

(a) x—Ax is weakly sequentially continuous, monotone,

(b) Axll«=a(l+]xl), a>0,

(c) <Ax, x>=b|x|? b>0.

H,: KS H is nonempty, bounded, closed and convex,
H,: F: K—»P;(X*) is a multifunction s.t.

(a) x—F(x)is u.s.c.,

(b) [F(x)l=M.

H,: There exists {X%¥, P,}.;: a projection scheme for X* s.t. P,K=KNP,X.
Hy: For every x KNX, we have (—Ax+F(x))N\T x(x)#0.

By a solution of () (“viable trajectory”), we mean a function x(-)eW(T)=
{x(-)eL¥X): 2(-)e LX(X*)} s.t. x(t)eK for all t=T. Recall (see Lions [5],
theorem 1.1, p. 102 and Tanabe [8], lemma 5.5.1, p. 151) that W(T)S C(T, H).

Qur viability theorem, reads as follows:

Theorem 1. If hypotheses Hi—Hs hold and x,=KNX, then (x) admits a
viable trajectory.

Proof. As we indicated in the introduction, our proof employs the Galerkin
approximation technique. So using the projection scheme (X%, Pp).; for X*
existing by hypothesis H,, we obtain the following sequences of finite dimen-
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sional viability problems (projected problems):
{ 2.+ P, Ax,()EP, F(x,()) a.e. }
* n
xn(O)Zan():xOn; xn(t)ePnK

From proposition 14, p. 173 of Aubin-Ekeland [1], we know that for every

12 €EP,K=KNP,X, we have Tp x(x,)=P,Tx(x,). From hypothesis H;, for
every x,€P,K=KNP,X we have:

(—Axn+F(xn))NT g(x2)#0

== Pu[(—Axn+F(x)NT g(x2)]+0
== (—PpAxy+PrF(x2))NP,T x(x5)#0
== (—PrAxa+PaF(x )NT px(x2)#0

So for the finite dimensional problem (x),, the tangential (Nagumo type)
condition is satisfied and so we can apply corollary I-1 of Haddad and get
a viable trajectory x,.(-), n=1. Note that x,(-)EW(T)SC(T, H) (see Barbu [2],
theorem 4.2, p. 167). Our claim is that {x,(-)}.z: iS sequentially compact in
C(T, X,). To this end, we have:

Za®), 2D+ PrAxn(), x2(t)>Sa(x2(t), PoF(x4(1))) a.e.

= “gi“' Xa()|242¢Pr Ax (1), x,O)>S2k|| x| F(xa(t)| a.e.
= % | 22() |2 +2CAx(t), xa(t)>S2k | 22| | F(22@)] a.e.

= | 2B = | an |+ 261 50V lacoS | 28120 | Fxa)] dt

1/2

b 1/2 b
28| [xaoreae] " [ (1 PGea0 120t ]
Applying Cauchy’s inequality with e=b/k (k=§gli> |P,|=1), we have:

| £2(0) 12— | Xon |*+2b]| xa( 2> SO xa( )l E2cx>+E*M*

EEM*+| xon|?
b

= [[Xa()}ecr =

== {x.(-)} a2 is bounded, hence sequentially w-compact in L*(X)

(because of the reflexivity of L* X) and the Eberlein-Smulian theorem).
Next let v(:)e L3 X)=[L¥X*)]*. For every n=1 we have:
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[ <tatt), venat={ <~ PaAxat®), v®)dt+ 0, PaF (st

<[ 1Pa Az s @@+ IO Foxae)1de
<[ 1 AxaOlalo®ldt+ e[ IO F(xa) dt
b 1/2 |
o sk 0Axle Fao ] Pl

<[ 1axaosa) "+ 2 (I PG 1tde) "] Wolzaces
sk

(ab'?+a| xa()) Lecxy+ M0 %) ||v] L2cx>
But.we saw that 31;;1) lxn()lzecxy=M; <. Hence we have:
% n( )l L2cxry < k(@b +aM,+Mb/*)=M, n=1
={%.(-)}nz: is bounded in L3 X*).
Next consider the space RS L* X*) defined by:

R={y(~)e L¥(X*): SAy(s)dseX, for all AST Lebesgue measurable}.

Clearly R(-) is a linear subspace. Also yet y,.iy in L¥X*), y,€R. Then
for every x€X and AST Lebesgue measurable, we have:

[z, yaenat — [uwx, yopar

- <x, den(t)dt> — <x, Ly(t)dt>

Since X, X* continuously and densely, we deduce that de,.(t)dt—"-?s‘y(t)dt
in X and recall that X being reflexive is weakly sequentially complete. So for
all AST Lebesgue measurable, we have SAy(t)dteX=)yeR=)RSL’(X *) is a

reflexive, separable Banach space with the induced L*(X*)-norm topology.
Next for AST Lebesgue measurable, consider the operator K(A): R—»X
defined by:

KAX)={ Xywat

Observe that for every x*eX*, v(x*)(y)=<x*, K(A)y) is continuous, linear
on R. So by the Riesz representation theorem, there exists g(x*)(:)eL¥X)=



VIABLE SOLUTIONS FOR EVOLUTION INCLUSIONS 105
[LA(X*)]* s. t.

<%, K(AY )= L(xXg(x)®D, y®)at

S(JECRGIRD R ET P

Now recall (see for example Barbu [2], p. 167) that x,(-) is X*-absolutely
continuous. So we have:

t+h
xn<t+h>-—xn(t)=§t #n(s)ds, n21,
= x.()ER, n=1

Let A=[t, t+h]. We have:

t+h 1/2
[<x%, zatt-+ )=z S(], leenmird) - My

= {x2()} 221 EC(T, X,) is a w-equicontinuous set.

Furthermore, given x*X*, we have for all n=1:
] 1/2
<2, xa® 1 xoal- D21+ gCn1dt)

<klxol - 11+ ([ leGeooirdr) =M

Thus from the uniform boundedness principle, we deduce that
x.DISEM, nzl,teT

and recall that B0, M,)={xeX: | x|<M,} is w-compact, since X is reflexive.

S0 Txn()nz: is w-compact in X. Invoking the -Arzela-Ascoli theorem, we
conclude that {x.(:)}.:: is relatively sequentially compact in C(T', X,,). Hence
by passing to a subsequence if necessary, we may assume that x,—x in
C(T, X,). Also since {%,(-)}rz is bounded in L% X*), it is sequentially w-

compact. Thus we may assume that %,(-)—z(-) in L*X*). It is clear that
z=x<L¥%X*). Then we have:

x.n(t)e_PnAxn(t)+P7;F(xn(t)) a- e. ngl.
For every ve X we have:

(—PrAx,(1), vd=(—Ax4(t), P¥v)

But from Deimling (p. 258), we know that P*v"5v, while from the weak
sequential continuity of A(-) (see hypothesis H,(a)), we have:
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—Axa(t) —> —Ax(t) in X* == (—PoAxa(t), v> —> <(—Ax(?), v>

— P, Ax,(t) —> Ax(t) in X*
On the other hand we have:
o, PaF(x,()=0a(P}v, F(x,()))
=0(Phv, F(xa())—a, F(x.(t)))+ 0, F(x4(1)))
sSo(Plv—v, F(x.(t))+0o, F(x.®)))
SM-|Pv—vll+a(v, F(xa()))
== lim o(v, P.F(x.())<lim a(v, F(xa(t)))

Since X, H compactly, we have that x,,(t)—srx(t) in H. Recall that by hypo-
thesis H,(b), F(-) is u.s.c. on H. So z—o(v, F(2)) is u.s.c. Hence we get:

lima(, PaF(xa ()< 0w, F(x(t)
Then invoking proposition 4.1 of [6], we deduce that:

w—lm P, F(x,()) S F(x(2)) a.e.
Now through theorem 3.1 of [6], we have that:

i@)econy w—Ilim (— P, Ax,({t)+P,F(x,)t)) a.e.
== i(t)e—AxO)+F(x{)) a.e.

and x(f)eK since by hypothesis H,KS H is closed.
Thus x(-) is the desired viable trajectory of (*). Q.E.D.

3. Trajectories of feedback systems with state constraints.

We can use the viability result proved in the previous section, to establish
the existence of trajectories for a class of nonlinear, distributed parameter,
feedback (closed loop) systems with state constraints.

So the closed loop, infinite dimensional control system, is governed by the
following evolution equation :

{ 20+ Ax@t)=B(x@)ut) a.e. } -
x(0)=2x,, u@®)csU(x(t)) a.e., x(t)eK
Here Z is a separable, reflexive Banach space modelling the control space.

We will need some new hypotheses concerning (**).
Hy: B: K».L(Z, X*) s.t. B(K) is bounded and B*(:) is continuous from K

into .£(X, Z*) with the strong operator topology,
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H's: U: K—»P;(Z) is an u.s.c. multifunction s.t. [U(x)|<7.
H';: For every xeKNX, C(x)={ucsU(x): —Ax+ f(x, w)ET g(x)} +#0.
We have the following existence result concerning (**).

Theorem 2. If hypotheses H,, H,, H'y, H,, H';, H s hold and x,KNX, then
(**) admits a trajectory.

Proof. Set F(x)=B(x)U(x). Then F: K—P,,(X*). For every veX, we
have: _
(v, F(x))=0(, B(x)U(x))=a(B*(x)v, U(x))

Now if x,~x in KSH, then we have:
o(B*(xn)v, U(xs))—a(B¥(x)v, U(xn))+a(B*(x), U(xa))
S o(B*(xav—B*(x), U(xz)+a(B¥(xw, U(xz))
SM-||B*(xz)v—B*(xl+a(B*(x)v, U(x,))

Because of hypothesis H’;, we have that [|B*(x,)v—B*(x)|—0 as n—co.

Also because of the upper semicontinuity hypothesis on U(-) (see H’;), we have
that x—a(B*(y), U(x)) is u.s.c. for all yeK, veX. So we have:

lim a(B*(x)v, U(x,))=a(B*(x), U(x))
= lim ¢(B*(x ), U(xn))éd(lé*(x)v, U(x))
= x—a@, B(x)U(x))=a(v, F(x)) is u.s.c.
Invoking theorem 10, p. 128 of Aubin-Ekeland [1], we conclude that x—F(x)

isru.s.c. from KSH into X*.
Now consider the following evolution inclusion:

{ A+ AxOEF(x(t) a.e. } (xky
x(0)=x,, x()eK

Note that because of H’,, system (**)" satisfies all the hypotheses of theorem
1. So (**) admits a viable trajectory x(-). Now let L: T—2% be defined by:

LO)={ucU(x®): 2()+ Ax(®)=B(x(t))u}

From the definition of F(x), L(t)#0 for all tT\N, A(N)=0 where A(:) is
the Lebesgue measure on 7. On N, redefine L(-) by setting L(t)={0}, teN.
So L()+#0 for all tT. Let g, uw)=x@t)+Ax@®)—B(x®))u on (T\N)XZ and
g, u)=0 on NXZ. Clearly this is a Caratheodory function on T XZ (i.e. is
Lebesgue measurable in ¢, continuous in u). Hence it is jointly measurable.
Also since U(-) is u.s.c., the multifunction t—U(x(?)) is graph measurable i.e.
GrU(x(:)={{t, 2T XZ : z€U(x(t))}B(T)X B(Z), where B(T) is the Borel
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o-field of T and B(Z) the Borel ¢-field of Z. Then:

Gr L={(t, )eTXZ: g(t, w)=0}N\GrU(x(-))eB(T)x B(Z)

where B(T) is the Lebesgue o-field of T (i.e. the completion of B(T), with
respect to the Lebesgue measure A(-)). Apply Aumann’s selection theorem (see ']
Wagner [9]), to get u: T—Z measurable s. t. u(t)e L(t) a.e. Clearly (x(-), u(-))

is the desired admissible pair for (**). Q.E.D.
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