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1. Introduction.

In [N] J. Nagata proves the following neighborhood characterization of
metrizable spaces, which contains a large number of metrization theorems as
direct consequences:

(1.1) Theorem. A $T_{1}$-topological space $X$ is metrizable iff one can assign a
countable neighborhood base $(c.n.b.)\{U_{xn}|n\in N\}$ for every Point $x$ of $X$ such
that for every $n\in N$ and each Point $x\in X$ there exist neighborhoods $S_{xn}^{1},$ $S_{xn}^{2}$ of
$x$ satisfying

a) $y\in S_{xn}^{1}\Rightarrow S_{yn}^{2}\subset U_{xn}$ ,
b) $ y\not\in U_{xn}\Rightarrow S_{yn}^{2}\cap S_{xn}^{1}=\emptyset$ .

Moreover, J. Nagata gives in that paper an example showing that neither
one of the conditions of (1.1) is by itsely sufficient to insure metrizability.

In [W] S. Willard proves the following elegant slight alteration of (1.1)

with simpler conditions:

(1.2) Theorem. A $T_{0}$-space $X$ is metrizable iff each $x\in X$ posseses a $c.n$ . $b$ .
$\{U_{xn}/n\in N\}$ with the following ProPerties:

a) $y\in U_{xn}\Rightarrow U_{yn}\subset U_{xn-1}$ ,
b) $ y\not\in U_{xn- 1}\Rightarrow U_{yn}\cap U_{xn}=\emptyset$ .

Results relating metrization with other topological properties were obtained
by Bing, Nagata and Smirnow. In this paper we follow with the study of
relations between metrization and properties of neighborhood bases, locking for
still more simple conditions. Our main result gives three characterizations of
metrizability:

(1.3) Theorem. For a $T_{0}$-space $X$ the following conditions are equivalent:
i) $X$ is metrizable.
ii) Each $x\in X$ posseses a $c.n$ . $b$ . $\{U_{xn}|n\in N\}$ such that

$ y\not\in U_{xn-1}\Rightarrow U_{yn}\cap U_{xn}=\emptyset$ .
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iii) Each $n\in X$ posseses a $c.n$ . $b$ . $\{V_{xn}|n\in N\}$ such that

$y\in V_{xn}\supset V_{xn}\subset V_{yn-1}$ .
iv) There exists a function $f:N\rightarrow N$ and each $x\in X$ posseses a $c.n.b$ .

$\{W_{xn}/n\in N\}$ such that

$y\in W_{xk}$ , $k\geqq f(n)\Rightarrow W_{xi}\subset W_{yn}$ .
Therefore, condition a) of (1.2) can be deleted, and so, Exercise 23H in

[W] is not right.
In Section 3 we show how to associate to many metrizable topologies other

ones which are finer and not metrizable, obtaining in Section 4 a characterization
of the first countable $T_{1}$-topologies $\tau$ satisfying that any first countable topology
finer than $\tau$ is metrizable.

2. Proof of (1.3).

$i)\Rightarrow ii)$ is obvious by (1.2).
$ii)\Rightarrow iv)$ : From ii) we obtain

(2.1) $y\in U_{xn}\supset x\in U_{yn-1}$ ,

\langle 2.2) $U_{xn}\subset U_{xn-1}$ .
Let us take $f(n)=n+2$ and define $W_{xn}=U_{xn}$ for all $x\in X$ and all $n\in N$. For
$y,$ $z\in W_{xk}$ with $k\geqq n+2$ we have $x\in W_{yk-1}\cap W_{zk-1}$ by (2.1), then $ x\in W_{yn+1}\cap$

$W_{zn+1}$ by (2.2) obtaining that $z\in W_{yn}$ by hypothesis. So iv) is verified.
$iv)\Rightarrow iii)$ : From iv) we have

(2.3) $k\geqq f(n)=W_{xk}\subset W_{xn}$ .
We can assume that $f$ is a strictly increasing function and take another strictly
increasing $g:N\rightarrow N$ such that $g(n+1)\geqq fg(n)$ . We define $V_{xn}=W_{xg(n)}$ for all
$x\in X$ and all $n\in N$, obtaining by (2.3) that $\{V_{xn}|n\in N\}$ is a $c$ . $n$ . $b$ . at $x$ . If
we take $y\in V_{xn}$ , since $g(n)\geqq fg(n-1)$ we obtain by hypothesis that $V_{xn}\subset V_{yn-1}$ .

$iii)\Rightarrow i)$ : From iii) we have

\langle 2.4) $y\in V_{xn}\Rightarrow x\in V_{yn-1}$ ,

\langle 2.5) $V_{xn}\subset V_{xn-1}$ .
Let us define $U_{xn}=$ { $y\in X|y\in V_{xn}$ and $x\in V_{yn}$ } for all $x\in X$ and all $n\in N$.
Using (2.4) and (2.5) we obtain $V_{xn+1}\subset U_{xn}\subset V_{xn}$ , so $\{U_{xn}|n\in N\}$ is a $c$ . $n.b$ .
at $x$ . It can be proved that

\langle 2.6) $y\in U_{xn}\Rightarrow x\in U_{yn}$ ,
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(2.7) $y\in U_{xn}\Rightarrow U_{xn}\subset U_{yn-1}$ .
From (2.6) and (2.7) we obtain that these last countable neighborhood bases
verify $(1.2)- a)$ . Now let us suppose $ U_{yn}\cap U_{xn}\neq\emptyset$ and take $z\in U_{yn}\cap U_{xn}$ . Then
$y\in U_{tn}\subset U_{xn-1}$ by (2.6) and (2.7) obtaining that $(1.2)- b)$ is also verified and $X$

is metrizable. $\square $

3. A way of obtaining no metrizable spaces.

Let (X, $\tau$) be a topological space and let $E\subset X$. The coarsest topology
containing $\tau\cup\{E\}$ is given by

(3.1) $\tau_{E}=\{U\cup(V\cap E)|U, V\in\tau\}$ .

(3.2) Proposition. If (X, $\tau$) is metrizable and $E$ is dense but not in $\tau$ then
(X, $\tau_{B}$) is not metrizable.

Proof. Let us assume (X, $\tau_{E}$) metrizable and let $d$ and $\delta$ be metrics in $X$

generating $\tau$ and $\tau_{E}$ respectively.
For each $n\in N$ and each $x\in X$ we define

$G_{xn}=\left\{\begin{array}{ll}B_{d}(x, 1/n) & if x\not\in E\\B_{a}(x, 1/n)\cap E & if x\in E,\end{array}\right.$

being $\{G_{xn}|n\in N\}$ a $\tau_{B^{-}}c.n.b$ . at $x$ .
Since $ E\not\in\tau$ we can take a point $x\in E$ which is a cluster point of $X-E$

(considering $\tau$). Since $E\in\tau_{B}$ there exists $n\in N$ such that $B_{\delta}(x, 1/n)\subset E$. We
obtain that there exists $k\geqq n$ such that $G_{xk}\subset B_{\delta}(x, 1/2n)$ , there exists $y\in X-E$

such that $d(y, x)<1/2k$ , there exists $l\geqq 2k$ such that $G_{yt}\subset B_{\delta}(y, 1/2k)$ , and there
exists $z\in E$ such that $d(y, z)<1/l$ . Then we have

$z\in B_{d}(y, 1/l)=G_{yi}\subset B_{\delta}(y, 1/2k)$ ,
and

$d(x, z)\leqq d(x, y)+d(y, z)<1/2k+1/l\leqq 1/k$ ,
so

$z\in B_{d}(x, 1/k)\cap E=G_{xk}\subset B_{\delta}(x, 1/2n)$ .
Therefbre $\delta(y, z),$ $\delta(x, z)<1/2n$ , obtaining $\delta(x, y)<1/n$ , thus $y\in B_{\delta}(x, 1/n)\subset E$,
which is a contradiction. $\square $

4. Almost-discrete topological spaces.

Let us define a topological space (X, $\tau$) to be prediscrete when every point
$x\in X$ has a neighborhood $U$ such that $U=\{x\}$ or $U-\{x\}$ is discrete with the
induced topology. If (X, $\tau$) is a prediscrete space let $A=\{x\in X|\{x\}\in\tau\}$ and
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$B=X-A$ . Then we say that (X, $\tau$) is almost-discrete when each $x\in B$ has a
neighborhood $U_{x}$ such that $ U_{x}\cap U_{y}=\emptyset$ whenever $x$ and $y$ are different points
in $B$ . Using (1.3) it is proved in the Appendix that a prediscrete topological
space is metrizable if and only if it is almost-discrete, first countable and $T_{1}$ .

(4.1) Proposition. For a first countable $T_{1}$-topOlOgical space(X, $\tau$) the follow-
ing conditions are equivalent:

i) (X, $\tau$) is almost-discrete.
ii) Every first countable topology in $X$ finer than $\tau$ is metrizable.

Proof. It is obvious that every topology finer than an almost-discrete one
is almost-discrete, from which we obtain that i) implies ii).

Let us assume that ii) is verified but (X, $\tau$) is not almost-discrete, thus it is
prediscrete because $\tau$ is metrizable. Then there exists a point $x\in X$ such that
for any neighborhood $U$ of $x$ we have that $U\neq\{x\}$ and $U-\{x\}$ is not discrete.
So, we can take a sequence $(x_{n})_{n\in N}$ converging to $x$ with’ its points contained
in $X-\{x\}$ , and for each $n\in N$ we can take a sequence $(x_{n.m})_{m\in N}$ converging to
$x_{n}$ with its points contained in $X-\{x_{n}\}$ . Therefore, using (3.2) with $E=$

$X-\{x_{n}|n\in N\}$ we obtain that the topology $\tau_{E}$ on $X$ is finer than $\tau$ , first count-
able and not metrizable, which contradicts ii). $\square $

Appendix

(A.1) Lemma. APrediscrete toPological space (X, $\tau$) is metrizable if and
only if it is almost-discrete, first countable and $T_{1}$ .

Proof. Assume that (X, $\tau$ ) is metrizable, then it is first countable and $T_{1}$ .
Since (X, $\tau$) is prediscrete each $x\in B$ has a neighborhood $V_{x}$ such that $V_{x}-\{x\}$

is discrete with the induced topology, thus $V_{x}\cap B=\{x\}$ . Let $d$ be a metric in
$X$ which induces $\tau$ and for each $x\in B$ choose $N(x)\in N$ so that

$B_{a}(x, 1/2^{N(x)})\subset V_{x}$ .
Let us take

$U_{x}=B_{a}(x, 1/2^{N(x)+1})$ .
Suppose that $x$ and $y$ are different points in $B$ such that $ U_{x}\cap U_{\nu}\neq\emptyset$ , and take
$z\in U_{x}\cap U_{y}$ . We may assume that $N(x)\leqq N(y)$ obtaining

$d(x, y)\leqq d(x, z)+d(y, z)<\frac{1}{2^{N(x)+1}}+\frac{1}{2^{N(y)+1}}\leqq\frac{1}{2^{N(x)}}$ ,

so $y\in V_{x}$ , which is a contradiction. Therefore (X, $\tau$) is almost-discrete.
Now assume that (X, $\tau$) is almost-discrete, first countable and $T_{1}$ . Then

each $x\in B$ has a neighborhood $U_{x}$ such that $ U_{x}\cap U_{y}=\emptyset$ if $x$ and $y$ are differ-
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ent points in $B$ . Since (X, $\tau$ ) is first countable, for each $x\in B$ we can choose a
$c$ . $n$ . $b$ . $\{U_{xn}\}_{n\in N}$ at $x$ so that $U_{x}\supset U_{xn}\supset U_{xn+1}$ for all $n\in N$. Then, for each
$x\in A$ and $n\in N$ we define $U_{xn}$ in the following way:

a) if $x\not\in U_{yn}$ for all $y\in B$ then take $U_{xn}=\{x\}$ ;
b) if there exists some $y\in B$ (which is unique) so that $x\in U_{yn}$ then take

$U_{xn}=U_{y}$ ;
obtaining that $\{U_{xn}\}_{n\in N}$ is a $c$ . $n.b$ . at $x$ because (X, $\tau$) is $T_{1}$ . Now it is easy
to check that ii) of (1.3) is verified, so (X, $\tau$) is metrizable. $\square $

It is very easy to find examples of prediscrete spaces which are first count-
able and $T_{2}$ but not almost-discrete, so they are not metrizable. For instance,
one of them is the space (X, $\tau$) where $X=\{(x, y)\in R^{2}|y\geqq 0\}$ and $\tau$ is defined
by assuming that each set $\{(x, y)\}$ is in $\tau$ for $y>0$ , and each point $(x, 0)$

posseses a $c.n.b$ . $\{B_{xn}\}_{n\in N}$ given by

$B_{xn}=\{(z, y)\in R^{2}|y>0, z^{2}+y^{2}<1/n\}\cup\{(x, 0)\}$ .
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