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Abstract. Let {X,, n=N} be a sequence of independent random variables
with E[X,]=0 and E[X2]<oo, and let {N,, n=N} be a sequence of random
indices defined on the same space as Xn’s and independent of the latter. We
write SN,,=Z§V='{X¢ and Li=Var(Sy,)<oco. We show that for the validity
limy.w| (14 ]%])2YP|P(Sy, < Lnx) —®(x) |, =0 it is required that
lim, L7 PE[ S ¥nE[| X;(2*5]=0 for 1<p<co and §& (0, 1), and limy.wLlf™2-
Var(sﬁvn)"2=0. Furthermore, we provide conditions under which the series
[Za=1(8La) | (14| x| )2 VP | P(Sy, <Lnx) —@(x) || p)*(13/L5)]"* converges for
any 1<s<oo,

1. Introduction.

This work is concerned with extending the rate of convergence in ;the
central limit theorem of random sums of random variables. This problem, which
has attracted the attention of many probabilists, is of interest because it yields
extensive applications in actuarial mathematics, stochastic inventory control
theory, growth processes and many other fields; see Fotopoulos and Wang
(1988) and references cited therein. The first to set up such an extension was
Rychlik and Szynal (1975). In a later study, Serova (1978) considered a different
extension. In both articles, the authors have studied uniform convergence.
Many jresults about this problem are summarized in a book by Hall (1982)
including some general conclusions obtained by this author. Our study will focus
on non-uniform estimates of the rate of convergence in the central limit theorem,
which have not been emphasized in previous research.

Throughout this paper we shall let {X,, neN} (IV is the set of natural
numbers) be a sequence of real-valued independent random variables (¢.7.2.'s),
not necessarily identical, defined on a probability space (2, F, P), and we assume
that E[X,;]=0, E[X%]=0%<co with distribution functions Fjx), for jEN.

Key Words: Rate of convergence, central limit theorem, independent random vari-
ables, .Lp metrics, Berry-Essen Inequality.
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Write S,=32,X; and s3=>7%,0% Further, let {N,, nN} denote a sequence
of integer-valued random variables defined on the same probability space (2, F, P)
and independent of the sequences {X,, n€N}. The distribution law of the
r.v. N, is defined in the following way: p:;(n)=P(N,=i), iN, where p;(n)=0
and 32, pi«(n)=1, for any nN. Let @(x) denote the standard normal distri-

/
bution. For any function a(x), write Ila(x)]|p=(S|a(x)|de)! p, 1<p<oo, and
d,(a(x))=(ST| a(x)|*(d x/x))”’, l<s<oo. Here, I(E) denotes the indicator function

of an event E.
Set

Np
SN,,= tgl Xi, S%v,,: IR
By the assumption of independence
Ly=Var(Sy,)= 2 sip(m=Elsk,], for any neN.

We assume that L,—oco as n—oo.
We define the partial sums of truncated random variables as follows:

SHD)= 2 X.I(1 X, <A+ x))D),

where D>0 is a specified real number; D may depend on 7n. In most cases we
use D=1L,.
We also write

m((Dy=ELX.J(| X.| S(1+1)D)], My(D)= 3 m(D)

sUD)= 3 {ELX2(| X:| <A+ x |)DY]—mi(D)}

i=]

and

By(D)= 3 EL| X,I(| Xo| S(+1 % DD)]—m(D)*].

We shall consider a series of questions with the magnitude of |P(Sy,<L.x)
—®@(x)]. A considerable amount of recent literature has been devoted to problems
of this nature. The most complete results are known for the indendent and
identically distributed (i.i.d.) case and for N, non-random (see e.g., Hall, 1982;
a rich bibliography can be found there). But, relatively little work appears to
have been done so far on the non-identically distributed case. For N, non-
random, the quantity |P(Sy,<L.x)—®P(x)| has been investigated by Bikyalis
(1966), Feller (1968), Hall (1982), Hertz (1969), Galstyan (1971), Maejima (1978a



NON-UNIFORM ESTIMATES IN THE CENTRAL LIMIT 63

and b) Osipov and Petrov (1967), to name a few. A natural generalization of
the above case is when N, is a random variable. This case was examined by
Rychlik and Szynal (1975) and Serova (1978). Rychlik and Szynal (1975) derive
upper bounds of the uniform distance of the distribution of the process Sy,/L»
from the normal law. They provide sufficient conditions under which the
bounds are the best possible. Serova (1978) describes a method of obtaining
bounds when L2% increases more slowly than n. These bounds in turn yield
characterizations exactly as those revealed by the previous authors. In this
paper we undertake the study of the non-uniform case. Such non-uniform esti-
mates have wider applicability than uniform, e.g., for obtaining inequalities for
Il I, norms and for the theory of moderate deviations.

We begin with a strengthening of the classical Berry-Essen Theorem. The
theorems proposed herein are designed to cover random sums of random variables
in the absence of third moments, and the estimates given are also sharper than
the classical one’s, even when the third moments do in fact exist. The main
idea of the approach actually goes back to Heyde (1975). We will show that
the method developed by Heyde (1975) for problems in the i.i.d. case can be
adapted to study the rate of convergence in the central limit theorem for random
sums of independent (not necessarily identical) random variables. Overall, it
involves simple computations, as in the previous method, and consequently seems
potentially capable of characterizing the rate of convergence, like those obtained
by Ibragimov (1966) and Heyde (1967). The results are also useful for obtaining
probabilities of moderate deviations of random sums of independent random
variables, normed in an arbitrary fashion, from the normal law. In addition,
our aim is to establish sufficient conditions for the convergence of the series
of the type (Z5-.(a.p.)*)"®, where a,’s are some specified constants and p, is
any one of the quantities g¢,=sup,er(l+|x|)*|P(Sy=<xL,)—®P(x)] and
ra=A+ x| P VP | P(Sy,<xL,)—D(x)ll, for 1<p<co. It is shown that the
generalities of the theorems presented by Rychlik and Szynal (1975) and Serova
(1978) are deceptive inasmuch as they can be derived as simple corollaries of
[Theorem 4| below.

The layout of the remainder of this article is as follows. Section 2 contains
the main results of the investigation. Section 3 presents several useful technical
lemmas on obtaining generalization of the Berry-Essen theorem. These lemmas
are then exploited to obtain some of the desired results.

2. Main Results.

The following two Theorems extend results contained in Bikyalis (1966),
Feller (1968), Hall (1982), Heyde (1975) and Osipov and Petrov (1968), which deal
with non-uniform bounds on the convergence to normality for independent
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random variables. We extend their results for the random sums of i.r.v.,
resulting in more accurate approximations for the distribution of Sx,/Lx.

Theorem 1. Let {X;, icN} be a sequence of i.r.v.’s and let N, be an integer
valued random variable. Suppose E[|X;|***]<co for any a<[0,1] and JjEN.
Then, for all x&(—oo, o) there exists a positive universal constant ¢, and ¢,
such that

Na
| P(Siy S5 L)~ 0(0)| Seil+ 12D *+{ L E] B EL XX < L]

+L-2-aE[N2"E[|X |2+e(| X,|> L )]]}
n & J j n
+co(Var(sy )2/ L3).

Theorem 2. Let {X;, icN} be a sequence of i.r.v.’s and let N, be an
integer-valued random wvariable. Suppose E[|X,;|**%]< oo for and 6€(0, 1) and
jEN. There exists positive constants ¢, and ¢, such that whenever x(—oo, )

| P(Sy,< Lnx)—®(x)]

Np
e Lu(l+ | 1) E] 3 01X, 497+ oi(Var(shen 1/ LY.

The next result expands the above theorems to the .£, versions for the
central limit theorem.

Theorem 3. Let {X;,iEN} be a sequence of i.r.v.’s and let N, be an
integer-valued random index. Suppose E[| X,|?**]< oo for any 6<(0, 1) and jEN.
There exists positive constants ¢, and ¢, such that

1A+ x1)*?| P(Sy, S Lax)—P(x) 5

Nnp
gclL;Z-"E[ 2 ELIX,| JM]]+cz(Var(s%vn>lﬂ/Lz>.

To obtain the following Theorem, some additional notations and remarks are
needed. A
Let us denote a class of functions g(x) as follows.
6={g(x)| g(x) is even on the real line with g(x)=0, g(x)7 > as
x 1o and I¢=[0,1) and x4 ,E[1, o) such that g(x)/x? does
not increase Yx=xq,,}.
For our purposes, we shall assume that functions g€ defined for sufficiently

small values of the argument are such that we do not have to be concerned
about the convergence of integrals which appear. Without loss of generality,
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we may assume that x, ,=1.

Some of the best known and most elegant results on rates of convergence
are formulated specifically for the case of independent and identically distributed
summands. Some of them can be generalized to sums of “almost identically
distributed” (Hall, 1982) variables which we study next.

We impose the following condition (Galstyan, 1971).

Condition A. A sequence {X;, i=N} of i.r.v.’s is said to satisfy condition
A if there exists random variable X with Var(X)<c such that

2.1) n"t}'i‘iP(lXiI>x)§c1P(lX|>x), n>1 and x>0, and
(2.2) si=cn, nx1,

where ¢, and ¢, are suitable positive constants.

Note that is effectively the same condition with x>0 “replaced by
x>x," (%0 is a fixed constant), since can be obtained from a weaker version
by altering the distribution of X in a neighborhood of the origin (see, e.g.,
Hall, p. 78, 1982).

We also observe that under

2.3) noiss=2{ "x(n" & P(1 X1 >0))dx s e, ELX7].
Therefore, under n-'s} is bounded away from zero and infinity. Osipov
(1968) uses the notation si><n, for this case. Now, in conjunction with
and it can easily be seen that
Ngp .

@4 LPE[ SPUXI>0]<eP(XI>x)  for any x20.
Finally, we write

B=L3-1Lt,,

I, @)=( @I+ PSy, S5 L= 0 AU/ L)

for 1<s<
and
oo 1/s
Js, =( Z @LaDIA+] 21042 P(Sy, S xLa)— O 1,05/ L8)
| for 1<s<oo and 1<p<co,
where g=@6.

Then we have the following Theorem.
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Theorem 4. Let {X;, icN} be a sequence of i.r.v.’s and let N, be an
integer-valued random index. Suppose that condition A is satisfied and if

limsup(Lnss/L)<oo and (5 (@(LaXVar(sy 1/ LIYG/LY) <o,

where g6, then the sufficient condition for any 1<s<oo that
i. I(s, 0)<oo

and
ii. J(s, p)<oo for 1=p<eo

is dy(x*g(x)P(| X|> x))<oo.

In particular, when s=1, we obtain a similar version of Hall’s Theorem 2.11,
p. 78 (1982).

Corollary. Let {X;, icN} be a sequence of i.r.v.’s and let N, be an integer-
valued random index. Suppose that condition A is satisfied and if

limsup(Lasi/La) and 3 g(La)XVar(sh, )/ Li)<eo,

where g€, then the sufficient condition that

i. I, 0)<eo
and

ii. J1, p)<oo for 1sp<co
- BT X? _(= &(x)
is ELX*G(1X|)]<oo, where G(x)=| £ X-dx I(1x|21).

MTheorem 1, 2 and 3 give a direct answer to the need for an estimate of
the worst error which can be expected in the central limit theorem for random
sums of independent random variables. is of considerable theoretical
interest, and provides a method of describing why the upper bound obtained
from Theorems 1, 2 and 3 are the best possible and why improvement can be
made. However, characterizations of rates of convergence are usually restricted
to the case of almost identically distributed summands.

3. Proofs.

The inclusion of Theorem 5 below (which is a restatement of Theorem 1
from Osipov and Petrov, 1967) is given here without proof to assist us in deducing
Theorems 1 and 2 above.

Theorem 5. (Osipov-Petrov) The following inequality holds:
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sup lP(—ll’— é}i Xi—h <x>——(l)(x)l
coBr(D)
sa(D)

|hb—M(D)| | 1 ’l— s3(D)
sa(D)V2r 7 2+2re b?

where A, =37 P(| X;|>D(1+]x1)), Bn(D) =371 E[| X;I(| X;| <D(1+| x|))
—m;(D)|®*] and b>0 and h are arbitrary real numbers.

max (1, b

+

Remark. b and # may depend on n. _

To demonstrate Theorems 1 and 2, we will begin by establishing 4 lemmas. In
our proofs, the symbol ¢ denotes a generic, positive constant, not necessarily
the same at each appearance, while Co, €1, €2 and c¢; denote particular versions
of c.

Lemma 1. If E[|X;|***]<co for a<[O0, 1] for any i€N, then for any
|| =0 and D>0,

2 ELI( X1 >+ x)DY1<(D(L+ | ] )~ @+ ; ELI X;1*2I(| X;] >(1+ | x|)D)]
<(D(1+ | x]))-@+e) ; EL| X,|**<I(| X,|>D)].

Proof. This proof is closely related to the result given by Heyde (1975).
We have that for any jEN,

PO X1 >A+1xDD)S(DA+] 2N sup  w***P(| X,|>u)

u>D(1+|x1)

=(DA+]x)y-e*®  sup E[]X;|**I(| X;| >u)]

u>D(l+iz1)

=(DA+[x])HOELLX;1**<1(1 X;1 >(1+1x])D)]
S(DAA+|x|)-*+2EL| X;|**1(1 X,1 > D)].

Hence, summing over j, the result follows.

Lemma 2.
| My(D)] v -
D(H_lxl)é(D(l-Hxl)) e+ ’EIE[IX;} +J(1 X;1>1+ 1 x])D)]

<(D(1+| x| ))-@+o p E[|X,***1(| X,;| >D)].

Proof. Since E[X;]=0 for any j=N, we obtain that



68 S.B. FOTOPOULOS

|ELX,I( X;1 =(1+1 2 DD)] 1= ELX,I(1 X;1 >(1+1x1)D]|
S(DQA+|x ) O EL| Xy ™ I(] X5 >(1+121)D)]
DA+ x )+ EL| X, *I(| X, > D)].

The result follows immediately.

Lemma 3.
Bn(D) 4 L s .
DA+ 12Dy = DAY 2 EUX I X =A+121)D)]
1 n
= (o 1y A LU XX <D)]
1

+(D(1+ [ e EEUXHH“I(I .4 >D)]} .

Proof. The first inequality comes from the fact that E[|X—E[X]|’<
4E[| X|*]. With respect to the second inquality, we have only to observe that
E[1 X1 X5 =1+ x DDI<ELI X;1°I(1 X1 =D)]
+(DA+ | x| ) -*EL| X;1**¢1(1 X;1 > D)],

and then the result can easily be pursued.
To show the following Lemma, we set

yn(D)—_—"Dx;?g’S(D) .

iLemmg 4. For M}()D) <|;| and 15122
| O(y2(D)y—P(x)| gc{(1+ |zt 1— si(DD)-,\

+H(A+ ] £DD)#+ B ELIX;[*+41(| X1 >+ 1 x| D)}

1
4
and x, have the same sign, for |x|=2. Therefore,

Proof. For |x|=0, e”“"~>—21?x‘; |x|%. We also note that the variables,

_ D (. Mu(D
9= 155 (*—p )

4 [ dty 2 | 1 1
|<D(yn(D))—¢.(x)l<~/2-7rf St D ——ml?— yg,(p)l 3

_ 2 ¢ M(D)\t[,  2M(D) M.(Dy®  su(D)
T A/2rm \* D ) {1 Dx + D2 x? D? }
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«/3 (x— n(D)) (1 n(D)

\/g _ n(D)) ( _9 n(D) Aﬁ(ff)

=I,+1, say.
M.(D) _|x|
D <2

M, (D) |-2 1] 16
*=—D l <(Ix1- x) <|x|2<(1+|x1)2'

Since

and |x|=2, it can be noticed that

Hence

32 sHD)
LS Sa (L4122 <(1-=22).

Mn(D) <1z

Using the assumption 2 and |x|=2, it can also be seen that

Therefore, from it follows that

10 |MuD)|_ 10 cray & .
<5 Dl \/2 ((L+1 2 D) **+= 33 EL|X|*2I(1 X,| >(1+1 2 DD)].

i Combining I, and I,, the proof of [Lemma 4] is now completed.

Proof of Theorem 1 and 2. By dividing the domain of x, we can confirm
Theorems 1 and 2 by adopting some of the steps stated by Osipov and Petrov
(1967). First, it is noted that
3.1 |P(S S Lax)=0(x)| = 3} pu(n)| P(SiS Lax)—0(x)] -

To this end, we shall investigate the behavior of |P(S;<L.x)—®(x)| by
utilizing the classical Berry-Essen Theorem.

We shall start with |x|<2 and L2<2s¥L,). We note that

2 ELIXH( X >+ 2DLa)]

2 Ln ' Lg‘_ 2
@ |1- s"(L% AP L%s"'+ I
. ‘ .
Lt 2 ELXd™I X >+ )L
< n L] +i=1

= Lz Lite(l+|x D
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Li—st| . 2 EX™I( X >+ x1)La)]
3 LA+

Lot 2 ELIXI( Xl > La)]

== P AR

= I:

Hence, in view of Lemmas 1-3, Theorem 5 at h=0 and b=L,=D, inequality
(3.2), and the conditions |x| <2 and L%<2s}L,), we obtain that

3.3) | P(S¢=Lnx)—D(x)|

le(Ln)l_+ 1
se(La)V2rm 2\/27re

VZIM(LD| |
L.V2rx \/27re

. EE[IXil”“I(leI>(1+|xl)Ln)]

S(H«/ +75m) LA ="

VD Z EL XL X SA+HFDLDT | pa g
TAGERPTE Y V2rmeLt
g\ 2 ELIXI™I( X1 > Ly)]

§(1+77r—_+x/27re ) (L.Q+|x]))e+e

42V DPe BELXITIXISL] | 1s

LAz +

By inserting (3.3) into (3.1), Theorem 1 follows, for |x|<2 and L2<2s¥L,).
Moreover, if E[]X;|***]<, for some 6=(0, 1), we have that for a=0,

<A+

|1_ ax(l, L7 )-I— ¢oBi(Ln)

Sz(Ln) slze(Ln)

94/coBy(L)
+ 0

LZ

SAk_l_ sk(Ln)

|1-

-+

—si|
V2mel? °

Il
T

2 ELIXSNX > A+ 1xDL] 3 ELIX Xl S+ x1)La)]

N e Pk " GAGERF);
é} E[|Xt|2+5]

S =1

(L1412

and hence Theorem 2 follows immediately, for this case.

2
If |x|]<2 and L2=2s}(L,), then 1— s,,fLI;,,) =1/2 and consequently using

the fact that E[XI(|X:|<(1+|x])L.)]=0i—E[X3(|X;|>(14+|x|)L,)] and
some of the steps of the proof of Lemma 2, we have the following
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(3.5) |P(Sk§Lnx)_¢(x)I§1§2(l Sk(Ln) )

2

py {E[X%quil >(1+ | £ DLaYIH+mi LY}

<2|1-—% |+ I
|, @ 31 ELI X, [*I(| X, >0+ x ) La)]
<2|1—— = .
| (LALF 2P

From (3.5), Theorems 1 and 2 follow in a straightforward fashion for |x]|<2
and L2>=2s¥(L,).

For |x|>2 an
seen that

(B.6)  |P(Si=Lnx)—P(x)|

4 ML)l 1]

T Z— and by incorporating Lemma 2, it is easily
n

k
2 |My(D)] 2 ELX "I X >+ | £1)La)]

<< <3+
sy, =3 AGEN P

A

which is the same as in (3.3) or (3.5).

#(La)l _ 1x]

T < > we need to obtain a similar

Finally, taking |x|>2 and |M

expression to those derived above.
We define

an(Ln)___ SNn(Ln)_MNn(Ln)

SNn(Ln)
As in Heyde (1975), it is not hard to verify the inequality.
3.7 |P(Sw, S Lnx)—P(x)| = | P(S%,(La)S Y, (La))— Py, (La))

Lnx_MNn(Ln)
an(Ln)

and yn,(Ls)=

Np
+19G (L)~ 0)| +E[ Z P Xl > LaCl+1 1)
Clearly,
(3.8) | P(SH (LS 3 (L) =P w (L)) = 5 pa(mAKLa),

where
An(L2)=|P(S¥Ln)Sys(La)—P(yu(La)l.

Now, calling upon Bikyalis’ Theorem (1966), we have that

Co
(3-9) Ak(Ln).é Mk(Ln) S)Bk(Ln)

si(Ln)(l-i-l sk(L",,) ~ si(La)
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— Co
T (L [T BuLn).
Since *IEL") I;I , it can be seen that
si(L,) My(L,) |® | x]\®
S | )g(lx'*—)
3
(10)23 (1+ I X I)
Thus, yields
. ]
ALy D020 B (1.

(La(l+]x]))®
In conjunction with the last inequality is bounded by

410)2°co 3 ELI X, *I( X, S+ %1)La)]

(3.10) Ak(Ln)é (Ln(1+ lx |))s

To prove the rest of Theorems 1 and 2, we use Lemmas 1 and 4 and then
equation (3.7). Completion of Theorems 1 and 2 are now accomplished.

Proof of Theorem 3. Keeping in mind some of the steps and the techni-
ques used to show Theorems 1 and 2, it turns out that for a=0

Na ‘
[ B[ E ELxar a0 >@+1DL]]
(3.11) IP(SNné Lnx)_’¢(x)l gc\ (Ln(1+ lxl))z

Np
E[ S ELXNIAXISAHEDLD]] | yarey yn
LA+ 1z L

+ l(lxléz)}-

Now, for any 1<p< oo, (3.11) can be written as
(3.12)

Nﬂr
2-1/p o {E[EE[X?I(|X¢l>(1+lx|)Ln)]] :
AP, 2 L) =0 50 2 ENPINE

Nn
E[ £ ELIXI* I X SA+ 15D L]
LE A+ 127
=c(As+ A+ As) say.

+ +H(1+ x|y

Var(sw,) l
L3
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Next, it is known that for any x,(u), ---, x4(u) positive functions of u, the
Minkowski inequality can be written as

3.13) (S(é xi(u))pd u)”pg t‘é (Sx%’(u)du)llp for any 1=Sp< .

Hence, invoking (3.12), we obtain that

3.14) IA+1x])*=4?| P(Sy ,< Lax)—®(x)| |l

1/p

<c(|” (At atayraz)"so((|” ardx)

+(§:°Ag’dx)”p+(S:Ag’dx)”p)
To verify we note that for any d<(0, 1)
(3.15)

() Ardx)*=(" a+ixp- Llip E[% E[XU(1 X,|>(1+]x |>Ln>1]’°dx)""

o Nnp 1/p
<(I” arixnyr o B[ 3 B X000 X > L] [ dx)
1 ¥n ’
SeograE| B ELXII X > L))

Following a similar argument as in and utilizing Minokowski’s
inequality, we can extract that

3.16) (|”_apax)”
=("_a+1xn-e e[ 8 EUXITO X sA+ 1 2DL] dx)
" N
g(S—W(H. lx l)-(p+1)L;sp,{E|:‘g1 E[lXi|2+51(|X¢ l §Ln)]L§f&
b » P 1p
+(@H1xDLY B[ B ELIXI™ K La<| Xl <+ 15DLo)} )
é(s‘:o(l_'— Ix l)-(P+1)L;(2+6)pE[ :,g’:E[ | X, l“”I( l X, | é‘Ln)]]dx)”p

+(S:A{’d x)”p

Np
Se:Lz®PE| 3 ELIX,1™)].

Finally,
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o 2 1/2
(3.17) (1" Azax)" o2l

Combining (3.15), (3.16) and the result can clearly be assured.

Proof of For this part of our work, some of Rozovski’s
(1978) ideas are taken into consideration. Under condition A, in precisely the

same way as Hall (p. 79, 1980) implies,

Np
3.18) —Ll—E[ 3 ELXH(1 Xi| >Ln>1]gcoE[X21<|X1 >La)]
and
1 Npn L,
319 B[ SEIXIIAXISL ]Sl "y PAXI> 9.

Recalling and utilizing Minkowski’s inequality, it can
be seen that, for any g<@,

3200 I, 0=c( F (#LHEIX1XI> L]
n’ 2 )2 \e [2 \1/3
L]y PO X1 > )y 2SRy Y
<c¢(X,+2:+2;) say.
We have that
G2y Z=( § GLOEXIIXI> L)1)
sei({e@ELX (X1 > w2

1/s

=c({ g w)(wrP( X1 >w+2{ P X| >9)d3) 5

<o {Ta PO X >uydu)

1/8

+2([;ga(| A x| >y)dy)-LE

.S_CI(SI+SZ) say,

because of Minkowski’s inequality.
We first note that for any <1, and using Holder’s inequality,
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3.22) (|"yPUXI>9)dy) =(| 3PP X1 > 9)d )’
<([Ty-ernay) "\ 1P PO XIS 9y
=(1——E ) Purn P X > )rdy.

We choose B such that g(u)u'-#-¢*'® is non-decreasing for any $>1. Therefore,
by virtue of (3.22), let us proceed as follows:

(3.23) SzéC(STg*(u)u-2+s—ﬁ:S:(y1+ﬂP(lXl >y))’dy du)ll‘
gc(STyCHﬂ”P(IXl >y)’dygfg(u)u-z+,_“3du)lla

oo 1/8
<c(( 12" (9P X|>5)dy)

From [(3.21) and [3.23), it is readily seen that

(3.2 S5y g P X1 > yrdy) .

1

Treating 2, in the same way as above, we obtain successively

(3.25) 5=(2 (g(L,,)L-,;lgoL“yz P(|1X|>)dy) ‘ Zl:)”’

1/s

<[ (geu{ P X1> d5) 2L )

Now, in connection with (3.22), we analogously show that

)Pyl rap X1 > yydy.
—1 1

@26 (|\7PUxI>9dy) s(1—

Then, is deduced as follows.

3.27) 22§C(Sjga(u)u ‘z‘qsdugry(ﬂq)*P( | X| >y)’dy)1“
<o({Tygr PO X1 > ydy) "

is non-increasing. This completes the

Here, the choice of ¢ is such that gf":)
proof of
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