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Abstract. Let $R\leq T\leq S$ be ring extensions such that $R\leq S$ is a finite triangular
extension. Let $RE$ be a left R-module. If $R$ has a Morita duality induced
by $RE$ then $T$ has a Morita duality induced by $r^{Hom_{R}(T},$ $E$ ).

1. Introduction.

Throughout this note all rings have identity, modules are unitary, and ring

extensions share the same identity. A ring extension $R\leqq S$ is called a finite
triangular extension in case there are a finite number of elements $s_{1},$

$\cdots$ , $s_{n}\in S$

such that $S=\sum_{\ell=1}^{n}Rs_{i}$ and $\sum_{\ell=1}^{j}Rs_{i}=\sum_{\ell=1}^{j}s_{i}R$ , for $j=1,$ $\cdots$ , $n$ . A module $M$ is called

linearly compact $(1. c.)$ if any finitely solvable system of congruences, $m\equiv m_{C}$ mod $M_{\ell}$

$(M\leqq M, i\in I)$, is solvable (see [5], [6]). It is easy to see that (1) submodules
and quotient modules of a 1. $c$ . module are stilI I. $c.,$ (2) a direct sum of finitely
many 1. $c$ . modules is 1. $c.$ , and (3) a semisimple module is 1. $c$ . if and only if it is
a sum of finitely many simple modules. And it is also well-known that a ring
$R$ is semiperfect if the left R-module $RR$ is 1. $c$ . (see [5], for example).

In this note we study ring extensions and (Morita) duality that was esta-
blished by Morita [4] and Azumaya [2]. A presentation of duality can be
found in Anderson and Fuller [1, \S 23, \S 24]. V\’amos [6, Prop. (1.4)] showed
that a ring $R$ has a duality (induced by $RE$) if and only if $RR$ is 1. $c$ . and $RE$

is a 1. $c$ . and finitely cogenerated injective cogenerator. E. $g.$ , every semisimple
ring $R$ has a duality induced by $RR$ .
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2. Main Result.

Recently the author [7, Theorem 1(1)] proved that \‘a finite triangular exten-
sion over a ring with duality has itself a duality. We shall generalize this
result as follows:

Theorem. Let $R\leqq T\leqq S$ be ring extensions such that $R\leqq S$ is a finite trian-
gular extension. Let $RE$ be a left R-module. If $R$ has a Morita duality induced
by $RE$ then $T$ has a Morita duality induced by ${}_{T}Hom_{R}(T, E)$ .

3. Proof of the Theorem.

Using the proof of [6, Lemma 2.9] we note

Sublemma. SuPpose $R\leqq T$ is a ring extension such that $RT$ is $l.c.$ . If $RE$

is a finitely cogenerated injective cogenerator, then $\tau^{F=}\tau^{Hom_{R}(T},$ $E$) is an essential
extension of Soc $(_{T}F)$ .

Now let $F=Hom_{R}(T, E)$ and $G=Hom_{R}(S, E)$ . Since $RR$ is 1. $c$ . and $RS$ is
finitely generated, $RS$ is 1. $c.$ , and hence $RT$ is 1. $c.$ . Using the injectivity of
$RE$ , the exact sequence of R-bimodules

$0\rightarrow T\rightarrow S\rightarrow S/T\rightarrow 0$

induces an exact sequence of left R-modules

$0\rightarrow {}_{R}Hom_{R}(S/T, E)\rightarrow RG\rightarrow RF\rightarrow 0$ .
Now $RG$ is 1. $c$ . from the proof of [7, Theorem 1], so we conclude that $RF$ is
1. $c.$ . We have proved that $RT$ and $RF$ are 1. $c.$ , and hence $TT$ and $rF$ are 1. $c$ .
since any T-submodule is automatically an R-submodule. Thus Soc $(_{T}F)$ , being
a submodule of the 1. $c$ . module $TF$, is 1. $c.$ . Therefore Soc $(_{T}F)$ is finitely
generated since it is 1. $c$ . and semisimple. It follows from the Sublemma that
$r^{F}$ is finitely cogenerated. Since $r^{F}$ is an injective cogenerator by [6, p. 279],

so $r^{F}$ induces a Morita duality by V\’amos’ result [6, Prop. (1.4)].

4. Two Examples of Finite Extensions.

As a generalization of finite triangular extensions, one calls a ring extension
$R\leqq S$ a finite extension if both $RS$ and $S_{R}$ are finitely generated modules. For
a finite extension $R\leqq S$ there is no connection between the duality of $R$ and
the duality of $S$ , as can be shown by the following two examples.
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Example 4.1. Let $R=[00Q$ $ZQ0$ $QQQ]$ and $S=M_{\theta}(Q)$ . Then $R\leqq S$ is a finite

extension. In fact, we have $S=\sum_{i=1}^{4}Rs_{i}=\sum_{t=1}^{4}s_{i}R$ , where $s_{1}=1_{S},$ $s_{2}=\left\{\begin{array}{lll}0 & 0 & 0\\1 & 0 & 0\\0 & 0 & 0\end{array}\right\}$ ,

$s_{3}=\left\{\begin{array}{lll}0 & 0 & 0\\0 & 0 & 0\\1 & 0 & 0\end{array}\right\}$ , and $s_{4}=\left\{\begin{array}{lll}0 & 0 & 0\\0 & 0 & 0\\0 & 1 & 0\end{array}\right\}$ . Now $S$ is semisimple but $R$ is not even semi-

local. ( $i.e$ . $R/J(R)$ is not semisimple.) It follows that $R$ does not have a duality
since $RR$ is not 1. $c.$ .

Example 4.2. Cohn [3] has shown that there is a division ring extension
$C\leqq D$ such that dim ( $c^{D)=\infty}$ and dim $(D_{c})<\infty$ . It follows that the artinian

ring $S=\left\{\begin{array}{ll}D & D\\0 & C\end{array}\right\}$ does not have a duality (see [1, p. 286]). But $S$ is a finite

extension over the semisimple ring $R=\left\{\begin{array}{ll}D & 0\\0 & C\end{array}\right\}$ .

5. An Open Question.

We conclude this note by asking the following question:
If $R\leqq S$ is a finite triangular extension and $S$ has a duality, does $R$ have a

duality? The answer is “yes” if, in addition, both $RS$ and $S_{R}$ are progenerators
[7, Theorem 1(2)].
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